Fully Homomorphic Encryption

Zvika Brakerski
Weizmann Institute of Science

Technion CRYPTODAY, December 2015

What Are You Searching For?

Google Search I'm Feeling Lucky

Medical information, navigation, email, business
information, other personal information...

Want privacy!

Outsourcing Computation

gomegiedi 0@} b
aimalgsis
* f
f(x)
seabaigndEishts

route

What if x is private?

How to Keep Private From the Cloud

We promise we wont look at your data. Honest!

trust me
I'm a lawyer

We want real protection.

Pultg dlomegnCo pipoatanptibnitehy
[Bit-bye-gictr;eg)r;idozmiz?d—] l Learns nothing about x.]

E n;(x)

y = Eva_l)(f, Enc(x))

Dec(y) = f(x)

Fully Homomorphic = Homomorphism for any efficient f

Homomorphic(computational model: f given as circuit

f, Enc(x] Goal: Eval for universal set of gates
(NAND(x,y)=1-xy)

Some Applications

In the cloud:

* Private outsourcing of computation.

* Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]
» Verifiable outsourcing (delegation). [GGP11,CKV11,KRR13,KRR15]

* Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

e Low-communication multiparty computation. [AJLTVW12,LTV12]
* More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

e Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,...]
* General functional encryption. [GKPVZ12]
* Indistinguishability obfuscation for all circuits. [GGHRSW13]

Making Crypto History

A FULLY HOMOM(JRPHIC

ENCRYPTION SCHEME

of hardly scratching

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UN

IVERSITY
IN PARTIAL F ULFILLMENT OF

THE REQUIREI&-’IENTS
FOR THE DEGREE oF

DOCTOR oF PHILOSOPRY

on + 1 multiplication
5, GHV10].

variants [SYY99, IP07,
0].

Craig Gentry

ible?
... IS it even POSSI le*
Septemher 2009

[———

FHE Challenges

Understanding. @
)
3

Security.

Cryptographic assumptions.
* Security notions.

Efficiency.

» Size of keys/ciphertexts.
 Time overhead for Eval.
Computational model.

Constructing (Somewhat) Homomorphic Encryption

secret algebraic equivalence
e.g. (mod p) for secret p

Basic Idea: Find schemest. C =~ m + 2e
s NN

ciphertext message small (even) noise

Add/multiply ciphertexts = Add/multiply messages

Security?

Noise grows with homomorphic evaluation —
must not grow “too much”!

In the example above: |e,..;:| = |ej,|?

Noise in Homomorphic Evaluation

Depth d

Noise grows during

O O

€out

émw

/

b

€in

AN

<_

— 1

homomorphic evaluation

d
leout] < E?

|ei+1J < |el|2

|eth <E

Some of the Progress Since 2009

From ad-hoc assumption to worst-case lattice assumption
[BV11b,BGV12,BV14].

— As secure as any other encryption scheme.

Noise is down to |e,,,;:| = k - |e;,,| [BGV12,B12,GSW13,BV14].
— legy] < k® - E (instead of E2%).
— “Leveled” FHE.

Using polynomial rings to improve efficiency
[GO9,SV10,BV11a,BGV12,GHS12a,GHS12b,GHS12¢c,GHPS13,AP13].

“Batching” many messages in single ciphertext
[SV10,BGV12,GHS12a,GHS12b,GHS12c,HS15].

But still need “bootstrapping” to get full homomorphism...

Bootstrapping [G09]

Given scheme with bounded dj,,,,
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(pks, sks) d)

Switch keys ~— > TTTTTTTTTTTTTTTOC 7('"¥ """"

“cost” in homomorphism (ka; Skz) O O

How to Switch Keys

Decryption circuit: X Dual view: 'Jrc
/ \ / 3 \E hc(')
sk

h.(sk) = Decg,(c) = x

given c, server can compute circuit for h,.(-)

Apply h.(-) homomorphicly on sk ! aux = Encys(sk)

Evalyy,(h., aux) = Evalyy, (hc, Encpk,(sk))

= Encpk,(hc(sk)) = Encpk,(Decsk(c))

= Enc,,(x
pk () hom. capacity of output:

Ahom — dhc = dpom — Adec

Bootstrapping [G09]

Given scheme with bounded d; ;.

How to extenc Downside: Need to generate many keys...

Idea: Do a few operations, then “switch” to a new instance

(Pks, sk3) d)
auxy_z = Encyy, (sk;)
Switch keys > TTTTTTTTTTTTTTTOC 7('"\ """"

“c o Eadec \ (L oI/‘)
: auxq_, = Encyy., (sky)
hom. operations it pka \° ™1

= Bootstrapping if dyym = dgee + 1 /7 \

Bootstrapping [G09]

Given scheme with bounded d; ;.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” te-a-rew-instance

aux = Ency, (sk)
—_—

switch from key to itself!

functionality of
switching works

circular security
required

(pk ,sk)

(Some) Public Implementations of FHE

* HElib (IBM/NYU)
— Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of [GHS123]
— https://github.com/shaih/HElib

 “Stanford FHE”
— LWE scheme of [B12] with optimizations
— http://cs.stanford.edu/~dwud/fhe.html

* FHEW (UCSD)

— Ring-LWE scheme of [DM14], built upon approximate eigenvector
approach of [GSW13,BV14,AP14]

— No batching but very fast bootstrapping
— https://github.com/lducas/FHEW

https://github.com/shaih/HElib
http://cs.stanford.edu/~dwu4/fhe.html
http://cs.stanford.edu/~dwu4/fhe.html

So Where is That Homomorphic
Google Search?

* Circuit model = huge overhead.
— Inherent? Need to touch all elements to not leak.

* Bootstrapping is expensive.
— No known alternative for deep computations.

* Memory requirements are huge (GBs).
— Large ciphertexts, long keys.
— Can “batch” to reduce overhead.

Thank You!

