
Practical Solutions for Format-
Preserving Encryption

Mor Weiss

Joint work with Boris Rozenberg and Muhammad Barham

Research conducted while all authors were at IBM Research Labs, Haifa

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Problem (1): encrypted entry
incompatible with database entry

structure

Non-solution (1): generate new tables

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Why Format Preserving Encryption?

Problem (2): encrypted entry incompatible
with applications using data

Non-solution (2): re-write applications

Talk Outline

• Definitions

• Methodology for format-preserving encryption of
general formats

• Analysis of known constructions

• GFPE

• Optimizations for large formats

Format-Preserving Encryption: Definition
• A deterministic private-key Encryption Scheme Π:

– Message space ℳ
– Randomized 𝐾𝑒𝑦𝐺𝑒𝑛:ℕ → 𝒦
– Deterministic 𝐸𝑛𝑐:𝒦 ×ℳ → 𝒞
– Deterministic 𝐷𝑒𝑐:𝒦 × 𝒞 →ℳ

• Notation: 𝐸𝑛𝑐𝑘 = 𝐸𝑛𝑐 𝑘,⋅ , 𝐷𝑒𝑐𝑘 = 𝐷𝑒𝑐 𝑘,⋅
• Encryption key random and secret ⇒ encryption “hides”

plaintext
• Standard encryption: ciphertexts usually “look like

garbage”, possibly causing
– Applications using data to crash
– Tables designed to store data unsuitable for storing encrypted data

• ⇒ Sometimes plaintext properties should be preserved
• Format-Preserving Encryption (FPE): ℳ = 𝒞

– 𝐸𝑛𝑐𝑘 is a permutation over plaintext space ℳ
– Ciphertexts have same format as plaintexts!

FPE: Definition (cont.)
• Correctness: for every 𝑘 ∈ 𝒦 and every 𝑚 ∈ ℳ

𝐷𝑒𝑐𝑘 𝐸𝑛𝑐𝑘 𝑚 = 𝑚

• Secrecy:

– For secret and random 𝑘 ∈ 𝒦

– Hierarchy of security notions [BRRS`09]

– Strongest: random 𝑘 ⇒ 𝐸𝑛𝑐𝑘 close to pseudorandom
permutation
• An “overkill” for many typical applications

– Guaranteed security against (improbable) attacks incurs expensive
overhead

– Weakest: Message Recovery
• Only require that adversary cannot completely recover message

– Even given advantageous distribution over ℳ

• Very weak: adversary may learn some message properties

What We Know About FPE
• Term coined by Terence Spies, Voltage Security’s CTO

• First formal definitions due to [BRRS`09]

• Constructions for specific formats
– Social Security Numbers (SSNs) [Hoo`11]

– Credit Card Numbers (CCNs)

– Dates [LJLC`10]

– …

• Drawbacks:
– Designed for specific formats (different scheme for every format)

– New encryption techniques, little (if any) security analysis

• Integral domains 1,… ,𝑀 [BR`02,BRRS`09]

• “Almost integral” domains ℳ = 1,… ,𝑚 𝑛 for 𝑛,𝑚 ∈ ℕ

– Methods described as early as 1981

– FFX [BRS`10], BPS [BPS`10] submitted to NIST for consideration

Useful for
general-

format FPE

Format-Preserving Encryption for
General (Complex) Formats

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

1 2 3 4 5 6 7 8

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt message 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝐸 𝐾, 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

1 2 3 4 5 6 7 8

Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt message 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝐸 𝐾, 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

1 2 3 4 5 6 7 8

Techniques for General-Format FPE
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPE from integer-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt plaintext 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝐸𝑛𝑐𝑘 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

• Security: from security of integer-FPE

– rank not meant to, and does not, add security

• Efficiency: only if rank, unrank are efficient

• Main challenge (1): design efficient rank procedure

– “Meta” ranking technique for regular languages [BRRS`09]

• Main challenge (2): representing formats

FPEs for General Formats:
Previous solutions

Simplification-Based FPE [MYHC`11,MSP`11]
• Represent formats as union of simpler sub-formats

– Plaintexts interpreted as strings

– ℳ divided into subsets ℳ1, … ,ℳ𝑘 defined by

• Length

• Index-specific character sets

• Encrypt each ℳ𝑖 separately using Rank-then-Encipher

– Ranking computed using generalized lexicographic ordering

ℱ𝑛𝑎𝑚𝑒: format of valid names
Name: 1-4 space-separated words
Word: upper case letter followed by 1-15 lower case letters

Subsets:
ℳ1 contains Al
ℳ2 contains Tal

…
ℳ15 contains Muthuramakrishna

ℳ16 contains El Al

Simplification-Based FPE: Security
Concerns

• The problem: encryption preserves plaintext-specific
properties

– Reason: each sub-format ℳ𝑖 encrypted separately

– “John Doe” can encrypt “Jane Roe” but not “Johnnie Dee”

– If only one of them is possible, adversary knows plaintext for
sure

• Simplification-based FPE is Message-Recovery insecure
[WRB`15]

– MR (message recovery) is the weakest notion

– Implies insecurity according to other FPE security notions

• Reason: ciphertext length reveals plaintext length, can be
used to recover message

Simplification-Based FPE: Experimental Results

• Our experiments performed on 1M records of the Federal
Election Commission (FEC) reports of 2008-2012

– Regulates campaign finance legislation in the US

– Report lists all donors over $200:
• Name

• Town

• Employer

• Job title

• Attack model reflects typical threat

– Data stored at remote server

– Attacker has access to all or part of database

– No access to secret encryption key

– 𝒜 may have prior knowledge

Simplification-Based FPE: Experimental
Results (Cont.)

When 𝓐 recovers only name column

• If we’re lucky – Bar in 7% of donors whose encryptions match
only 100 entries

2%

5%

93% 𝟏𝟎𝟎 < 𝑵 < 𝟐𝟏, 𝟗𝟑𝟎

𝑵 ≤ 𝟏𝟎

𝟏𝟎 < 𝑵 ≤ 𝟏𝟎𝟎

When 𝓐 recovers name and town columns

• If we’re lucky, Bar in 7% of donors whose encryptions match only 2
entries

• Pretty likely that Bar in 44% of donors whose encryptions match
only 100 entries

7%

9%

28%56%

Simplification-Based FPE: Experimental
Results (Cont.)

𝟏𝟎𝟎 < 𝑵 ≤ 𝟑𝟑𝟑𝟒 𝟏𝟎 < 𝑵 ≤ 𝟏𝟎𝟎

𝟏 ≤ 𝑵 ≤ 𝟐

𝟐 < 𝑵 ≤ 𝟏𝟎

When 𝓐 recovers entire database

• For all donors: encryptions match ≤ 250 entries!

• Most likely Bar in 71% of donors whose encryption matches only 2
entries!

14%

15%

68%

3%

Simplification-Based FPE: Experimental
Results (Cont.)

𝑵 = 𝟐

𝑵 = 𝟏

𝟏𝟎 < 𝑵 ≤ 𝟐𝟓𝟎

𝟐 < 𝑵 ≤ 𝟏𝟎

GFPE

GFPE [WRB`15]
FPE “Wish List”

• Functionality, efficiency:
– Simple method of representing formats
– Efficient rank, unrank procedures

• Security: preserve only format-specific properties
– Hide all plaintext-specific properties

The Scheme:
• Encryption\decryption using Rank-then-Encipher

– Support integer-FPEs for integral and almost integral domains

• Main challenge: user-friendly format representation
– Scheme is user-oriented

• Structure: formats represented using bottom-up framework
– “Basic” building-blocks (primitives)

• Usually “rigid” formats (e.g., SSNs, CCNs, dates, fixed-length strings…)
• Also “less rigid” formats (e.g., variable-length strings)

– Operations used to construct complex formats

GFPE: Representing Formats
• “Basic” building-blocks (primitives):

– ℱ𝑢𝑝𝑝𝑒𝑟 = {A,B,…,Z}

– ℱ𝑙𝑜𝑤𝑒𝑟 = length-𝑘 lower-case letter strings, 1 ≤ 𝑘 ≤ 15

– ℱ𝑠𝑠𝑛 = social-security numbers (SSNs)

• Operations:

– Concatenation:

• ℱ = ℱ1 ⋅ … ⋅ ℱ𝑘
– Words: ℱ𝑤𝑜𝑟𝑑 = ℱ𝑢𝑝𝑝𝑒𝑟 ⋅ ℱ𝑙𝑜𝑤𝑒𝑟

• ℱ = ℱ1 ⋅ 𝑑1 ⋅ ℱ2 ⋅ … ⋅ 𝑑𝑛−1 ⋅ ℱ𝑛 (𝑑1, … , 𝑑𝑛−1 are delimiters)

– Range: ℱ = ℱ1 ⋅ 𝑑
𝑘, 𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑚𝑎𝑥

• Names: ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒
𝑘 for 1 ≤ 𝑘 ≤ 4

– Union: ℱ = ℱ1 ∪⋯∪ ℱ𝑘
• “Names or SSNs”: ℱ = ℱ𝑛𝑎𝑚𝑒 ∪ ℱ𝑠𝑠𝑛

Example: Representing Addresses
name house # street city zip

• ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒
𝑘 for 1 ≤ 𝑘 ≤ 4 (range)

• ℱ𝑛𝑢𝑚 = 1,… , 100 (integral domain)

• ℱ𝑧𝑖𝑝 = 0,1, … , 9 5 (fixed length string)

• Valid addresses obtained through concatenation:
ℱ𝑎𝑑𝑑 = ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑢𝑚 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑧𝑖𝑝

name house # street city zip

GFPE: Encryption
• Use Rank-then-Encipher method

– Use “off-the-shelf” integer-FPE schemes

– Inherit security of underlying integer-FPE

• Challenge: how to rank and unrank?

• Define ranking for primitives and operations

• Rank of compound formats computed top-down:

– Parse string to components

– Delegate substring ranking to format components

– “Glue” ranks together using ranking for operations

Example: Ranking Concatenation
ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

⋅ 𝑑 ⋅

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2

𝑚1 𝑚2

𝑟1 𝑟2

Example: Ranking Concatenation

𝒓 = 𝒓𝟏 + 𝒓𝟐 ⋅ 𝓕𝟏. 𝐬𝐢𝐳𝐞()

Scale by size of sub-formats

ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2

GFPE: Supporting Large Formats
• Scheme supports integer-FPEs [BR`02,BRRS`09]

– Only provably secure schemes

• Integer-FPEs are inefficient for large domains!

– Require factoring domain size

• Supporting large formats: keep formats small

– Divide large formats, encrypt each sub-format separately

– Minimize security loss by “hiding” plaintext-specific properties:

• Division according to format structure

• Maximizing sub-format size

– 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 determined by user-defined performance constraints

Main challenge!

Example: Dividing Address Format
name house # street city zip

• Valid addresses obtained through concatenation:
ℱ𝑎𝑑𝑑 = ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑢𝑚 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑧𝑖𝑝

• Jane Doe 23 Delaford New York 12345

• Jane Doe 23 Bedford New York 90210

• Smaller 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 ⇒ further division

– E.g., ℱ𝑛𝑎𝑚𝑒 divided according to number of words in name

name house # street city zip

Security of GFPE: Large Formats
• Format division introduces complications in ranking and

unranking

– Generalize rank, unrank to lists of ranks

• GFPE format-division strategy:

– Usually hides all plaintext-specific properties

– Small 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 ⇒ may preserve some properties in huge
formats
• But properties defined by “semantic” sub-format, not “cosmetic”

plaintext properties

– Maximizes sub-format size
• Minimizes possibilities of attacks

• “Wise” choice of parameters ⇒ “reasonable” tradeoff

• Given user-define efficiency constraints, we can evaluate
security loss

• Experimental results: compared GFPE with simplification-
based FPE

– On 1M records of the Federal Election Commission (FEC) reports
of 2008-2012

• Simplification-based FPE: every encrypted record
matches at most 250 records

• GFPE: when maximizing efficiency

– 99% encrypted records match > 𝟏𝟎𝟎𝟎 records

– 94% encrypted records match > 𝟏𝟎, 𝟎𝟎𝟎 records

– 67% encrypted records match > 𝟏𝟎𝟎, 𝟎𝟎𝟎 records

– …

Security of GFPE: Large Formats (2)

Concurrent Work: libFTE [LDJRS’14]
• Library for format-preserving and format transforming

encryption of general formats

– Also based on Rank-then-Encipher
• Support less integer-FPE schemes

– Formats represented using Regular Expressions

– Ranking uses automatons (deterministic or non-deterministic)

• Different goal: developer-oriented

– Defining new formats

– Choosing “right” scheme to use

• Same security guarantee

• Comparable “best case” efficiency

– libFTE “worst case” can be much worse

Summary
• Goal: FPE for general formats

• Analyze existing schemes

– Show security vulnerabilities

– Inefficiencies also exist

• Propose a new FPE scheme for general formats

– Based on Rank-the-Encipher

– Simple and efficient methodology of representing and ranking
formats

– Flexible scheme:
• Can use any FPE for integral or almost integral domains

• Easy to add new primitives: just provide rank, unrank

• User-controlled efficiency-security tradeoff (through 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 param)

