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Problem (1): encrypted entry 
incompatible with database entry 

structure

Non-solution (1): generate new tables
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Why Format Preserving Encryption?

Problem (2): encrypted entry incompatible 
with applications using data

Non-solution (2): re-write applications



Talk Outline

• Definitions

• Methodology for format-preserving encryption of 
general formats

• Analysis of known constructions

• GFPE

• Optimizations for large formats



Format-Preserving Encryption: Definition
• A deterministic private-key Encryption Scheme Π:

– Message space ℳ
– Randomized 𝐾𝑒𝑦𝐺𝑒𝑛:ℕ → 𝒦
– Deterministic 𝐸𝑛𝑐:𝒦 ×ℳ → 𝒞
– Deterministic 𝐷𝑒𝑐:𝒦 × 𝒞 →ℳ

• Notation: 𝐸𝑛𝑐𝑘 = 𝐸𝑛𝑐 𝑘,⋅ , 𝐷𝑒𝑐𝑘 = 𝐷𝑒𝑐 𝑘,⋅
• Encryption key random and secret ⇒ encryption “hides” 

plaintext 
• Standard encryption: ciphertexts usually  “look like 

garbage”, possibly causing
– Applications using data to crash
– Tables designed to store data unsuitable for storing encrypted data

• ⇒ Sometimes plaintext properties should be preserved
• Format-Preserving Encryption (FPE): ℳ = 𝒞

– 𝐸𝑛𝑐𝑘 is a permutation over plaintext space ℳ
– Ciphertexts have same format as plaintexts!



FPE: Definition (cont.)
• Correctness: for every 𝑘 ∈ 𝒦 and every 𝑚 ∈ ℳ

𝐷𝑒𝑐𝑘 𝐸𝑛𝑐𝑘 𝑚 = 𝑚

• Secrecy:

– For secret and random 𝑘 ∈ 𝒦

– Hierarchy of security notions [BRRS`09]

– Strongest: random 𝑘 ⇒ 𝐸𝑛𝑐𝑘 close to pseudorandom 
permutation
• An “overkill” for many typical applications

– Guaranteed security against (improbable) attacks incurs expensive 
overhead

– Weakest: Message Recovery
• Only require that adversary cannot completely recover message

– Even given advantageous distribution over ℳ

• Very weak: adversary may learn some message properties



What We Know About FPE 
• Term coined by Terence Spies, Voltage Security’s CTO

• First formal definitions due to [BRRS`09]

• Constructions for specific formats
– Social Security Numbers (SSNs) [Hoo`11]

– Credit Card Numbers (CCNs)

– Dates [LJLC`10]

– …

• Drawbacks:
– Designed for specific formats (different scheme for every format)

– New encryption techniques, little (if any) security analysis

• Integral domains 1,… ,𝑀 [BR`02,BRRS`09]

• “Almost integral” domains ℳ = 1,… ,𝑚 𝑛 for 𝑛,𝑚 ∈ ℕ

– Methods described as early as 1981

– FFX [BRS`10], BPS [BPS`10] submitted to NIST for consideration

Useful for 
general-

format FPE



Format-Preserving Encryption for 
General (Complex) Formats



Techniques for General-Format FPE (Part 2)
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPEs from int-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀
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Techniques for General-Format FPE
• Rank-then-Encipher (RtE) [BRRS`09]: general-format

FPE from integer-FPE

– Order ℳ arbitrarily: 𝐫𝐚𝐧𝐤:ℳ → 1, . . , 𝑀

– To encrypt plaintext 𝑚:
• Rank 𝒎: 𝑖 = rank 𝑚

• Encipher 𝒊: 𝑗 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝐸𝑛𝑐𝑘 𝑖

• Unrank 𝒋: 𝑐 = rank−1 𝑗

• Security: from security of integer-FPE

– rank not meant to, and does not, add security

• Efficiency: only if rank, unrank are efficient

• Main challenge (1): design efficient rank procedure

– “Meta” ranking technique for regular languages [BRRS`09]

• Main challenge (2): representing formats



FPEs for General Formats:
Previous solutions



Simplification-Based FPE [MYHC`11,MSP`11]
• Represent formats as union of simpler sub-formats

– Plaintexts interpreted as strings

– ℳ divided into subsets ℳ1, … ,ℳ𝑘 defined by

• Length

• Index-specific character sets

• Encrypt each ℳ𝑖 separately using Rank-then-Encipher

– Ranking computed using generalized lexicographic ordering

ℱ𝑛𝑎𝑚𝑒: format of valid names
Name: 1-4 space-separated words
Word: upper case letter followed by 1-15 lower case letters

Subsets:
ℳ1 contains  Al
ℳ2 contains Tal 

…
ℳ15 contains Muthuramakrishna

ℳ16 contains El Al



Simplification-Based FPE: Security 
Concerns

• The problem: encryption preserves plaintext-specific
properties

– Reason: each sub-format ℳ𝑖 encrypted separately

– “John Doe” can encrypt “Jane Roe” but not “Johnnie Dee” 

– If only one of them is possible, adversary knows plaintext for 
sure

• Simplification-based FPE is Message-Recovery insecure 
[WRB`15]

– MR (message recovery) is the weakest notion

– Implies insecurity according to other FPE security notions

• Reason: ciphertext length reveals plaintext length, can be 
used to recover message



Simplification-Based FPE: Experimental Results

• Our experiments performed on 1M records of the Federal 
Election Commission (FEC) reports of 2008-2012

– Regulates campaign finance legislation in the US

– Report lists all donors over $200: 
• Name

• Town

• Employer

• Job title

• Attack model reflects typical threat

– Data stored at remote server

– Attacker has access to all or part of database

– No access to secret encryption key

– 𝒜 may have prior knowledge



Simplification-Based FPE: Experimental 
Results (Cont.)

When 𝓐 recovers only name column

• If we’re lucky – Bar in 7% of donors whose encryptions match 
only 100 entries

2%

5%

93% 𝟏𝟎𝟎 < 𝑵 < 𝟐𝟏, 𝟗𝟑𝟎

𝑵 ≤ 𝟏𝟎

𝟏𝟎 < 𝑵 ≤ 𝟏𝟎𝟎



When 𝓐 recovers name and town columns

• If we’re lucky, Bar in 7% of donors whose encryptions match only 2 
entries

• Pretty likely that Bar in 44% of donors whose encryptions match 
only 100 entries

7%

9%

28%56%

Simplification-Based FPE: Experimental 
Results (Cont.)

𝟏𝟎𝟎 < 𝑵 ≤ 𝟑𝟑𝟑𝟒 𝟏𝟎 < 𝑵 ≤ 𝟏𝟎𝟎

𝟏 ≤ 𝑵 ≤ 𝟐

𝟐 < 𝑵 ≤ 𝟏𝟎



When 𝓐 recovers entire database

• For all donors: encryptions match ≤ 250 entries!

• Most likely Bar in 71% of donors whose encryption matches only 2 
entries!

14%

15%

68%

3%

Simplification-Based FPE: Experimental 
Results (Cont.)

𝑵 = 𝟐

𝑵 = 𝟏

𝟏𝟎 < 𝑵 ≤ 𝟐𝟓𝟎

𝟐 < 𝑵 ≤ 𝟏𝟎
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GFPE [WRB`15]
FPE “Wish List”

• Functionality, efficiency:
– Simple method of representing formats 
– Efficient rank, unrank procedures

• Security: preserve only format-specific properties
– Hide all plaintext-specific properties

The Scheme:
• Encryption\decryption using Rank-then-Encipher

– Support integer-FPEs for integral and almost integral domains

• Main challenge: user-friendly format representation
– Scheme is user-oriented

• Structure: formats represented using bottom-up framework
– “Basic” building-blocks (primitives)

• Usually “rigid” formats (e.g., SSNs, CCNs, dates, fixed-length strings…)
• Also “less rigid” formats (e.g., variable-length strings)

– Operations used to construct complex formats



GFPE: Representing Formats
• “Basic” building-blocks (primitives):

– ℱ𝑢𝑝𝑝𝑒𝑟 = {A,B,…,Z}

– ℱ𝑙𝑜𝑤𝑒𝑟 = length-𝑘 lower-case letter strings, 1 ≤ 𝑘 ≤ 15

– ℱ𝑠𝑠𝑛 = social-security numbers (SSNs)

• Operations:

– Concatenation:

• ℱ = ℱ1 ⋅ … ⋅ ℱ𝑘
– Words: ℱ𝑤𝑜𝑟𝑑 = ℱ𝑢𝑝𝑝𝑒𝑟 ⋅ ℱ𝑙𝑜𝑤𝑒𝑟

• ℱ = ℱ1 ⋅ 𝑑1 ⋅ ℱ2 ⋅ … ⋅ 𝑑𝑛−1 ⋅ ℱ𝑛 (𝑑1, … , 𝑑𝑛−1 are delimiters)

– Range: ℱ = ℱ1 ⋅ 𝑑
𝑘, 𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑚𝑎𝑥

• Names: ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒
𝑘 for 1 ≤ 𝑘 ≤ 4

– Union: ℱ = ℱ1 ∪⋯∪ ℱ𝑘
• “Names or SSNs”: ℱ = ℱ𝑛𝑎𝑚𝑒 ∪ ℱ𝑠𝑠𝑛



Example: Representing Addresses
name          house # street         city      zip

• ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒
𝑘 for 1 ≤ 𝑘 ≤ 4 (range)

• ℱ𝑛𝑢𝑚 = 1,… , 100 (integral domain)

• ℱ𝑧𝑖𝑝 = 0,1, … , 9 5 (fixed length string)

• Valid addresses obtained through concatenation:
ℱ𝑎𝑑𝑑 = ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑢𝑚 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑧𝑖𝑝

name house # street city zip



GFPE: Encryption
• Use Rank-then-Encipher method

– Use “off-the-shelf” integer-FPE schemes

– Inherit security of underlying integer-FPE

• Challenge: how to rank and unrank?

• Define ranking for primitives and operations

• Rank of compound formats computed top-down:

– Parse string to components

– Delegate substring ranking to format components

– “Glue” ranks together using ranking for operations



Example: Ranking Concatenation
ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

⋅ 𝑑 ⋅

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2

𝑚1 𝑚2

𝑟1 𝑟2



Example: Ranking Concatenation

𝒓 = 𝒓𝟏 + 𝒓𝟐 ⋅ 𝓕𝟏. 𝐬𝐢𝐳𝐞()

Scale by size of sub-formats

ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2



GFPE: Supporting Large Formats
• Scheme supports integer-FPEs [BR`02,BRRS`09]

– Only provably secure schemes 

• Integer-FPEs are inefficient for large domains!

– Require factoring domain size

• Supporting large formats: keep formats small

– Divide large formats, encrypt each sub-format separately

– Minimize security loss by “hiding” plaintext-specific properties:

• Division according to format structure

• Maximizing sub-format size

– 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 determined by user-defined performance constraints

Main challenge!



Example: Dividing Address Format
name          house #         street         city        zip

• Valid addresses obtained through concatenation:
ℱ𝑎𝑑𝑑 = ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑢𝑚 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑛𝑎𝑚𝑒 ⋅ ℱ𝑧𝑖𝑝

• Jane Doe 23  Delaford New York 12345

• Jane Doe 23  Bedford   New York 90210

• Smaller 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 ⇒ further division

– E.g., ℱ𝑛𝑎𝑚𝑒 divided according to number of words in name

name house # street city zip



Security of GFPE: Large Formats
• Format division introduces complications in ranking and 

unranking

– Generalize rank, unrank to lists of ranks

• GFPE format-division strategy:

– Usually hides all plaintext-specific properties

– Small 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 ⇒ may preserve some properties in huge
formats
• But properties defined by “semantic” sub-format, not “cosmetic” 

plaintext properties

– Maximizes sub-format size
• Minimizes possibilities of attacks

• “Wise” choice of parameters ⇒ “reasonable” tradeoff



• Given user-define efficiency constraints, we can evaluate 
security loss

• Experimental results: compared GFPE with simplification-
based FPE

– On 1M records of the Federal Election Commission (FEC) reports 
of 2008-2012

• Simplification-based FPE: every encrypted record 
matches at most 250 records

• GFPE: when maximizing efficiency

– 99% encrypted records match > 𝟏𝟎𝟎𝟎 records

– 94% encrypted records match > 𝟏𝟎, 𝟎𝟎𝟎 records

– 67% encrypted records match > 𝟏𝟎𝟎, 𝟎𝟎𝟎 records

– …

Security of GFPE: Large Formats (2)



Concurrent Work: libFTE [LDJRS’14]
• Library for format-preserving and format transforming 

encryption of general formats

– Also based on Rank-then-Encipher
• Support less integer-FPE schemes

– Formats represented using Regular Expressions

– Ranking uses automatons (deterministic or non-deterministic)

• Different goal: developer-oriented

– Defining new formats

– Choosing “right” scheme to use

• Same security guarantee

• Comparable “best case” efficiency

– libFTE “worst case” can be much worse



Summary
• Goal: FPE for general formats

• Analyze existing schemes

– Show security vulnerabilities

– Inefficiencies also exist

• Propose a new FPE scheme for general formats

– Based on Rank-the-Encipher

– Simple and efficient methodology of representing and ranking 
formats

– Flexible scheme:
• Can use any FPE for integral or almost integral domains

• Easy to add new primitives: just provide rank, unrank

• User-controlled efficiency-security tradeoff (through 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 param) 




