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What Are You Searching For?

We know

Medical information, navigation, email, business 
information, other personal information…

Want privacy!



Outsourcing Computation

𝑥 𝑓
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What if 𝑥 is private?
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How to Keep Private From the Cloud

We promise we wont look at your data. Honest!

We want real protection.



Outsourcing Computation – Privately

WANTED

Homomorphic Evaluation function:

𝑓, 𝐸𝑛𝑐 𝑥 → 𝐸𝑛𝑐(𝑓 𝑥 )

𝑥 𝑓

𝑦

𝐸𝑛𝑐(𝑥)

𝐷𝑒𝑐 𝑦 = 𝑓(𝑥)

Learns nothing about 𝑥.

𝑦 = 𝐸𝑣𝑎𝑙 𝑓, 𝐸𝑛𝑐 𝑥

Fully Homomorphic Encryption (FHE)

Fully Homomorphic = Homomorphism for any efficient 𝑓

computational model: 𝑓 given as circuit

Goal: 𝐸𝑣𝑎𝑙 for universal set of gates 
(NAND(x,y)=1-xy)

Bit-by-bit randomized 
encryption



Some Applications
In the cloud:

• Private outsourcing of computation.

• Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]

• Verifiable outsourcing (delegation). [GGP11,CKV11,KRR13,KRR15]

• Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

• Low-communication multiparty computation. [AJLTVW12,LTV12]

• More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

• Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,…]

• General functional encryption. [GKPVZ12]

• Indistinguishability obfuscation for all circuits. [GGHRSW13]



Making Crypto History

30 years of hardly scratching 
the surface:

• Only-addition [RSA78, R79, GM82, 

G84, P99, R05].
• Addition + 1 multiplication 

[BGN05, GHV10].
• Other variants [SYY99, IP07, 

MGH10].

… is it even possible?



FHE Challenges

Security.

Understanding.

Efficiency.
• Size of keys/ciphertexts.
• Time overhead for Eval.
• Computational model.

• Cryptographic assumptions.
• Security notions.



Constructing (Somewhat) Homomorphic Encryption

Basic Idea: Find scheme s.t. 𝑐 ≈ 𝑚

ciphertext message

secret algebraic equivalence

Add/multiply ciphertexts ⇒  Add/multiply messages

e.g. (mod p) for secret p

+ 2𝑒

small (even) noise

Noise grows with homomorphic evaluation –
must not grow “too much”!

In the example above:  |𝑒𝑚𝑢𝑙𝑡| ≈ 𝑒𝑖𝑛
2

Security?



Noise in Homomorphic Evaluation

|𝑒𝑜𝑢𝑡| ≤ 𝐸2𝑑

|𝑒𝑖𝑛| ≤ 𝐸𝑒𝑖𝑛

𝑒𝑜𝑢𝑡

Noise grows during homomorphic evaluation

Depth 𝑑

𝑒𝑖+1 ≤ 𝑒𝑖
2

…



Some of the Progress Since 2009

• From ad-hoc assumption to worst-case lattice assumption 
[BV11b,BGV12,BV14].
– As secure as any other encryption scheme.

• Noise is down to 𝑒𝑚𝑢𝑙𝑡 ≈ 𝑘 ⋅ 𝑒𝑖𝑛 [BGV12,B12,GSW13,BV14].
– 𝑒𝑜𝑢𝑡 ≤ 𝑘𝑑 ⋅ 𝐸 (instead of 𝐸2𝑑

).
– “Leveled” FHE.

• Using polynomial rings to improve efficiency 
[G09,SV10,BV11a,BGV12,GHS12a,GHS12b,GHS12c,GHPS13,AP13].

• “Batching” many messages in single ciphertext
[SV10,BGV12,GHS12a,GHS12b,GHS12c,HS15].

• But still need “bootstrapping” to get full homomorphism…



Bootstrapping [G09]

Given scheme with bounded 𝑑ℎ𝑜𝑚

How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(𝑝𝑘2, 𝑠𝑘2)

(𝑝𝑘3, 𝑠𝑘3)

(𝑝𝑘1, 𝑠𝑘1)

Switch keys

“cost” in homomorphism



How to Switch Keys

𝐷𝑒𝑐𝑠𝑘(⋅) 𝐷𝑒𝑐 ⋅ (𝑐)

𝑐 𝑠𝑘

𝑥 𝑥Decryption circuit: Dual view:

≡ ℎ𝑐 ⋅

ℎ𝑐 𝑠𝑘 = 𝐷𝑒𝑐𝑠𝑘 𝑐 = 𝑥

given 𝑐, server can compute circuit for ℎ𝑐 ⋅

Apply ℎ𝑐(⋅) homomorphicly on 𝑠𝑘 !

𝐸𝑣𝑎𝑙𝑝𝑘′ ℎ𝑐 , 𝑎𝑢𝑥 = 𝐸𝑣𝑎𝑙𝑝𝑘′ ℎ𝑐 , 𝐸𝑛𝑐𝑝𝑘′ 𝑠𝑘

= 𝐸𝑛𝑐𝑝𝑘′ ℎ𝑐 𝑠𝑘 = 𝐸𝑛𝑐𝑝𝑘′ 𝐷𝑒𝑐𝑠𝑘 𝑐

= 𝐸𝑛𝑐𝑝𝑘′(𝑥)

𝑎𝑢𝑥 = 𝐸𝑛𝑐𝑝𝑘′(𝑠𝑘)

hom. capacity of output:

𝑑ℎ𝑜𝑚 − 𝑑ℎ𝑐
= 𝑑ℎ𝑜𝑚 − 𝑑𝑑𝑒𝑐



Bootstrapping [G09]

Given scheme with bounded 𝑑ℎ𝑜𝑚.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(𝑝𝑘2, 𝑠𝑘2)

(𝑝𝑘3, 𝑠𝑘3)

(𝑝𝑘1, 𝑠𝑘1)

Switch keys

“cost” of 𝑑𝑑𝑒𝑐

hom. operations
for switch

⇒ Bootstrapping if  𝑑ℎ𝑜𝑚 ≥ 𝑑𝑑𝑒𝑐 + 1

Downside: Need to generate many keys…

𝑎𝑢𝑥1→2 = 𝐸𝑛𝑐𝑝𝑘2
(𝑠𝑘1)

𝑎𝑢𝑥2→3 = 𝐸𝑛𝑐𝑝𝑘3
(𝑠𝑘2)

secure?



Bootstrapping [G09]

Given scheme with bounded 𝑑ℎ𝑜𝑚.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(𝑝𝑘 , 𝑠𝑘 )

(𝑝𝑘 , 𝑠𝑘 )

(𝑝𝑘 , 𝑠𝑘 )

𝑎𝑢𝑥 = 𝐸𝑛𝑐𝑝𝑘 (𝑠𝑘 )

switch from key to itself!

functionality of 
switching works

circular security 
required



(Some) Public Implementations of FHE

• HElib (IBM/NYU)
– Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of [GHS12a]
– https://github.com/shaih/HElib

• “Stanford FHE”
– LWE scheme of [B12] with optimizations
– http://cs.stanford.edu/~dwu4/fhe.html

• FHEW (UCSD)
– Ring-LWE scheme of [DM14], built upon approximate eigenvector 

approach of [GSW13,BV14,AP14]
– No batching but very fast bootstrapping
– https://github.com/lducas/FHEW

https://github.com/shaih/HElib
http://cs.stanford.edu/~dwu4/fhe.html
http://cs.stanford.edu/~dwu4/fhe.html


So Where is That Homomorphic 
Google Search?

• Circuit model = huge overhead.
– Inherent? Need to touch all elements to not leak.

• Bootstrapping is expensive.
– No known alternative for deep computations.

• Memory requirements are huge (GBs).
– Large ciphertexts, long keys.

– Can “batch” to reduce overhead.



Thank You!


