
`

GCM-SIV:
Full Nonce Misuse-Resistant Authenticated

Encryption at Under One Cycle per Byte

Shay Gueron
Haifa Univ. and Intel

Yehuda Lindell
Bar-Ilan University

Appeared at ACM CCS 2015

`

How to Encrypt with a Block Cipher

`

CBC vs CTR

• Efficiency:
• CBC – encryption is strictly sequential

• CTR – encryption can be parallelized

• Does this matter?
• The Intel AES-NI instruction is fully pipelineable

• AES-CTR encryption with AES-NI is 7 times faster!

`

CBC vs CTR

`

CBC vs CTR – Security

• Security bounds
• CTR has better security bounds – the counter is a nonce

and security is preserved as long as it doesn’t repeat

• CBC breaks at the birthday bound since ”random” values
are input to the block cipher

• Integrity
• CBC is harder to tamper with

• IV/nonce reuse
• CBC – reveals common prefix

• CTR – completely broken

`

IV/Nonce Reuse

`

Why Should an IV Repeat?

• Randomness is much harder than it should be
• Intel has RDRAND and RDSEED on all new chips

• Not used inside Linux /dev/random

`

Bad Randomness

• In 2008, a bug in Debian Linux was found
• In 2006, code that was crucial for RNG reseeding was

commented out

`

Bad Randomness

• PlayStation 3
• In 2010, the ECDSA private key used by Sony to sign

software for PlayStation 3 was recovered because Sony
failed to generate a new random nonce for each
signature

`

RSA Keys – Lenstra et al. 2012

• Collected 6.4 million RSA keys from the web
• 71,052 occurred more than once

• Different owners can decrypt each other’s traffic

• Some of the moduli repeated thousands of times (no entropy)

• 12,934 had a common factor
• Computed 𝐺𝐶𝐷(𝑁,𝑁’) where 𝑁 = 𝑝𝑞 and 𝑁’ = 𝑝’𝑞

• Factor both moduli

• We use this for entropy estimation

`

Entropy Estimation via RSA Keys

• The expected number of collisions in q samples

from a domain of size N is ൗ
𝒒
𝟐

𝑵 ≈ ൗ𝒒𝟐

𝟐𝑵

• We have 𝒒 = 𝟏𝟐, 𝟖𝟎𝟎, 𝟎𝟎𝟎 (number of primes is
double)

• We have number of collisions = 12,934

• So,
𝟏𝟐,𝟖𝟎𝟎,𝟎𝟎𝟎𝟐

𝟐𝑵
= 𝟏𝟐, 𝟗𝟑𝟒 giving 𝑵 ≈ 𝟐𝟑𝟐.𝟓𝟔

• Conclusion: an “average” of 33 bits of entropy

`

Bad Randomness

• Given that randomness can repeat and does
repeat, what should we do?

• CBC still reveals common prefixes, but is better
than CTR…

• Can we do better? Efficiently?

`

What About Authenticated
Encryption?

• CCM:
• CBC-MAC followed by CTR encryption: slow due to CBC-

MAC and vulnerable due to CTR encryption

• GCM:

`

What About Authenticated
Encryption?

• GCM – if the nonce repeats, then:
• As with CTR plaintexts can be recovered

• Much more seriously – H can be recovered

• This means that integrity is lost forever!

`

Preliminaries: IV vs Nonce Encryption

• IV (initial vector) encryption:
• IV must be randomly chosen

• Nonce-based encryption:
• Only require that nonce is unique

• CBC encryption: need random IV; nonce not good
enough

• CTR encryption: suffices to have a unique nonce
• In AES-CTR, use a nonce of length 96 bits and counter of

length 32 bits

`

Nonce Misuse Resistance [Rogaway-Shrimpton]

• Denote nonce by N

• Security property
• If N is same and message is same – the result is the

same ciphertext
• This is inherent

• Otherwise – full security (authenticated encryption):
• Even if N is the same and the message is not
• Even if N is different and the message the same

• This cannot be achieved for online encryption
• If two long messages differ only in the last bit, when

same N is used, must have same prefix in online

`

Abstract SIV Encryption [Rogaway-Shrimpton]

• Input: message 𝑀 and nonce 𝑁

• Step 1:
• Apply a PRF 𝐹 with key 𝐾1 to (𝑁,𝑀); denote result by 𝑇

• Step 2:
• Encrypt 𝑀 with key 𝐾2 using nonce 𝑇; denote result by 𝐶

• Output (𝑁,𝑀, 𝑇)

• Decryption: 𝑀 ← 𝐷𝑒𝑐𝐾2 𝐶 with nonce 𝑇; check
𝑇 = 𝐹𝐾1(𝑁,𝑀)

`

SIV Encryption Security

• Encryption:

𝑇 = 𝐹𝐾1(𝑁,𝑀); 𝐶 ← 𝐸𝑛𝑐𝐾2 𝑀 with nonce 𝑇

• Security
• If nonce 𝑁 is different, then by PRF the value 𝑇 is

pseudorandom

• If nonce 𝑁 is the same but 𝑀 is different, then by PRF the
value 𝑇 is pseudorandom

• The value 𝑇 also serves as a valid MAC and so have
authenticated encryption

`

Efficient Instantiations

• Option 1 – apply a PRF based on AES
• What PRFs do we have? CBC-MAC

• Very expensive

• Option 2 – construct a more efficient PRF using
simpler primitives
• Let 𝐻 be an 𝜖-XOR universal hash function

∀𝑥, 𝑦, 𝑧 ∶ Pr 𝐻𝐾1 𝑥 ⊕𝐻𝐾1 𝑦 = 𝑧 ≤ 𝜖 𝑛

• Claim: 𝐹𝐾1,𝐾2 𝑁,𝑀 = 𝐹𝐾2 𝐻𝐾1 𝑀 ⊕𝑁 is a PRF

`

Universal-Hash Based PRF

• The construction: 𝐹𝐾1,𝐾2 𝑁,𝑀 = 𝐹𝐾2 𝐻𝐾1 𝑀 ⊕𝑁

• Proof idea:
• By the PRF property of 𝐹, can distinguish only if it queries

𝑁,𝑀 , 𝑁′, 𝑀′ where 𝐻𝐾1 𝑀 ⊕𝑁 = 𝐻𝐾1 𝑀′ ⊕𝑁′

• Equivalently: if 𝐻𝐾1 𝑀 ⊕𝐻𝐾1 𝑀′ = 𝑁⊕𝑁′

• By the 𝜖-XOR property, this happens with probability only 𝜖
for each pair

• Therefore, secure PRF for negligible 𝜖

`

The GCM-SIV Instantiation

• The GHASH function H in GCM is an 𝜖-XOR
universal hash function (for negligible 𝜖)
[McGrew-Viega]

• The PRF used is AES (only need a single block)

• Encryption is AES-CTR

• Versions:
• Three different keys (for GHASH, PRF, CTR-ENC)

• Two keys: use same key for PRF and CTR-ENC

• One key: derive the two keys using AES itself

`

The GCM-SIV Instantiation

• A very important property: all the elements here
are identical to the existing AES-GCM
• We only change the order of operations

• Why is this important?
• Efficiency

• Deployment ease (use existing code bases)

`

23

3.08
2.75

1.02
0.76 0.65

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Pre AES-NI /
PACLMULQDQ

Westmere
(2010)

Sandy bridge
(2012)

Haswell
(2013)

Broadwell
(2014)

Skylake (Sept.
2015)

cy
cl

e
s

p
e

r
b

yt
e

AES-GCM performance

AES-GCM Across Intel CPU Generations

(2015) AES-
GCM at the
cost of CTR!

Use AES-NI for CTR and PCLMULQDQ for GHASH

`

Efficiency of GCM vs GCM-SIV

• Encryption
• In GCM, CTR-ENC and GHASH are interleaved and run in

parallel

• In GCM-SIV, GHASH must be finished before CTR-ENC
can begin (cannot be done in parallel)

`

Efficiency of GCM vs GCM-SIV

• Decryption:
• In GCM, once again CTR-DEC and GHASH interleaved

• In GCM-SIV, can also interleave (decryption cost “should
be” the same as the original GCM)

`

1
.1

8

1
.1

0

1
.1

6

0
.9

2
 0
.7

7

0
.7

6

0
.9

4

0
.6

5

0
.6

5

 -

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

GCM-SIV encrypt
(with init)

GCM-SIV decrypt
(with init)

AES-GCM
(without init)

C
yc

le
s

p
er

 b
yt

e

Haswell

Broadwell

Skylake

GCM-SIV Performance – Highlights

2-key GCM-SIV over an 8KB message

`

Time Comparison to AES-GCM

• GCM-SIV (our implementation) is faster than (OpenSSL’s
best) AES-GCM for short messages, due to a new software
optimization

`

GCM-SIV Performance Comparison

• GCM-SIV significantly outperforms all other
implemented nonce-misuse resistant schemes
• Including all CAESAR round 1 candidates

• Based on published authors’ optimized
implementations

• When measured on modern x64 processors

• The only exception is AEZ, which is based on a
non-standard use of AES

`

Summary

• Full nonce misuse-resistant authenticated encryption at an

extremely low cost (almost AES-GCM)

• Full proof of security and full implementation

• Easily deployable:
• Utilizes existing hardware

• Utilize existing code and software (AES-GCM implementations)

• Detailed specifications, reference code and Open Source

optimized code implementations coming soon

• Unpatented

• We hope to see it adopted

`

Thank You

