
An End-to-End System for Large Scale
P2P MPC-as-a-Service and Low-

Bandwidth MPC for Weak Participants

Yehuda Lindell
Bar-Ilan University, Israel

Based on joint works with: A. Barak, K. China, J. Furukawa D. Genkin, K. Hamada, M. Hirt, D.
Ikarashi, R. Kikuchi, L. Koskas and A. Nof at CRYPTO’18, ACM CCS’18 and under preparation

1

Secure Multiparty Computation (MPC)

• A set of parties with private inputs wish to compute a joint function
of their inputs
• Ensuring that nothing but the output is learned (privacy)
• Ensuring that the output is correctly computed (correctness)

• These properties should be guaranteed even in the face of adversarial
behavior
• Additional properties

• Independence of inputs
• Fairness
• Guaranteed output delivery

2

Security Requirements

• Consider comparing DNA to know if two people are close family
• Wish to do this without revealing actual DNA

• Adversarial threats
• An adversary may try to learn the other person’s DNA or some property of it

like tendency to some illness (breach of privacy)
• An adversary may wish to have the result be that s/he’s close family to get the

inheritance (breach of correctness)

3

Modeling Adversaries

• Adversarial behavior
• Semi-honest: follows the protocol specification

• Tries to learn more than allowed by inspecting transcript
• Malicious: follows any arbitrary strategy

• Much stronger security guarantees; much more expensive

• Corruption threshold
• Honest majority (or 2/3 majority):

• Can get information-theoretic security
• Dishonest majority:

• Better security guarantee; much more expensive

4

Feasibility – Fundamental Theorems from the 80s

• Any polynomial-time functionality can be securely computed with
computational security (assuming oblivious transfer), with and without an
honest majority [Yao,GMW]
• Any polynomial-time functionality can be securely computed with

information theoretic security (assuming ideal channels), with a 2/3
honest majority [BGW,CCD], and with an honest majority (assuming
broadcast) [RB]
• These are theoretical feasibility results; can they be realized in practice?

• A lot of work has been done in the past decade and we can carry out significant
computations today

• But cannot compute on massive databases!

5

Secure Computation – Potential and Reality

• Secure computation is now being used in practice and there is
increasing interest from industry
• Processing of encrypted data
• Secure statistics
• Key and biometric protection

6

Privacy-Preserving Analytics

7

P1

P2

P3

P4

P5

P6

Duality: Collaborate by Computing on Encrypted Data

8

Baffle: Compute on Encrypted Data – Protect
Your Data While in Use

9

10

Unbound: Protection of Cryptographic Keys

Private P2P – The Basic Promise of MPC

• All current use-case examples are B2B (or maybe B2C)
• The basic MPC promise

• An arbitrary set of parties (decentralized P2P setting)
• Compute on their private data (their own private data)
• Obtain output (they gain utility from their own data)

• Why don’t we have peer-to-peer (P2P) MPC?

11

Obstacles to P2P MPC

• How can decentralized parties agree what to run and when, and set up an
appropriate environment?
• How do they deploy software?
• How do they agree upon who joins, and how do they know their IDs?

• End users use browsers and mobile apps, and don’t install software
• Almost all MPC protocols require all parties to be online simultaneously
• The high bandwidth of many MPC protocols is an obstacle to mobile

deployment

• A much better gender gap study would be P2P and involve individuals
• Less legal problems, larger sample, diverse geographics

12

MPC With Inputs From Many Parties

• Currently, in order to run MPC with inputs from many parties
• A small set of servers are defined to run the actual MPC
• All parties send shares of their inputs to the servers
• The servers run the MPC and provide output

• Disadvantages
• Who runs the servers?
• Do we trust them?
• Do we all agree that we can trust them?

13

An End-to-End System for MPC

• Works the way modern software works
• End users use browsers or mobile apps
• Service model: cloud service provider offers the MPC service
• Subscribers purchase/use the service to initiate MPC executions
• End users actually run the MPC and trust no one but themselves

• If honest majority protocols are used, then they must trust this

14

Automation Backend Component

• Automation backend – fully automated MPC execution deployment
• Capabilities

• Automatic setup of parties in cloud (AWS, Azure, etc.)
• Multiple execution coordination (bid for instances, setup parties, tear down)
• Monitoring and results collection

• Admin defines parties, types, protocols executions, etc.
• Works for arbitrary protocols (have ≈10 incorporated)

15

MATRIX – The Automation Backend

16

Administrator Component

• Provider (or anyone running open source) manages execution
• Capabilities

• Publishes “invite” to participate
• Track how many users (and potentially which users) have registered

• Not aimed for anonymity of participants
• Obtain results (as well as all participants)
• Linked to backend to actually deploy

• We will demonstrate on “PrivatePoll”: a system for generic end-to-
end private polls/surveys via MPC

17

Administrator Component for PrivatePoll

18

Main Admin Page

End User Component

19

Login, poll join and poll status pages (in mobile app)

• Necessary if we want
to assume an honest
majority

• Even if not, unclear
what ramifications on
result is vast majority
corrupted

End User Component

20

User instance generation pages (online vs offline modes)

End User Component

21

Input/output pages

The Cryptographic Challenge

• The end-to-end system provides the capabilities for true
decentralized MPC
• But, in such real scenarios, BANDWIDTH constraints are a huge

concern
• Relates to actual cost (with bandwidth limitations on cellular, etc.)
• High bandwidth means much higher chance of failure

• We assume honest majority (or 2/3 majority)
• Appropriate for true end-to-end MPC, assuming authentication

22

Low-Bandwidth MPC

• A warmup – consider three parties, at most one corrupted

23

Basic Additive Secret-Sharing

!" !# !$%" %# %$

! = !" + !# + !$
% = %" + %# + %$

-) = ! + %: each computes)* = !* + %* (no interaction)
-) = ! ⋅ % = !" + !# + !$ ⋅ %" + %# + %$ =

Basic Additive Secret-Sharing

!" !# !$

! = !" + !# + !$

- (= ! +): each computes (* = !* +)* (no interaction)
- (= ! ⋅) = !" + !# + !$ ⋅)" +)# +)$ =

)")#)$

) =)" +)# +)$

!" ⋅)" + !" ⋅)$ + !$ ⋅)"
+

!# ⋅)" + !# ⋅)# + !" ⋅)#
+

!# ⋅)$ + !$ ⋅)# + !$ ⋅)$

!" ⋅ $" + !" ⋅ $& + !& ⋅ $"
+

!' ⋅ $" + !' ⋅ $' + !" ⋅ $'
+

!' ⋅ $& + !& ⋅ $' + !& ⋅ $&

Replicated Secret Sharing

(!", *+) (!', *-) (!&, *.)

- 0 = ! + $: each computes 02 = !2 + $2, 023" = !23" + $23" (no interaction)
- 0 = ! ⋅ $ = !" + !' + !& ⋅ $" + $' + $& =

($",4+) ($', 4-) ($&, 4.)

5-

5.

5+

! = !" + !' + !&
$ = $" + $' + $&

!" ⋅ $" + !" ⋅ $& + !& ⋅ $"
+

!' ⋅ $" + !' ⋅ $' + !" ⋅ $'
+

!' ⋅ $& + !& ⋅ $' + !& ⋅ $&

Replicated Secret Sharing

(!", *+) (!', *-) (!&, *.)

- 0 = ! + $: each computes 02 = !2 + $2, 023" = !23" + $23" (no interaction)
- 0 = ! ⋅ $ = !" + !' + !& ⋅ $" + $' + $& =

($",4+) ($', 4-) ($&, 4.)

5-

5.

5+

! = !" + !' + !&
$ = $" + $' + $&

Send 5- to 6.

Send 5. to 6+
Send 5+ to 6-

Communication cost
is just A SINGLE FIELD

ELEMENT per
multiplication gate

!" ⋅ $" = !" ⋅ $& + !& ⋅ $"
+

!(⋅ $" + !(⋅ $(+ !" ⋅ $(
+

!(⋅ $& + !& ⋅ $(+ !& ⋅ $&

Replicated Secret Sharing

(!", +,) (!(, +.) (!&, +/)

- 1 = ! + $: each computes 12 = !2 + $2, 123" = !23" + $23" (no interaction)
- 1 = ! ⋅ $ = !" + !(+ !& ⋅ $" + $(+ $& =

($",4,) ($(, 4.) ($&, 4/)

5.

5/

5,

! = !" + !(+ !&
$ = $" + $(+ $&

Send 5. to 6/

Send 5/ to 6,
Send 5, to 6.

Communication cost
is just A SINGLE FIELD

ELEMENT per
multiplication gate

The 1", 1(, 1& values also need to
be masked; this can be achieved
utilizing correlated randomness
which can be generated using

pseudorandom functions,
without interaction (after

sending keys once)

Achieving Security for Malicious Adversaries

• Cheating party can send incorrect !" value
• Can prove that this is all it can do

• Formalize as security up to additive attack [GIPST14]
• Multiplication is secure, but adversary can send # and result computed by

trusted party is $ ⋅ & + # (honest hold shares of $, &)

• Notation: sharing of $ amongst parties by [$]

29

Achieving Malicious Security

Multiplication

["]

[$]
% = [" ⋅ $ +)]

)

How can the honest parties detect (and abort) when * ≠ ,?

Cheating Detection – Randomized Computation
• Generate a random sharing ! ; serves as a type of MAC
• Invariant: for each wire of the circuit, compute the pair " , ! ⋅ " :

• Use multiplication to randomize the input wires of the circuit
• For each multiplication gate:

(" , ! ⋅ ")

Multiply
(real gate)

((, ! ⋅ ()

[*] [! ⋅ *]

Multiply
(MAC gate)

Cheating Detection – Verification

• Recall: in every multiplication, adversary can add some !
• In first multiplication, can cheat with " ⋅ $ + !&
• In second multiplication, can cheat with ' ⋅ " ⋅ $ + !(

• Observation: these ”match” only if !(= ' ⋅ !&
• In that case, ' ⋅ " ⋅ $ + !(= ' ⋅ " ⋅ $ + ' ⋅ !& = ' ⋅ " ⋅ $ + !&
• It’s hard for adversary to make it match, since doesn’t know ' (up to */|-|)

• Aim: detect if there are wires that do not “match”

32

Cheating Detection Procedure

("# , % ⋅ "#) ((# , % ⋅ (#)

[*#] [% ⋅ *#]

Verification step

1. Generate ,-, ,., … pseudorandomly

2. Open %
3. Compute % ⋅ ∑,#[*#]
4. Compute ∑,# % ⋅ *#
5. Securely check that:

∑,# % ⋅ *# = % ⋅ ∑,#[*#]

Local
operations

O(n) operations

Multiply
(real gate)

Multiply
(MAC gate)

Multiparty Computation (> ")

• The same method works for multiparty computation as well
• Semi-honest multiplication protocols with Shamir sharings are secure up

to additive attacks
• Damgård-Nielsen 2007 protocol has very low complexity
• Exactly 6 field elements per party per multiplication

• Resulting complexity for malicious = twice semi-honest (for large fields)
• 2 field elements per multiplication for 3 party
• 12 field elements per multiplication for multiparty

34

Malicious Security at the Cost of Semi-Honest

• We assume less than 1/3 parties corrupted (out of !)

• Consider a single execution using the semi-honest protocol
• Assume additive attack security (but actually need less)
• The best known semi-honest protocols have this property

• For every multiplication gate with input ", $ and output %, it should
hold that % = " ⋅ $; we need to verify this equality

35

Complexity

• A single semi-honest multiplication per multiplication gate plus
verification
• The communication of the verification is !(#), independent of circuit size
• Local computation is over entire circuit, but insignificant in practice
• For small fields, repeat verification until small enough

• Very useful for %& 2(which enables computation of Boolean circuits

• Overall: with known optimizations to Damgård-Nielsen, only () < 3
elements per multiplication gate + some small overhead

38

Experiments – a Real Statistics Computation
for Honest Majority Protocol
• Statistics computation (mean, variance and linear regression)
• Circuit parameters

• 4,000,000 inputs
• 6,000,000 mult gates
• Depth = 1
• 31-bit field

• Execution environment
• AWS single region
• m5.12xlarge instances

• Results
• 5 seconds for 10 parties
• 45 seconds for 150 parties

40

Experiments – Protocol Comparison

• Circuit
• 1,000,000 multiplication gates
• Depth 20
• 61, 31, 8 bit fields

• Execution environment
• AWS single region
• c5.xlarge instances

• Results (for n/3-corrupt)
• !" #$ = 1.5 seconds for 150 parties
• 31-bit = 2.5 seconds for 150 parties
• 61-bit = 4.5 seconds for 150 parties

41

0

2000

4000

6000

8000

10000

12000

14000

10 25 50 100 150

n/2-corrupt (61) n/3-corrupt (61) n/3-corrupt (31) n/3-corrupt (GF[2^8])

Protocol for 1/3 Corrupt Setting

• Circuit of 1,000,000
multiplication gates
and depth 20 over
61-bit field
• Malicious and semi-

honest almost same
cost (difference is
basically noise)

42

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Malicious SemiHonest

Experiments – Mobile Executions

43

Additional Challenges

• Cryptographic challenges
• Deal with honest failures without penalty of fully robust protocol with

guaranteed output delivery
• Achieve guaranteed output delivery at low cost in cases of no attack
• Achieve low-cost dishonest majority protocols

• Seems very difficult but would enable better trust model
• Incorporate differential privacy

• Systems and other challenges
• Scale up to thousands of parties
• Enable better performance from browsers
• Collaborate with social scientists (or others) to see what they need

44

Thank You

45

