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FEAL



FEAL

Published in 1987, designed by Miyaguchi and
Shimizu (NTT).

64-bit block cipher family with the Feistel
structure.

Key size was initially 64 bits, later extended to
128 bits as FEAL-NX.

Had major contributions to the history of block
ciphers.

Inspired many new ideas, including differential
and linear cryptanalysis.




Previous Attacks on FEAL-8

e 1000 Chosen-Plaintexts — Differential
Cryptanalysis [Biham Shamir 91]

» 224 Known Plaintexts — Linear Cryptanalysis
[Biham 94]

o 215-228 Known-Plaintexts with high time
complexity [Matsui Yamagishi 92].
— But the time complexity is 2°° or higher.



THE FEAL-8X CHALLENGE



Celebrating the 25™ year of FEAL
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The target cipher: FEAL-8X
e FEAL cipher with 8 rounds and 128-bit key
e Same as FEAL-8 except its key scheduling part

2° plaintext-ciphertext pairs are given (b < 20).
Good news: winner (min b, first) receives $1500.
Bad news: brute force is infeasible (128-bit key)
Deadline: CRYPTO 2013 |

For more details, see
https://docs.google.com/open?id=0B3xMgN36HC{2eDVzb191R1VHY Ok

——



LINEAR CRYPTANALYSIS



Linear Biases
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Linear Attacks

* What can we do with a known linear bias of
the cipher?
— Learn one bit of information about the key
— Build a distinguisher

— Using a distinguisher for key-recovery (last round
attack)



Last Round Attack

* Cipher of N rounds

* Distinguisher for first N-1
rounds

* Guess the subkey of the last
round, decrypt the messages
and use the distinguisher to
check the guess
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FEAL AND THE
EQUIVALENT DESCRIPTIONS
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FEAL-8X Equivalent Descriptions

e Eliminate the whitening keys on the plaintext
side.

— Using an equivalent description with 32-bit
subkeys, EKO—EK7.

— Useful when analyzing the first round.
* Similarly, we can eliminate the whitening keys
on the ciphertext side.
— Using DKO-DK?7.
— Useful when analyzing the last round.
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The Subkeys of the Equivalent
Descriptions

Subkeys of

Equivalent description without

Equivalent description without

FEAL-8X whitening at the beginning whitening at the end

K89ab 0 (K89 @ Ked @ Kef, Kab @ Kef)
KO EKO = mw(K0,K89 & Kab) DKO = mw(KO0, Kcd)

K1 EFK1 =mw(K1, K89) DK1 =mw(K1,Ked @ Kef)
K2 EFK?2 =mw(K2, K89 @ Kab) DK2 = mw(K2, Kcd)

K3 EFK3 =mw(K3, K89) DK3 =mw(K3, Ked @ Kef)
K4 FK4=mw(K4, K89 & Kab) DKA4 = mw(K4, Ked)

K5 EK5 = mw(K5, K89) DK5 = mw(Kb5, Ked & Kef)
K6 EFK6 = mw(K6, K89 & Kab) DK6 = mw(K6, Kcd)

K7 EKT =mw(KT7,K89) DKT = mw(K7, Ked @ Kef)
Kedef (K89 @ Kab® Ked, Kab@ Kef) 0

Linear translation between the subkeys of the
three descriptions.

— Note that mw() is linear.



A BASIC LINEAR ATTACK ON FEAL-8X

21> Known Plaintexts, 26 hours of computation



6-round

approximation by
Aoki, Moriai, Matsui

et al.

— Bias of 2

The Approximation
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Basic Attack

e Standard linear

attack.

— Guess subkeys of
first and last rounds
(EKO and DK7)

e 22 bits of EKO
e 15 bits of DK7

— Repeat with the
reverse approx.
* 30 bits overlap
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The Attack

* Try all 237 choices of the 22+15=37 bits of the first
and last actual subkeys (DK7 and EKO)

— A few of those bits have only a small effect on the
results

* The bias of the approximation is 2°

— About 21> known plaintexts are required to recover
the 37 bits

— In practice, the result is not unique
* So we apply twice
— Once for each approximation
— Take the result that matches in the 30 common bits



Recovering the rest of the subkeys

It is hard to complete the first and last subkeys at this
time

So, using the known bits, we recover bits of DK6

And then complete further bits of DK7

Then Complete DK5, DK4, DK3, DK2, DK1, EKO, EK1,
EK2, EK3

Finally, recover the FEAL-8X key from these subkeys.



LINEAR PROPERTIES OF ADDITION



(Bitwise) Linear Properties of Addition
W 1«
g
W |w

1 1
X, @Y, Dz,=0)=—+—
P(X, DY, D@ ) >+

1 1
@y, Dz, =0)==+=
p(x, @Y, ) 5"



THE PARTITIONING TECHNIQUE

214 Known Plaintexts, 14 hours of computation
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11,

44

X

46

The two middle S-boxes of the seventh round



Partition — The Case of S,

* The approximation of S, in the
seventh round includes 10 1040

e Consider Bit 3 of x, Bit 3 of y and the
carry to Bit 4 of the sum:

Will there be carry to Bit 4?

40,
Bits3ofxy JO 1

SN NEVER: S D il S,(6Y)=(x+y+1) <<2
1 ‘Sometimess = ALWAYS

Unpredictable parity

Behaves according to the)*!apvproximation

Reverses the parity



Partition — The Case of S,

Will there be carry to Bit 4?

ALWAYS

* Given the bits we guess in the
8t round, we can partition all
plaintexts into four sets.

— In the “yellow” sets the bias is now

two times higher, since we discarded
some of the “noise”.

— =»\We need half the data size.

* Because each set contains a quarter of the original data size.
— Notice that we do not know which set is which.

40

X

S,(%,y)=(x+y+1) <<2
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Partition — The Case of S,

* While this method works for a single
S-box, it does not work for the
entire F-Function!

40,

e The two middle S-boxes are not independent

— The second S-box inverts this effect



The Partition

* Analyzing the joint distribution of the middle
S-boxes as a single big S-box: "
— In the “yellow” sets (0+0 or 1+1), “11X
the correlation between S, and
S, causes the overall linear bias 44,
to be close to zero.

46

— Analyzing the joint distribution
of the middle S-boxes shows
that the “green” (0+1 or 1+0) sets are those that

amplify the bias.



The Partition
ssotny o L

No bias

5 No bias

* We partition the known plaintexts
into two sets, according to the
XOR of Bit 3 of x and Bit 3 of y.

— Again, without guessing additional key v
bits we do not know in advance which of the sets is the green
(0+1 and 1+0) one and which is the yellow (0+0

and 1+1).
* We thus compute the bias in each set separately.




QUESTIONS?



