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What Are You Searching For?

Google Search I'm Feeling Lucky

Medical information, navigation, email, business
information, other personal information...

Want privacy!



Outsourcing Computation
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What if x is private?



How to Keep Private From the Cloud

We promise we wont look at your data. Honest!

trust me
I'm a lawyer

We want real protection.
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E n;(x)

y = Eva_l)(f, Enc(x))

Dec(y) = f(x)

Fully Homomorphic = Homomorphism for any efficient f

Homomorphic( computational model: f given as circuit

f, Enc(x] Goal: Eval for universal set of gates
(NAND(x,y)=1-xy)




Some Applications

In the cloud:

* Private outsourcing of computation.

* Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]
» Verifiable outsourcing (delegation). [GGP11,CKV11,KRR13,KRR15]

* Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

e Low-communication multiparty computation. [AJLTVW12,LTV12]
* More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

e Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,...]
* General functional encryption. [GKPVZ12]
* Indistinguishability obfuscation for all circuits. [GGHRSW13]
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FHE Challenges

Understanding. @
)
3

Security.

Cryptographic assumptions.
* Security notions.

Efficiency.

» Size of keys/ciphertexts.
 Time overhead for Eval.
Computational model.




Constructing (Somewhat) Homomorphic Encryption

secret algebraic equivalence
e.g. (mod p) for secret p

Basic Idea: Find schemest. C =~ m + 2e
s NN

ciphertext message small (even) noise

Add/multiply ciphertexts = Add/multiply messages

Security?

Noise grows with homomorphic evaluation —
must not grow “too much”!

In the example above: |e,..;:| = |ej,|?



Noise in Homomorphic Evaluation

Depth d

Noise grows during
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Some of the Progress Since 2009

From ad-hoc assumption to worst-case lattice assumption
[BV11b,BGV12,BV14].

— As secure as any other encryption scheme.

Noise is down to |e,,,;:| = k - |e;,,| [BGV12,B12,GSW13,BV14].
— legy] < k® - E (instead of E2%).
— “Leveled” FHE.

Using polynomial rings to improve efficiency
[GO9,SV10,BV11a,BGV12,GHS12a,GHS12b,GHS12¢c,GHPS13,AP13].

“Batching” many messages in single ciphertext
[SV10,BGV12,GHS12a,GHS12b,GHS12c,HS15].

But still need “bootstrapping” to get full homomorphism...



Bootstrapping [G09]

Given scheme with bounded dj,,,,
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(pks, sks) d)

Switch keys ~— > TTTTTTTTTTTTTTTOC 7('"¥ """"

“cost” in homomorphism (ka; Skz) O O



How to Switch Keys

Decryption circuit: X Dual view: 'Jrc
/ \ / 3 \E hc(')
sk

h.(sk) = Decg,(c) = x

given c, server can compute circuit for h,.(-)

Apply h.(-) homomorphicly on sk ! aux = Encys(sk)

Evalyy,(h., aux) = Evalyy, (hc, Encpk,(sk))

= Encpk,(hc(sk)) = Encpk,(Decsk(c))

= Enc,,(x
pk () hom. capacity of output:

Ahom — dhc = dpom — Adec



Bootstrapping [G09]

Given scheme with bounded d; ;.

How to extenc Downside: Need to generate many keys...

Idea: Do a few operations, then “switch” to a new instance

(Pks, sk3) d)
auxy_z = Encyy, (sk;)
Switch keys > TTTTTTTTTTTTTTTOC 7('"\ """"

“c o Eadec \ (L oI/‘)
: auxq_, = Encyy., (sky)
hom. operations it pka \° ™1

= Bootstrapping if dyym = dgee + 1 /7 \




Bootstrapping [G09]

Given scheme with bounded d; ;.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” te-a-rew-instance

aux = Ency, (sk )
—_—

switch from key to itself!

functionality of
switching works

circular security
required

(pk ,sk )



(Some) Public Implementations of FHE

* HElib (IBM/NYU)
— Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of [GHS123]
— https://github.com/shaih/HElib

 “Stanford FHE”
— LWE scheme of [B12] with optimizations
— http://cs.stanford.edu/~dwud/fhe.html

* FHEW (UCSD)

— Ring-LWE scheme of [DM14], built upon approximate eigenvector
approach of [GSW13,BV14,AP14]

— No batching but very fast bootstrapping
— https://github.com/lducas/FHEW



https://github.com/shaih/HElib
http://cs.stanford.edu/~dwu4/fhe.html
http://cs.stanford.edu/~dwu4/fhe.html

So Where is That Homomorphic
Google Search?

* Circuit model = huge overhead.
— Inherent? Need to touch all elements to not leak.

* Bootstrapping is expensive.
— No known alternative for deep computations.

* Memory requirements are huge (GBs).
— Large ciphertexts, long keys.
— Can “batch” to reduce overhead.



Thank You!



