GCM-SIV:

Full Nonce Misuse-Resistant Authenticated
Encryption at Under One Cycle per Byte

Shay Gueron Yehuda Lindell
Haifa Univ. and Intel Bar-llan University

Center for Research in Applied
Cryptography and Cyber Security

Appeared at ACM CCS 2015

How to Encrypt with a Block Cipher

& BiU

Plaintext Plaintext Plaintext
ITTTTITTTITTTT CITTTITTTTITTT] CITTTTITTTTTT]
Initialization Vector (1V)
LTI —— = =
block cipher block cipher block cipher
REY encryption L encryption L encryption
ITTTITTITTTT CITTTTITTTITTTT] CITTTTITTTTTT
Ciphertext Ciphertext Ciphertext
Cipher Block Chaining (CBC) mode encryption
Nonce Counter MNonce Counter Nonce Counter
c58bcf3s. clelelelelelele] c58bcf3s. elelelelelelehn c58bcf35. eleleleleleleh
LITTITTITTITTIT LOTTITTITTITTIT CITTITTITTTTT
block cipher block cipher block cipher
LG4 encryption Lo encryption e encryption
Plaintext Plaintext Plaintext
CITTTTTITTIT I CITTTTTTTTTTT LITTITITTITTTIT
LITTITTTTITTT LITTITTTTITTIT CITTITTITTITTT
Ciphertext Ciphertext Ciphertext

Center for Research in Applied
Cryptography and Cyber Security

Counter (CTR) mode encryption

CBCvs CTR

* Efficiency:
* CBC — encryption is strictly sequential
 CTR — encryption can be parallelized

 Does this matter?

* The Intel AES-NI instruction is fully pipelineable
* AES-CTR encryption with AES-NI is 7 times faster!

CBCvs CTR

AES Encrypt Performance

Cycles Per Byte (Lower I5 Better), 64 bit, v1.0.2
EIVE mHSW mBDW
6.19

6.19
5.07
4.44 444
2.87
2.54
1.31
1. 1.08
“T I |

AE5-128-CBC AES-128-GCM AE5-256-CBC AES-256-GCM

.07

L 4

Center for Research in Applied
Cryptography and Cyber Security

L 2

CBC vs CTR — Security

* Security bounds

* CTR has better security bounds — the counter is a nonce
and security is preserved as long as it doesn’t repeat

e CBC breaks at the birthday bound since “random” values
are input to the block cipher

° | P -
llll-csl ILY

® IV | ENPENFEVR | PR e b iaa A A e lll:ll-IA
WwildJWw 19 11Ul U] C\J LulllrJ\—l VvV ikKl1i

* IV/nonce reuse
e CBC — reveals common prefix
* CTR — completely broken

IV/Nonce Reuse

Plaintext Plaintext Plaintext
ITTTTITTTITTTT CITTTITTTTITTT] CITTTTITTTTTT]
Initialization Vector (1V)
LTI —— = =
block cipher block cipher block cipher
REY encryption L encryption L encryption
ITTTITTITTTT CITTTTITTTITTTT] CITTTTITTTTTT
Ciphertext Ciphertext Ciphertext
Cipher Block Chaining (CBC) mode encryption
Nonce Counter MNonce Counter Nonce Counter
c58bcf3s. clelelelelelele] c58bcf3s. elelelelelelehn c58bcf35. eleleleleleleh
LITTITTITTITTIT LOTTITTITTITTIT CITTITTITTTTT
block cipher block cipher block cipher
LG4 encryption Lo encryption e encryption
Plaintext Plaintext Plaintext
CITTTTTITTIT I CITTTTTTTTTTT LITTITITTITTTIT
LITTITTTTITTT LITTITTTTITTIT CITTITTITTITTT
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Center for Research in Applied
Cryptography and Cyber Security

& BiU

Why Should an |V Repeat?

* Randomness is much harder than it should be
* Intel has RDRAND and RDSEED on all new chips

* Not used inside Linux /dev/random

“We cannot trust” Intel and via’s chip-
based crypto, FreeBSD developers say

Following NSA leaks from Snowden, engineers lose faith in hardware randomness.

by Dan Goodin - Dec 10, 2013 3:00pm IST
113

This post was updated on December 16 to make clear that for most of FreeBSD's history, it wasn't
possible to use RDRAND and Padlock as the sole source of random numbers fed to the /dev/random

engine.

eeeeee for Research in Applied
Cryptography and Cyber Security

Bad Randomness

* In 2008, a bug in Debian Linux was found

* In 2006, code that was crucial for RNG reseeding was
commented out

MD Update(&m,buf,j);

[-« 1]
MD Update(&m,buf,j); /* purify complains */

eeeeee for Research in Applied
Cryptography and Cyber Security

Bad Randomness

* PlayStation 3

* In 2010, the ECDSA private key used by Sony to sign
software for PlayStation 3 was recovered because Sony

failed to generate a new random nonce for each
signature

RSA Keys — Lenstra et al. 2012

* Collected 6.4 million RSA keys from the web

e 71,052 occurred more than once
* Different owners can decrypt each other’s traffic
* Some of the moduli repeated thousands of times (no entropy)

e 12,934 had a common factor
* Computed GCD(N,N’) where N = pg and N’ = p'q
* Factor both moduli

* We use this for entropy estimation

eeeeee for Research in Applied
Cryptography and Cyber Security

Entropy Estimation via RSA Keys

* The expected number of collisions in q samples

q
from a domain of size N is *)/ o /ZN
* We have g = 12,800, 000 (number of primes is

double)
 We have number of collisions = 12,934
2
+ So, =220 = 12,934 giving N ~ 23256

* Conclusion: an “average” of 33 bits of entropy

Bad Randomness

e Given that randomness can repeat and does
repeat, what should we do?

* CBC still reveals common prefixes, but is better
than CTR...

e Can we do better? Efficiently?

What About Authenticated
Encryption?

* CCM:

 CBC-MAC followed by CTR encryption: slow due to CBC-
MAC and vulnerable due to CTR encryption

* GCM.

[~ 3] [N _[4] [~ 5] [~ 1]
GCM
Ex Ex Ex Ex when |N] = 96 o
CP o [P & [P o [P o 5
4] 4 | (4 o] o ¢] Ca] G 1o Oar[ier]
MSB,
5 5 5 3 5 5

What About Authenticated
Encryption?

e GCM - if the nonce repeats, then:
* As with CTR plaintexts can be recovered
* Much more seriously — H can be recovered

* This means that integrity is lost forever!

v [2 [~ 13 [~ 4] [~ I35
GCM
Ex Ex Ex Ex when |N] = 96
P d [P 1d [P 10 [P }+d
4 4 | (4 0] o] &] o G To] (4 [icl]

Preliminaries: IV vs Nonce Encryption

* IV (initial vector) encryption:
* |V must be randomly chosen

* Nonce-based encryption:
* Only require that nonce is unique

* CBC encryption: need random IV; nonce not good
enough

* CTR encryption: suffices to have a unique nonce

* In AES-CTR, use a nonce of length 96 bits and counter of
length 32 bits

Nonce Misuse Resistance [rogaway-shrimpton]

* Denote nonce by N

* Security property

* If N is same and message is same — the result is the
same ciphertext
e Thisis inherent
e Otherwise — full security (authenticated encryption):
* Evenif N is the same and the message is not
e Evenif N is different and the message the same

* This cannot be achieved for online encryption

* If two long messages differ only in the last bit, when
same N is used, must have same prefix in online

Abstract SIV Encryption [Rogaway-Shrimpton]

* Input: message M and nonce N
* Step 1:

* Apply a PRF F with key K1 to (N, M); denote result by T
* Step 2:

* Encrypt M with key K2 using nonce T; denote result by C

* Output (N, M, T)

* Decryption: M <« Decy,(C) with nonce T; check
I = FKl (N' M)

SIV Encryption Security

* Encryption:

T = Fg{(N,M); C < Encg, (M) with nonce T

* Security

* If nonce N is different, then by PRF the value T is
pseudorandom

* If nonce N is the same but M is different, then by PRF the
value T is pseudorandom

e The value T also serves as a valid MAC and so have
authenticated encryption

Efficient Instantiations

* Option 1 — apply a PRF based on AES
 What PRFs do we have? CBC-MAC
* Very expensive

* Option 2 — construct a more efficient PRF using
simpler primitives

e Let H be an e-XOR universal hash function
Vx,y,z : Prl[Hg,(x) @ Hg,(y) = z] < e(n)

e Claim: FKl,KZ(N' M) — FKZ(HKl(M) @ N) is a PRF

Universal-Hash Based PRF

* The construction: Fy g2 (N, M) = Fy,(Hg1 (M) © N)

* Proof idea:

* By the PRF property of F, can distinguish only if it queries
(N,M),(N',M") where Hi; (M) @© N = Hg,(M") © N’

 Equivalently: if Hy,;(M) @ Hy(M') = N @ N’

* By the €-XOR property, this happens with probability only €
for each pair

* Therefore, secure PRF for negligible €

The GCM-SIV Instantiation

* The GHASH function H in GCM is an €-XOR
universal hash function (for negligible €)
[McGrew-Viega]

* The PRF used is AES (only need a single block)
* Encryption is AES-CTR

* Versions:
* Three different keys (for GHASH, PRF, CTR-ENC)
* Two keys: use same key for PRF and CTR-ENC
* One key: derive the two keys using AES itself

The GCM-SIV Instantiation

* A very important property: all the elements here
are identical to the existing AES-GCM

* We only change the order of operations

 Why is this important?
 Efficiency
* Deployment ease (use existing code bases)

AES-GCM Across Intel CPU Generations

AES-GCM performance

gL (2015) AES-
GCM at the

cost of CTR!

3.50 3.08

N
~
(U}

=
U
o

cycles per byte

0.50 23

0.00 ‘
Pre AES-NI/ Westmere Sandy bridge Haswell Broadwell Skylake (Sept.
PACLMULQDQ (2010) (2012) (2013) (2014) 2015)

Use AES-NI for CTR and PCLMULQDQ for GHASH

.) Blu Cr ypt g phy dCyber Security

Efficiency of GCM vs GCM-SIV

* Encryption
* In GCM, CTR-ENC and GHASH are interleaved and run in
parallel

* In GCM-SIV, GHASH must be finished before CTR-ENC
can begin (cannot be done in parallel)

v T2] v 3] N T4] [N 5] [~ (1]

Efficiency of GCM vs GCM-SIV

* Decryption:
* |In GCM, once again CTR-DEC and GHASH interleaved

* In GCM-SIV, can also interleave (decryption cost “should
be” the same as the original GCM)

[~ I2] IAEY [N T4] [~ T5] [~ [1]
3 GCM
EK EK EK EK Whe"|N|=95 EK
[P & [P o [P o [P 79 5
[4] [4 | [4; [o] [a] LG] C & | [G To] IZTH =
MSB,

GCM-SIV Performance — Highlights

2-key GCM-SIV over an 8KB message

1.40

8T'T
oT'T

1.20

OT'T

1.00

0.80 -
= Haswell

0.60 - 1 Broadwell

Cycles per byte

1 Skylake

0.40 -

0.20 -

GCM-SIV encrypt GCM-SIV decrypt AES-GCM
(with init) (with init) (without init)

4

Center for Research in Applied
Cryptography and Cyber Security

L 4

Time Comparison to AES-GCM

 GCM-SIV (our implementation) is faster than (OpenSSL’s
best) AES-GCM for short messages, due to a new software

optimization
Full No Init
Cycles Cycles
HSW/BDW | GCM-SIV GCM-SIV | AES-GCM GCM-SIV GCM-SIV | AES-GCM
bytes Two keys One key Two keys One key
16 149 / 136 297 / 241 | 1289 / 1263 133 / 121 133 / 121 178 / 172
32 198 / 171 318 /284 | 1277 / 1318 178 / 153 178 / 153 219 / 217
64 322 / 281 444 / 417 | 1292 / 1335 319 / 278 319 / 278 236 / 238
128 516 / 440 645 / 568 | 1415 / 1371 282 / 262 282 / 262 293 / 266
256 674 / 566 800 / 694 | 1558 / 1417 426 / 401 426 / 401 421 / 385
512 966 / 796 1093 / 930 | 1808 / 1730 722 / 626 722 / 626 760 / 651
1,024 1566 / 1252 | 1695 / 1385 | 2312 / 2108 1315 / 1085 | 1315 / 1085 | 1252 / 989
1,536 2159 / 1713 | 2274 / 1843 | 2816 / 2416 1907 / 1544 | 1907 / 1544 | 1714 / 1305
2,048 2751 / 2171 | 2869 / 2300 | 3372 / 2842 2498 / 1996 | 2498 / 1996 | 2287 / 1765
4,096 5118 / 4005 | 5244 / 4136 | 5332 / 4354 4867 / 3837 | 4867 / 3837 | 4296 / 3243
8,192 9862 / 7666 | 9994 / 7782 | 9521 / 7388 9611 / 7498 | 9611 / 7498 | 8399 / 6289
C/B C/B
8,192 1.2/0.94 | 1.22/0.95 [1.16/0.9 1.17/0.92 | 1.17/0.92 | 1.03/0.77

& BiU

Center for Research in Applied
Cryptography and Cyber Security

GCM-SIV Performance Comparison

 GCM-SIV significantly outperforms all other
implemented nonce-misuse resistant schemes
* Including all CAESAR round 1 candidates

* Based on published authors’ optimized
implementations

* When measured on modern x64 processors

* The only exception is AEZ, which is based on a
non-standard use of AES

Summary

* Full nonce misuse-resistant authenticated encryption at an
extremely low cost (almost AES-GCM)
* Full proof of security and full implementation
* Easily deployable:
e Utilizes existing hardware
» Utilize existing code and software (AES-GCM implementations)

e Detailed specifications, reference code and Open Source
optimized code implementations coming soon

* Unpatented

 We hope to see it adopted

Thank You

Center for Research in Applied
Cryptography and Cyber Security

