
Out-of-Band Authentication in Group Messaging: Computational, Statistical, Optimal

Lior Rotem Gil Segev

Hebrew University

Messaging is Popular...

Major Effort: E2E-Encrypted Messaging

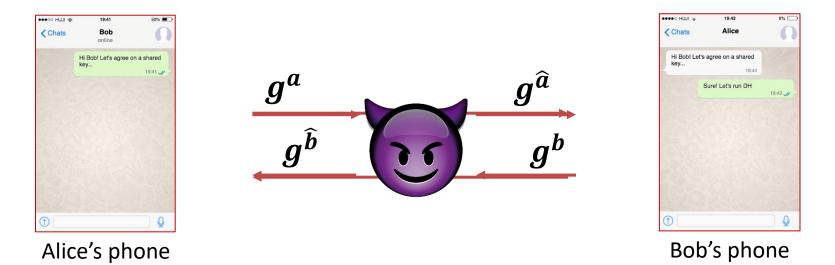
@Rakuten Vibe

Tele

- Government surveillance and/or coercion
- Untrusted or corrupted messaging servers

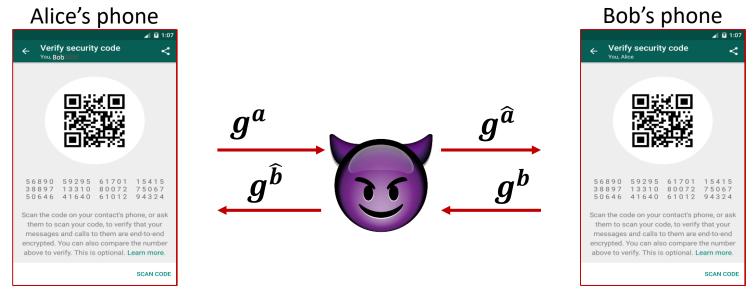
Detecting **man-in-the-middle attacks** when setting up E2E-encrypted channels

Man-in-the-Middle Attacks



ABlode's pothome

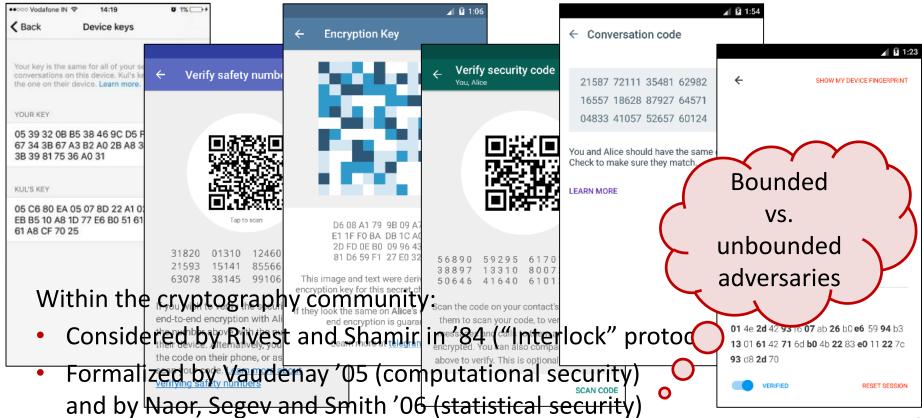
Man-in-the-Middle Attacks


Impossible to detect without any setup

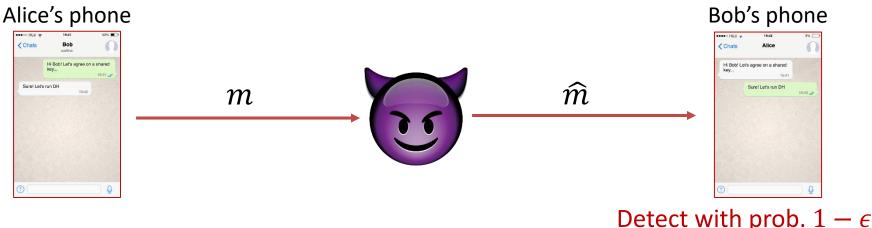
Impractical to assume a trusted PKI in messaging platforms...

Out-of-Band Authentication

Practical to assume: Users can "out-of-band" authenticate one short value



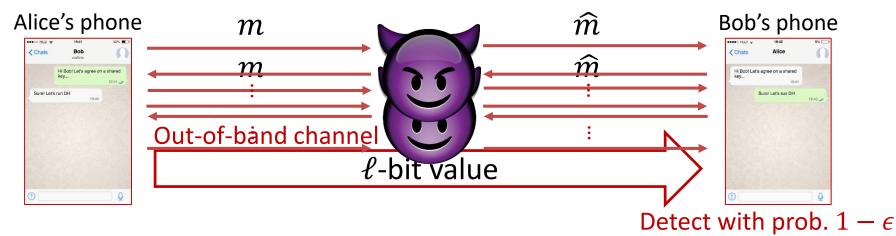
- Users can compare a short string displayed on their devices
- Assuming that they recognize each other's voice, this is a low-bandwidth authenticated channel


Out-of-Band Authentication

Facebook	<	leiegran		Allo	
Vodafone IN 14:19 A Back Device keys	Ø 1% →+	← Encryption Key	⊿ 1:06	← Conversation code	⊿ 1:54
Your key is the same for all of your se conversations on this device. Kul's ke the one on their device. Learn more. YOUR KEY 05 39 32 0B B5 38 46 9C D5 F 67 34 3B 67 A3 B2 A0 2B A8 3 3B 39 81 75 36 A0 31 KUL'S KEY 05 C6 80 EA 05 07 8D 22 A1 00 EB B5 10 A8 1D 77 E6 B0 51 61 61 A8 CF 70 25	✓ Verify safety number of the region of	D6 08 A1 79 9B 09 A7 E1 1F F0 BA DB 1C A0 2D FD 0E B0 09 96 43 81 D6 59 F1 27 E0 32 This image and text were derivencryption key for this secret of If they look the same on Alice's of end encryption is guarant Learn more at telegran	 Verify security code Vou, Alice Vou, Alice Security code Vou, Alice Vou, Alice Security code <l< td=""><td>21587 72111 35481 62982 16557 18628 87927 64571 04833 41057 52657 60124 You and Alice should have the same Check to make sure they match. LEARN MORE</td><td> SHOW MY DEVICE FINGERPRINT SHOW MY DEVICE FINGERPRINT Verify that this matches the fingerprint shown on Alice's device. How do I do that? PHONE ID: 70 C7 FE B4 7E C7 44 1D O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 122 7c O3 d8 2d 70 </td></l<>	21587 72111 35481 62982 16557 18628 87927 64571 04833 41057 52657 60124 You and Alice should have the same Check to make sure they match. LEARN MORE	 SHOW MY DEVICE FINGERPRINT SHOW MY DEVICE FINGERPRINT Verify that this matches the fingerprint shown on Alice's device. How do I do that? PHONE ID: 70 C7 FE B4 7E C7 44 1D O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 O1 4e 2d 42 93 f6 07 ab 26 b0 e6 122 7c O3 d8 2d 70
	verifying safety numbers			SCAN CODE	VERIFIED RESET SESSION
L	Signal		WhatsAp	p	Wire

Out-of-Band Authentication

• An equivalent problem: Detecting MitM attacks in message authentication

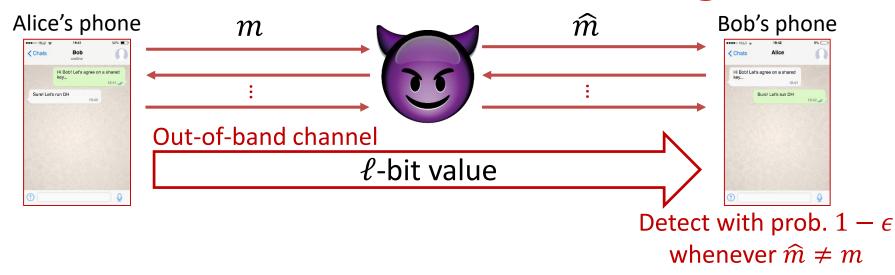


 \Rightarrow Given a shared key: MAC the message

whenever $\widehat{m} \neq m$

Given a message authentication protocol: Run any key exchange protocol and authenticate the transcript

Bob's phone Alice's phone ••••• HUJI 🤿 19:41 50% 🔳 🐽 🐽 Huji 🤿 19:42 9% Bob Alice < Chats < Chats online Hi Bob! Let's agree on a shared Hi Bob! Let's agree on a shared key... key... 19:41 19:41 $g^{\widehat{a}}$ g^a Sure! Let's run DH Sure! Let's run DH 19:42 19:42 $g^{\widehat{b}}$ **g**^b $m = g^a || g^{\widehat{b}}$ $\widehat{m} = g^{\widehat{a}} || g^{b}$



How low-bandwidth is the out-of-band channel?

- WhatsApp\Signal $\ell = 200$ bits (60 digits)
- Telegram $\ell = 288$ bits (64 characters)
- Lower bound: $\ell \ge \log(1/\epsilon)$ [PV06]

...

whenever $\widehat{m} \neq m$

Goal: Optimal tradeoff between ℓ and ϵ

User-to-User Bounds

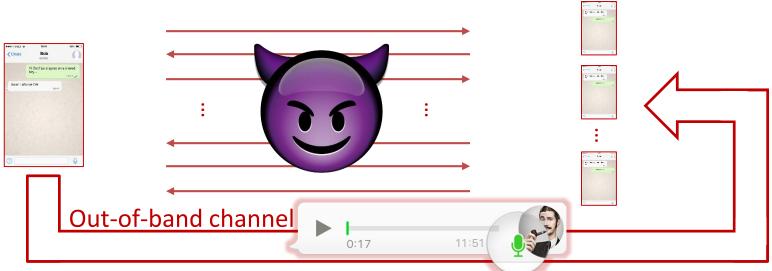
	Protocols	Lower Bounds
Computational Security [Vau05, PV06]	$\log(1/\epsilon)$	$\log(1/\epsilon) - O(1)$
Statistical Security [NSS06]	$2\log(1/\epsilon) + O(1)$	$2\log(1/\epsilon) - O(1)$

This Talk: The Group Setting

User-to-User Setting

Tightly characterized

Group Setting


Not yet studied

X Impractical protocols deployed

Our Contributions

A framework modeling out-of-band authentication in the group setting

- Users communicate over an insecure channel
- Group administrator can out-of-band authenticate one short value to all users
- Consistent with and supported by existing messaging platforms

Our Contributions

A framework modeling out-of-band authentication in the group setting

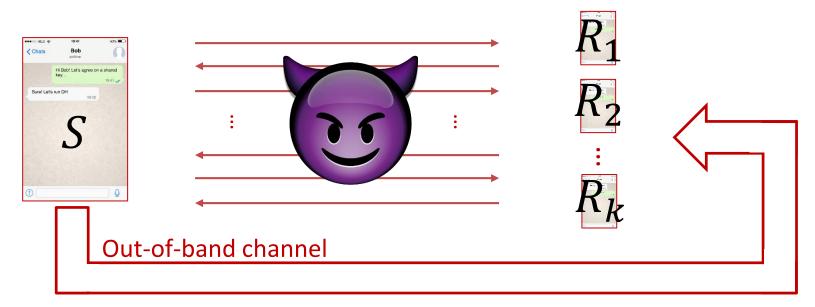
Tight bounds for out-of-band authentication in the group setting

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$

k – number of receivers Our computationally-secure protocol is practically relevant, and substantially improves the currently-deployed protocols: E.g., k = 32 and $\epsilon = 2^{-80}$: $32 \times 85 = 2720$ bits vs. 85 bits!!

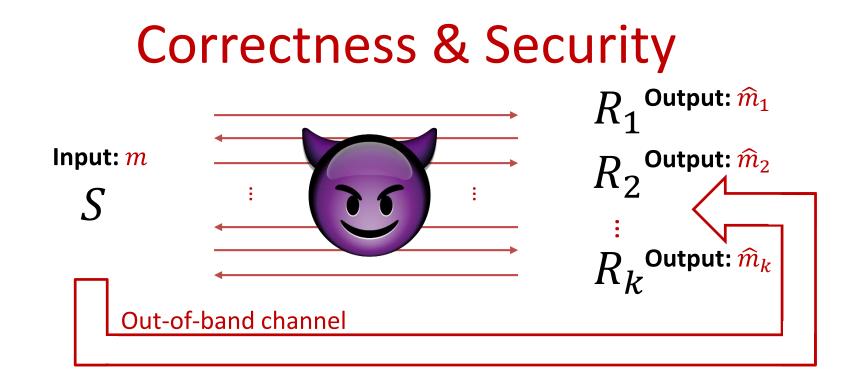
Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds


	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$
Statistical Security	$(k+1) \cdot \left(\log(1/\epsilon) + \log k + O(1) \right)$	$(k+1) \cdot \log(1/\epsilon) - k$

Talk Outline

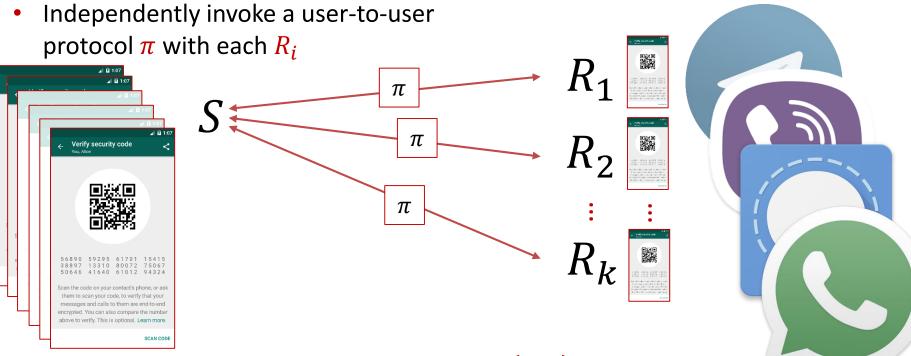
- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds


	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$
Statistical Security	$(k+1) \cdot \left(\log(1/\epsilon) + \log k + O(1) \right)$	$(k+1) \cdot \log(1/\epsilon) - k$

Communication Model

- Insecure channel: Adversary can read, remove and insert messages
- Out-of-band channel:

Adversary can read, remove and delay messages, for all or for some of the users Adversary cannot modify messages/insert new ones in an undetectable manner $_{19}$

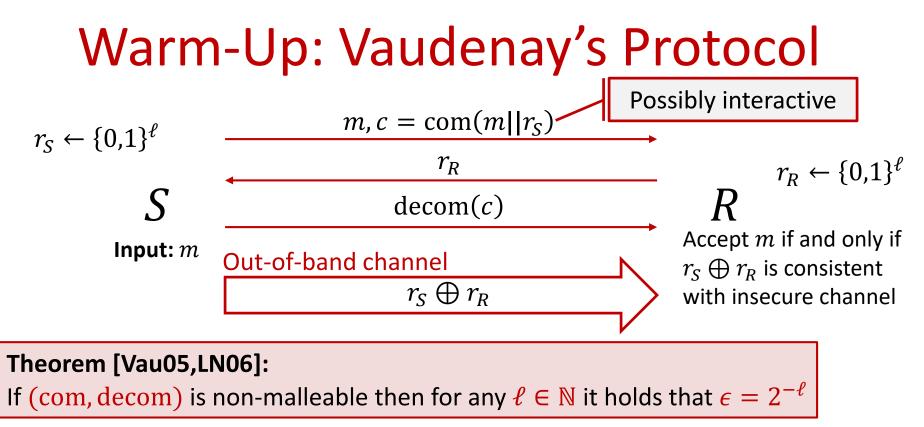

- **Correctness:** In an honest execution $\forall i: \hat{m}_i = m$
- Unforgeability: $\Pr[\exists i: \widehat{m}_i \notin \{m, \bot\}] \le \epsilon + \nu(\lambda)$
- Computational vs. statistical security

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$
Statistical Security	$(k+1) \cdot \left(\log(1/\epsilon) + \log k + O(1) \right)$	$(k+1) \cdot \log(1/\epsilon) - k$

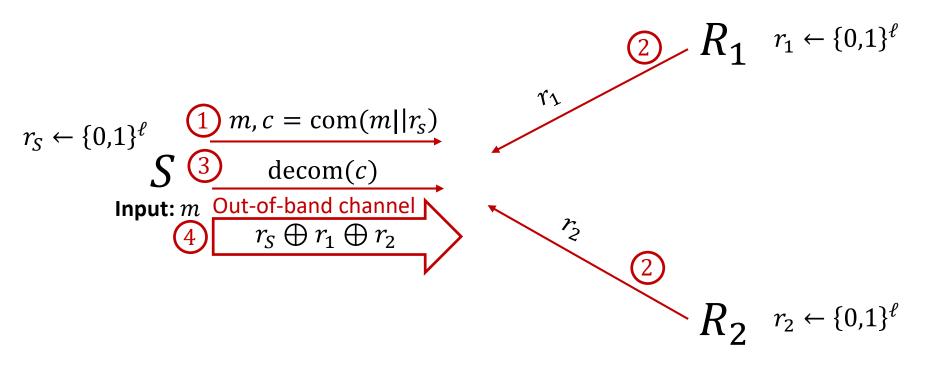
The Naïve Protocol

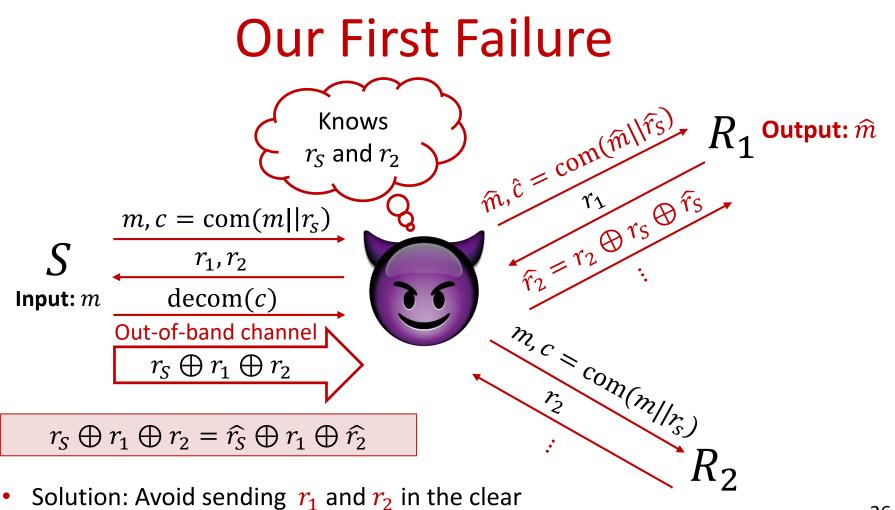


- S out-of-band authenticates at least $k \cdot \log(k/\epsilon)$ bits
- E.g., $k = 2^{10}$ and $\epsilon = 2^{-80}: 2^{10} \times 90$ bits k = 32 and $\epsilon = 2^{-80}: 32 \times 85$ bits

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds


	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$
Statistical Security	$(k+1) \cdot \left(\log(1/\epsilon) + \log k + O(1) \right)$	$(k+1) \cdot \log(1/\epsilon) - k$



Proof sketch:

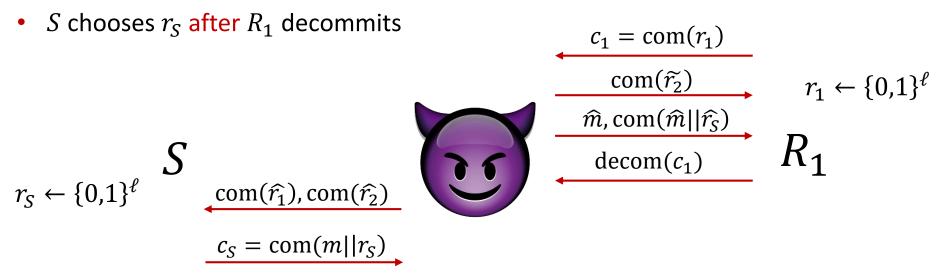
- Consider all possible synchronizations of a MitM attack
- Reduce each one to the security of the commitment scheme

Our First Attempt

Our Computationally-Secure Protocol

$$r_{s} \leftarrow \{0,1\}^{\ell} \underbrace{2m, c_{s} = com(m||r_{s})}_{\text{4 decom}(c_{s})} \underbrace{s}_{s} \underbrace{4m, c_{s} = com(m||r_{s})}_{\text{4 decom}(c_{s})} \underbrace{4m, c_$$

Our Computationally-Secure Protocol


Theorem:

If (com, decom) is statistically-binding & concurrent non-malleable, then for any $k, \ell \in \mathbb{N}$ it holds that $\epsilon = k \cdot 2^{-\ell}$

Proof sketch:

- Focus individually on each receiver R_i
- Consider all possible synchronizations of a MitM attack
 - Today: Exemplify 2 notable attacks
- Reduce each one to the security of the commitment scheme
 - Statistical binding or concurrent non-malleability

Attack #1

- R_1 accepts \widehat{m} if and only if $r_s \oplus \widehat{r_1} \oplus \widehat{r_2} = \widehat{r_s} \oplus r_1 \oplus \widetilde{r_2}$
- Statistical binding implies that, by the time r_s is chosen, all values except for r_s are already determined

$$\Pr_{r_{S} \leftarrow \{0,1\}^{\ell}} [r_{S} = \widehat{r_{1}} \oplus \widehat{r_{2}} \oplus \widehat{r_{S}} \oplus r_{1} \oplus \widehat{r_{2}}] = 2^{-\ell}$$

Attack #2

• S chooses r_S before R_1 decommits

$$c_{1} = \operatorname{com}(\hat{r}_{1})$$

$$c_{2} = \operatorname{com}(\hat{r}_{2})$$

$$c_{3} = \operatorname{com}(m||r_{S})$$

$$c_{5} = \operatorname{com}(m||\hat{r}_{S})$$

$$c_{5} = \operatorname{com}(\hat{r}_{1})$$

$$c_{1} = \operatorname{com}(r_{1})$$

$$r_{1} \leftarrow \{0,1\}^{\ell}$$

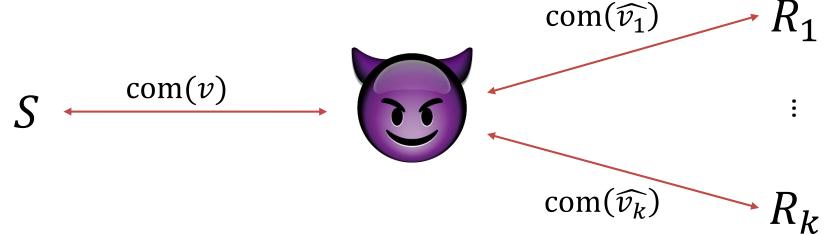
$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$c_{1} = \operatorname{com}(\hat{r}_{1})$$

$$R_{1}$$


$$C_{2} = \operatorname{com}(\hat{r}_{2})$$

$$c_{5} = \operatorname{com}(\hat{r}_{1}|\hat{r}_{S})$$

- Attacker gets $\operatorname{com}(m||r_s)$ and needs to output $\operatorname{com}(\tilde{r_2})$ and $\operatorname{com}(\hat{m}||\hat{r_s})$ such that $r_s \bigoplus \hat{r_1} \bigoplus \hat{r_2} = \hat{r_s} \bigoplus r_1 \bigoplus \tilde{r_2}$
- Concurrent non-malleability implies that either $m = \hat{m}$ or $\Pr[r_s \bigoplus \hat{r_1} \bigoplus \hat{r_2} = \hat{r_s} \bigoplus r_1 \bigoplus \tilde{r_2}] = 2^{-\ell} + \nu(\lambda)$

Concurrent Non-Malleable Commitments

Infeasible to "non-trivially correlate" concurrent executions

- Constant-round schemes from any one-way function [PR05, PR06, LPV08, LP11, Goy11, GRRV14, GPR16, COSV17, ...]
- Simple, efficient and non-interactive in the random-oracle model com(v; r) = Hash(v||r)

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$
Statistical Security	$(k+1) \cdot \left(\log(1/\epsilon) + \log k + O(1)\right)$	$(k+1) \cdot \log(1/\epsilon) - k$

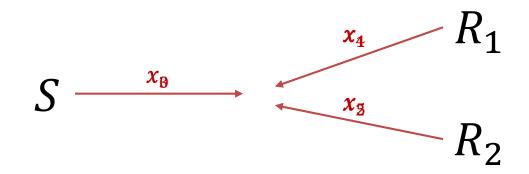
- Denote by Σ the out-of-band value in an honest execution with a random m
- During any execution Σ 's Shannon entropy decreases from $H(\Sigma)$ to 0
- Intuition [NSS06]: Each party must "independently reduce" at least $\log(1/\epsilon)$ bits from $H(\Sigma)$ • • • • K = 1 • $H(\Sigma) \ge (k+1) \cdot \log(1/\epsilon)$

Our Statistical Lower Bound

• We present k + 1 attacks that succeed with probabilities $\epsilon_0, \dots, \epsilon_k$ such that

$$2^{-H(\Sigma)-k} \le \prod_{i=0}^{k} \epsilon_i$$

• The security of the protocol guarantees that

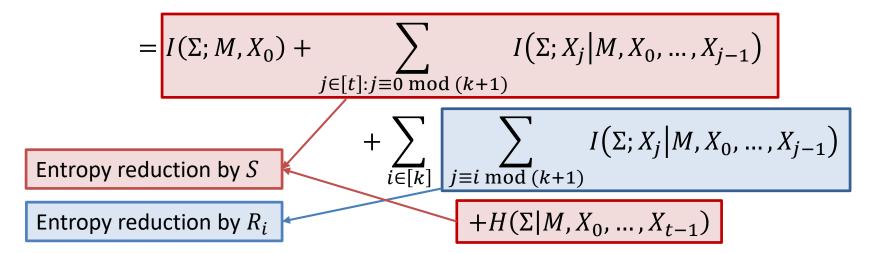

$$\prod_{i=0}^{\kappa} \epsilon_i \le \epsilon^{k+1}$$

$$\bigcup$$

$$H(\Sigma) \ge (k+1) \cdot \log(1/\epsilon) - k$$

Protocol Structure

- Assume that the protocol has t rounds over the insecure channel
- In each round *i* a single party is "active" and sends messages
 - If $i \equiv 0 \mod (k+1)$ then S is active
 - Otherwise, $R_{i \mod (k+1)}$ is active
- Denote by x_i the vector of messages sent in round i



Understanding $H(\Sigma)$

- Random variables $M, X_0, \dots, X_{t-1}, \Sigma$
- Split $H(\Sigma)$ according to the marginal contribution of each round:

 $H(\Sigma) = H(\Sigma) - H(\Sigma|M, X_0) + H(\Sigma|M, X_0) - H(\Sigma|M, X_0, X_1) + H(\Sigma|M, X_0, X_1)$

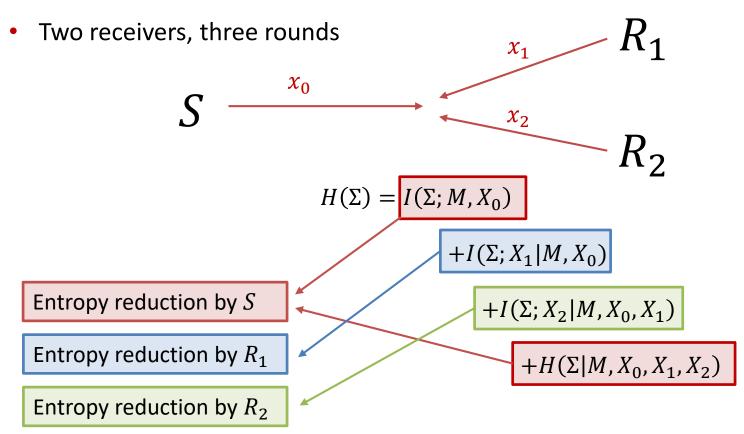
$$- \dots - H(\Sigma | M, X_0, \dots, X_{t-1}) + H(\Sigma | M, X_0, \dots, X_{t-1})$$

Understanding $H(\Sigma)$

Lemma 1:

There exists a man-in-the-middle attacker that succeeds with probability

$$= 2^{-\left(I(\Sigma; M, X_0) + \sum_{j \equiv 0 \mod (k+1)} I(\Sigma; X_j | M, X_0, \dots, X_{j-1}) + H(\Sigma | M, X_0, \dots, X_{t-1})\right)}$$


Lemma 2:

 ϵ_0

For every $i \in [k]$ there exists a man-in-the-middle attacker that succeeds with probability

$$\epsilon_i \ge 2^{-\sum_{j\equiv i \mod (k+1)} I(\Sigma; X_j | M, X_0, \dots, X_{j-1})}$$

Simplified Case

Lemma 1 - Simplified Case

The attack:

- Run an honest execution with (R_1, R_2) while simulating S on a random \hat{m}
- Run an execution with S on a random m while simulating (R_1, R_2)
 - However, instead of sampling $(\widehat{x_1}, \widehat{x_2})$ from the conditional distribution $(X_1, X_2)|m, x_0$, sample them from $(X_1, X_2)|m, x_0, \hat{\sigma}$
- Forward σ to (R_1, R_2)

$$S \xrightarrow{x_0} \widehat{x_1, \widehat{x_2}} \xrightarrow{\widehat{x_0}} \widehat{x_1, \widehat{x_2}} \xrightarrow{\widehat{x_0}} \widehat{x_0} \xrightarrow{x_1} R_1$$
Input: $\widehat{m} \leftarrow \{0,1\}^n$
Input: $\widehat{m} \leftarrow \{0,1\}^n$
Out-of-band value: σ
If $\sigma = \widehat{\sigma}$ then
$$Pr[\sigma = \widehat{\sigma}] \ge 2^{-(I(\Sigma; M, X_0) + H(\Sigma|M, X_0, X_1, X_2))}$$

Summary

A framework modeling out-of-band authentication in the group setting

Tight bounds for out-of-band authentication in the group setting

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon) + \log k$	$\log(1/\epsilon) + \log k - O(1)$
Statistical Security	$(k+1) \cdot \left(\log(1/\epsilon) + \log k + O(1) \right)$	$(k+1) \cdot \log(1/\epsilon) - k$

Thank You!