
Fully Homomorphic Encryption

Zvika Brakerski

Weizmann Institute of Science

Technion CRYPTODAY, December 2015

What Are You Searching For?

We know

Medical information, navigation, email, business
information, other personal information…

Want privacy!

Outsourcing Computation

𝑥 𝑓

𝑓(𝑥)

𝑥

What if 𝑥 is private?

search
query

google web
index

search results

medical
records

medical
analysis

diagnosis

location,
destination

routing

navigation
route

How to Keep Private From the Cloud

We promise we wont look at your data. Honest!

We want real protection.

Outsourcing Computation – Privately

WANTED

Homomorphic Evaluation function:

𝑓, 𝐸𝑛𝑐 𝑥 → 𝐸𝑛𝑐(𝑓 𝑥)

𝑥 𝑓

𝑦

𝐸𝑛𝑐(𝑥)

𝐷𝑒𝑐 𝑦 = 𝑓(𝑥)

Learns nothing about 𝑥.

𝑦 = 𝐸𝑣𝑎𝑙 𝑓, 𝐸𝑛𝑐 𝑥

Fully Homomorphic Encryption (FHE)

Fully Homomorphic = Homomorphism for any efficient 𝑓

computational model: 𝑓 given as circuit

Goal: 𝐸𝑣𝑎𝑙 for universal set of gates
(NAND(x,y)=1-xy)

Bit-by-bit randomized
encryption

Some Applications
In the cloud:

• Private outsourcing of computation.

• Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]

• Verifiable outsourcing (delegation). [GGP11,CKV11,KRR13,KRR15]

• Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

• Low-communication multiparty computation. [AJLTVW12,LTV12]

• More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

• Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,…]

• General functional encryption. [GKPVZ12]

• Indistinguishability obfuscation for all circuits. [GGHRSW13]

Making Crypto History

30 years of hardly scratching
the surface:

• Only-addition [RSA78, R79, GM82,

G84, P99, R05].
• Addition + 1 multiplication

[BGN05, GHV10].
• Other variants [SYY99, IP07,

MGH10].

… is it even possible?

FHE Challenges

Security.

Understanding.

Efficiency.
• Size of keys/ciphertexts.
• Time overhead for Eval.
• Computational model.

• Cryptographic assumptions.
• Security notions.

Constructing (Somewhat) Homomorphic Encryption

Basic Idea: Find scheme s.t. 𝑐 ≈ 𝑚

ciphertext message

secret algebraic equivalence

Add/multiply ciphertexts ⇒ Add/multiply messages

e.g. (mod p) for secret p

+ 2𝑒

small (even) noise

Noise grows with homomorphic evaluation –
must not grow “too much”!

In the example above: |𝑒𝑚𝑢𝑙𝑡| ≈ 𝑒𝑖𝑛
2

Security?

Noise in Homomorphic Evaluation

|𝑒𝑜𝑢𝑡| ≤ 𝐸2𝑑

|𝑒𝑖𝑛| ≤ 𝐸𝑒𝑖𝑛

𝑒𝑜𝑢𝑡

Noise grows during homomorphic evaluation

Depth 𝑑

𝑒𝑖+1 ≤ 𝑒𝑖
2

…

Some of the Progress Since 2009

• From ad-hoc assumption to worst-case lattice assumption
[BV11b,BGV12,BV14].
– As secure as any other encryption scheme.

• Noise is down to 𝑒𝑚𝑢𝑙𝑡 ≈ 𝑘 ⋅ 𝑒𝑖𝑛 [BGV12,B12,GSW13,BV14].
– 𝑒𝑜𝑢𝑡 ≤ 𝑘𝑑 ⋅ 𝐸 (instead of 𝐸2𝑑

).
– “Leveled” FHE.

• Using polynomial rings to improve efficiency
[G09,SV10,BV11a,BGV12,GHS12a,GHS12b,GHS12c,GHPS13,AP13].

• “Batching” many messages in single ciphertext
[SV10,BGV12,GHS12a,GHS12b,GHS12c,HS15].

• But still need “bootstrapping” to get full homomorphism…

Bootstrapping [G09]

Given scheme with bounded 𝑑ℎ𝑜𝑚

How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(𝑝𝑘2, 𝑠𝑘2)

(𝑝𝑘3, 𝑠𝑘3)

(𝑝𝑘1, 𝑠𝑘1)

Switch keys

“cost” in homomorphism

How to Switch Keys

𝐷𝑒𝑐𝑠𝑘(⋅) 𝐷𝑒𝑐 ⋅ (𝑐)

𝑐 𝑠𝑘

𝑥 𝑥Decryption circuit: Dual view:

≡ ℎ𝑐 ⋅

ℎ𝑐 𝑠𝑘 = 𝐷𝑒𝑐𝑠𝑘 𝑐 = 𝑥

given 𝑐, server can compute circuit for ℎ𝑐 ⋅

Apply ℎ𝑐(⋅) homomorphicly on 𝑠𝑘 !

𝐸𝑣𝑎𝑙𝑝𝑘′ ℎ𝑐 , 𝑎𝑢𝑥 = 𝐸𝑣𝑎𝑙𝑝𝑘′ ℎ𝑐 , 𝐸𝑛𝑐𝑝𝑘′ 𝑠𝑘

= 𝐸𝑛𝑐𝑝𝑘′ ℎ𝑐 𝑠𝑘 = 𝐸𝑛𝑐𝑝𝑘′ 𝐷𝑒𝑐𝑠𝑘 𝑐

= 𝐸𝑛𝑐𝑝𝑘′(𝑥)

𝑎𝑢𝑥 = 𝐸𝑛𝑐𝑝𝑘′(𝑠𝑘)

hom. capacity of output:

𝑑ℎ𝑜𝑚 − 𝑑ℎ𝑐
= 𝑑ℎ𝑜𝑚 − 𝑑𝑑𝑒𝑐

Bootstrapping [G09]

Given scheme with bounded 𝑑ℎ𝑜𝑚.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(𝑝𝑘2, 𝑠𝑘2)

(𝑝𝑘3, 𝑠𝑘3)

(𝑝𝑘1, 𝑠𝑘1)

Switch keys

“cost” of 𝑑𝑑𝑒𝑐

hom. operations
for switch

⇒ Bootstrapping if 𝑑ℎ𝑜𝑚 ≥ 𝑑𝑑𝑒𝑐 + 1

Downside: Need to generate many keys…

𝑎𝑢𝑥1→2 = 𝐸𝑛𝑐𝑝𝑘2
(𝑠𝑘1)

𝑎𝑢𝑥2→3 = 𝐸𝑛𝑐𝑝𝑘3
(𝑠𝑘2)

secure?

Bootstrapping [G09]

Given scheme with bounded 𝑑ℎ𝑜𝑚.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance

(𝑝𝑘 , 𝑠𝑘)

(𝑝𝑘 , 𝑠𝑘)

(𝑝𝑘 , 𝑠𝑘)

𝑎𝑢𝑥 = 𝐸𝑛𝑐𝑝𝑘 (𝑠𝑘)

switch from key to itself!

functionality of
switching works

circular security
required

(Some) Public Implementations of FHE

• HElib (IBM/NYU)
– Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of [GHS12a]
– https://github.com/shaih/HElib

• “Stanford FHE”
– LWE scheme of [B12] with optimizations
– http://cs.stanford.edu/~dwu4/fhe.html

• FHEW (UCSD)
– Ring-LWE scheme of [DM14], built upon approximate eigenvector

approach of [GSW13,BV14,AP14]
– No batching but very fast bootstrapping
– https://github.com/lducas/FHEW

https://github.com/shaih/HElib
http://cs.stanford.edu/~dwu4/fhe.html
http://cs.stanford.edu/~dwu4/fhe.html

So Where is That Homomorphic
Google Search?

• Circuit model = huge overhead.
– Inherent? Need to touch all elements to not leak.

• Bootstrapping is expensive.
– No known alternative for deep computations.

• Memory requirements are huge (GBs).
– Large ciphertexts, long keys.

– Can “batch” to reduce overhead.

Thank You!

