Linear Cryptanalysis of FEAL 8X – Winning the FEAL 25 Years Challenge

Yaniv Carmeli Joint work with Prof. Eli Biham CRYPTODAY 2014

FEAL

FEAL

- Published in 1987, designed by Miyaguchi and Shimizu (NTT).
- 64-bit block cipher family with the Feistel structure.
- Key size was initially 64 bits, later extended to 128 bits as FEAL-NX.
- Had major contributions to the history of block ciphers.
- Inspired many new ideas, including differential and linear cryptanalysis.

Previous Attacks on FEAL-8

- 1000 Chosen-Plaintexts Differential Cryptanalysis [Biham Shamir 91]
- 2²⁴ Known Plaintexts Linear Cryptanalysis
 [Biham 94]
- 2¹⁵-2²⁸ Known-Plaintexts with high time complexity [Matsui Yamagishi 92].

– But the time complexity is 2^{50} or higher.

THE FEAL-8X CHALLENGE

Celebrating the 25th year of FEAL - A New Prize Problem -

August 21 2012 Mitsuru Matsui Mitsubishi Electric Corporation

The New Prize Problem

- The target cipher: FEAL-8X
 - FEAL cipher with 8 rounds and 128-bit key
 - Same as FEAL-8 except its key scheduling part
- 2^{b} plaintext-ciphertext pairs are given (b \leq 20).
- Good news: winner (min b, first) receives \$1500.
- Bad news: brute force is infeasible (128-bit key)
- Deadline: CRYPTO 2013
- For more details, see

https://docs.google.com/open?id=0B3xMqN36HCf2eDVzb191R1VHY0k

LINEAR CRYPTANALYSIS

$$p(P_3 \oplus P_4 \oplus P_7 \oplus C_4 \oplus C_6 \oplus K_2 \oplus K_5 \oplus K_7 = 0) = \frac{1}{2} \pm b$$

Linear Biases

Linear Attacks

- What can we do with a known linear bias of the cipher?
 - Learn one bit of information about the key
 - Build a distinguisher
 - Using a distinguisher for key-recovery (last round attack)

Last Round Attack

- Cipher of N rounds
- Distinguisher for first N-1 rounds
- Guess the subkey of the last round, decrypt the messages and use the distinguisher to check the guess

FEAL AND THE EQUIVALENT DESCRIPTIONS

FEAL-8X Equivalent Descriptions

- Eliminate the whitening keys on the plaintext side.
 - Using an equivalent description with 32-bit subkeys, EKO–EK7.
 - Useful when analyzing the first round.
- Similarly, we can eliminate the whitening keys on the ciphertext side.
 - Using DK0–DK7.
 - Useful when analyzing the last round.

The Subkeys of the Equivalent Descriptions

Subkeys of	Equivalent description without	Equivalent description without
FEAL-8X	whitening at the beginning	whitening at the end
K89ab	0	$(K89 \oplus Kcd \oplus Kef, Kab \oplus Kef)$
K0	$\overline{EK0} = mw(K0, K89 \oplus Kab)$	DK0 = mw(K0, Kcd)
K1	EK1 = mw(K1, K89)	$DK1 = mw(K1, Kcd \oplus Kef)$
K2	$EK2 = mw(K2, K89 \oplus Kab)$	DK2 = mw(K2, Kcd)
K3	EK3 = mw(K3, K89)	$DK3 = mw(K3, Kcd \oplus Kef)$
K4	$EK4 = mw(K4, K89 \oplus Kab)$	DK4 = mw(K4, Kcd)
K5	EK5 = mw(K5, K89)	$DK5 = mw(K5, Kcd \oplus Kef)$
K6	$EK6 = mw(K6, K89 \oplus Kab)$	DK6 = mw(K6, Kcd)
K7	EK7 = mw(K7, K89)	$DK7 = mw(K7, Kcd \oplus Kef)$
Kcdef	$(K89 \oplus Kab \oplus Kcd, Kab \oplus Kef)$	0

- Linear translation between the subkeys of the three descriptions.
 - Note that mw() is linear.

A BASIC LINEAR ATTACK ON FEAL-8X

2¹⁵ Known Plaintexts, 26 hours of computation

The Approximation

- 6-round

 approximation by
 Aoki, Moriai, Matsui
 et al.
 - Bias of 2⁻⁶
- We can also use the reverse approximation.

Basic Attack

- Standard linear attack.
 - Guess subkeys of first and last rounds (EKO and DK7)
 - 22 bits of EKO
 - 15 bits of DK7
 - Repeat with the reverse approx.
 - 30 bits overlap

The Attack

- Try all 2³⁷ choices of the 22+15=37 bits of the first and last actual subkeys (DK7 and EK0)
 - A few of those bits have only a small effect on the results
- The bias of the approximation is 2⁻⁶
 - About 2¹⁵ known plaintexts are required to recover the 37 bits
 - In practice, the result is not unique
- So we apply twice
 - Once for each approximation
 - Take the result that matches in the 30 common bits

Recovering the rest of the subkeys

- It is hard to complete the first and last subkeys at this time
- So, using the known bits, we recover bits of DK6
- And then complete further bits of DK7
- Then Complete DK5, DK4, DK3, DK2, DK1, EK0, EK1, EK2, EK3
- Finally, recover the FEAL-8X key from these subkeys.

LINEAR PROPERTIES OF ADDITION

(Bitwise) Linear Properties of Addition

$$p(x_0 \oplus y_0 \oplus z_0 = 0) = \frac{1}{2} + \frac{1}{2}$$
$$p(x_1 \oplus y_1 \oplus z_1 = 0) = \frac{1}{2} + \frac{1}{4}$$

THE PARTITIONING TECHNIQUE

2¹⁴ Known Plaintexts, 14 hours of computation

 $S_i(x, y) = \text{ROL2}(x + y + i \pmod{256})$

The two middle S-boxes of the seventh round

Partition – The Case of S₁

- The approximation of S_1 in the seventh round includes 10 $10 \rightarrow 40$
- Consider Bit 3 of x, Bit 3 of y and the carry to Bit 4 of the sum:

Partition – The Case of S₁

Will there be carry to Bit 4?

Bits 3 of x, y	0	1
0	NEVER	Sometimes
1	Sometimes	ALWAYS

- Given the bits we guess in the 8th round, we can partition all plaintexts into four sets.
 - In the "yellow" sets the bias is now two times higher, since we discarded some of the "noise".

S₁(x,y)=(x+y+1) <<2

- \rightarrow We need half the data size.
 - Because each set contains a quarter of the original data size.
- Notice that we do not know which set is which.

 $S_i(x, y) = \text{ROL2}(x + y + i \pmod{256})$

Partition – The Case of S₁

 10_{v}

 S_1

 While this method works for a single S-box, it does not work for the entire F-Function!

The Partition

- Analyzing the joint distribution of the middle
 S-boxes as a single big S-box:
 - In the "yellow" sets (0+0 or 1+1), the correlation between S₀ and S₁ causes the overall linear bias to be close to zero.
 - Analyzing the joint distribution
 of the middle S-boxes shows
 that the "green" (0+1 or 1+0) sets are those that
 amplify the bias.

The Partition

 We partition the known plaintexts into two sets, according to the XOR of Bit 3 of x and Bit 3 of y.

- Again, without guessing additional key
 bits we do not know in advance which of the sets is the green (0+1 and 1+0) one and which is the yellow (0+0 and 1+1).
- We thus compute the bias in each set separately.

QUESTIONS?