Linear Cryptanalysis of FEAL 8X Winning the FEAL 25 Years Challenge

Yaniv Carmeli

Joint work with Prof. Eli Biham
CRYPTODAY 2014

FEAL

FEAL

- Published in 1987, designed by Miyaguchi and Shimizu (NTT).
- 64-bit block cipher family with the Feistel structure.
- Key size was initially 64 bits, later extended to 128 bits as FEAL-NX.
- Had major contributions to the history of block ciphers.
- Inspired many new ideas, including differential and linear cryptanalysis.

Previous Attacks on FEAL-8

- 1000 Chosen-Plaintexts - Differential Cryptanalysis [Biham Shamir 91]
- 2^{24} Known Plaintexts - Linear Cryptanalysis [Biham 94]
- $2^{15}-2^{28}$ Known-Plaintexts with high time complexity [Matsui Yamagishi 92].
- But the time complexity is 2^{50} or higher.

THE FEAL-8X CHALLENGE

Celebrating the $25^{\text {th }}$ year of FEAL

- A Now Prize Problem -

August 212012
Mitsuru Matsui
Mitsubishi Electric Corporation

The New Prize Problem

- The target cipher: FEAL-8X
- FEAL cipher with 8 rounds and 128-bit key
- Same as FEAL-8 except its key scheduling part
- 2^{b} plaintext-ciphertext pairs are given $(b \leq 20)$.
- Good news: winner (min b, first) receives $\$ 1500$.
- Bad news: brute force is infeasible (128-bit key)
- Deadline: CRYPTO 2013
- For more details, see https:I/docs.google.com/open?id=0B3xMqN36HCf2eDVzb191R1 VHYOK

LINEAR CRYPTANALYSIS

Linear Biases

$p\left(P_{3} \oplus P_{4} \oplus P_{7} \oplus C_{4} \oplus C_{6} \oplus K_{2} \oplus K_{5} \oplus K_{7}=0\right)=\frac{1}{2} \pm b$

Linear Attacks

- What can we do with a known linear bias of the cipher?
- Learn one bit of information about the key
- Build a distinguisher
- Using a distinguisher for key-recovery (last round attack)

Last Round Attack

- Cipher of N rounds
- Distinguisher for first N-1 rounds
- Guess the subkey of the last round, decrypt the messages and use the distinguisher to check the guess

FEAL AND THE EQUIVALENT DESCRIPTIONS

FEAL-8X Equivalent Descriptions

- Eliminate the whitening keys on the plaintext side.
- Using an equivalent description with 32-bit subkeys, EKO-EK7.
- Useful when analyzing the first round.
- Similarly, we can eliminate the whitening keys on the ciphertext side.
- Using DKO-DK7.
- Useful when analyzing the last round.

FEAL-8X

The Subkeys of the Equivalent Descriptions

Subkeys of FEAL-8X	Equivalent description without whitening at the beginning	Equivalent description without whitening at the end
$K 89 a b$	0	$(K 89 \oplus K c d \oplus K e f, K a b \oplus K e f)$
$K 0$	$E K 0=m w(K 0, K 89 \oplus K a b)$	$D K 0=m w(K 0, K c d)$
$K 1$	$E K 1=m w(K 1, K 89)$	$D K 1=m w(K 1, K c d \oplus K e f)$
$K 2$	$E K 2=m w(K 2, K 89 \oplus K a b)$	$D K 2=m w(K 2, K c d)$
$K 3$	$E K 3=m w(K 3, K 89)$	$D K 3=m w(K 3, K c d \oplus K e f)$
$K 4$	$E K 4=m w(K 4, K 89 \oplus K a b)$	$D K 4=m w(K 4, K c d)$
$K 5$	$E K 5=m w(K 5, K 89)$	$D K 5=m w(K 5, K c d \oplus K e f)$
$K 6$	$E K 6=m w(K 6, K 89 \oplus K a b)$	$D K 6=m w(K 6, K c d)$
$K 7$	$E K 7=m w(K 7, K 89)$	$D K 7=m w(K 7, K c d \oplus K e f)$
$K c d e f$	$(K 89 \oplus K a b \oplus K c d, K a b \oplus K e f)$	0

- Linear translation between the subkeys of the three descriptions.
- Note that mw() is linear.

A BASIC LINEAR ATTACK ON FEAL-8X

2^{15} Known Plaintexts, 26 hours of computation

The Approximation

- 6-round approximation by Aoki, Moriai, Matsui et al.
- Bias of 2-6

- We can also use the reverse approximation.

Basic Attack

- Standard linear attack.
- Guess subkeys of first and last rounds
- 22 bits of EKO
- 15 bits of DK7
- Repeat with the reverse approx.
- 30 bits overlap

The Attack

- Try all $2{ }^{37}$ choices of the $22+15=37$ bits of the first and last actual subkeys (DK7 and EKO)
- A few of those bits have only a small effect on the results
- The bias of the approximation is 2^{-6}
- About 2^{15} known plaintexts are required to recover the 37 bits
- In practice, the result is not unique
- So we apply twice
- Once for each approximation
- Take the result that matches in the 30 common bits

Recovering the rest of the subkeys

- It is hard to complete the first and last subkeys at this time
- So, using the known bits, we recover bits of DK6
- And then complete further bits of DK7
- Then Complete DK5, DK4, DK3, DK2, DK1, EK0, EK1, EK2, EK3
- Finally, recover the FEAL-8X key from these subkeys.

LINEAR PROPERTIES OF ADDITION

(Bitwise) Linear Properties of Addition

$+$

$$
p\left(x_{0} \oplus y_{0} \oplus z_{0}=0\right)=\frac{1}{2}+\frac{1}{2}
$$

$$
p\left(x_{1} \oplus y_{1} \oplus z_{1}=0\right)=\frac{1}{2}+\frac{1}{4}
$$

THE PARTITIONING TECHNIQUE

2^{14} Known Plaintexts, 14 hours of computation

$$
S_{i}(x, y)=\operatorname{ROL} 2(x+y+i(\bmod 256))
$$

The two middle S-boxes of the seventh round

Partition - The Case of S_{1}

- The approximation of S_{1} in the seventh round includes $10 \quad 10 \rightarrow 40$
- Consider Bit 3 of x, Bit 3 of y and the carry to Bit 4 of the sum:

Will there be carry to Bit 4 ?

Partition - The Case of S_{1}

Will there be carry to Bit 4?

Bits 3 of x, y	0	1
0	NEVER	Sometimes
1	Sometimes	ALWAYS

- Given the bits we guess in the $8^{\text {th }}$ round, we can partition all plaintexts into four sets.
- In the "yellow" sets the bias is now two times higher, since we discarded some of the "noise".

$S_{1}(x, y)=(x+y+1) \ll 2$
$-\rightarrow$ We need half the data size.
- Because each set contains a quarter of the original data size.
- Notice that we do not know which set is which.

$$
S_{i}(x, y)=\operatorname{ROL} 2(x+y+i(\bmod 256))
$$

Partition - The Case of S_{1}

- While this method works for a single S-box, it does not work for the entire F-Function!

The Partition

- Analyzing the joint distribution of the middle S-boxes as a single big S-box:
- In the "yellow" sets ($0+0$ or $1+1$), the correlation between S_{0} and S_{1} causes the overall linear bias to be close to zero.
- Analyzing the joint distribution of the middle S -boxes shows
 that the "green" ($0+1$ or $1+0$) sets are those that amplify the bias.

The Partition

Bits 3 of x, y	0	1
0	No bias	Amplified bias
1	Amplified bias	No bias

- We partition the known plaintexts into two sets, according to the XOR of Bit 3 of x and Bit 3 of y.
- Again, without guessing additional key
 bits we do not know in advance which of the sets is the green ($0+1$ and $1+0$) one and which is the yellow ($0+0$ and $1+1$).
- We thus compute the bias in each set separately.

QUESTIONS?

