

Functional Encryption: Introduction & Recent Advances

Gil Segev

Hebrew University

What's Functional Encryption?

"All-or-nothing" approach:

- Without *sk*: The ciphertext is useless
- With *sk*: Can recover the message

Filtering Encrypted Email

F: Emails \rightarrow {Urgent, Later, Spam}

Can the server filter encrypted emails?

- Without *sk*: The server is useless
- With sk: The server can decrypt and apply F

Solution: Functional Encryption

- Bob issues the server a "restricted" key sk_F
- Given Enc(pk, m) the server can compute F(m) but nothing else!

This Talk

• Direct applications

• The security of functional encryption

• The road so far: From public-key to functional encryption

• The road ahead

F: Emails \rightarrow {Urgent, Later, Spam}

More generally: Remote access to encrypted data

Enable user-side encryption!

Who should be allowed access?

 $\left(\begin{pmatrix} CEO's \\ Office \end{pmatrix} \lor \begin{pmatrix} Marketing \& \\ Location = CA \end{pmatrix} \right) \bigwedge (Age \ge 24)$

Any better ideas?

 $\phi = \left(\begin{pmatrix} CEO's \\ Office \end{pmatrix} \lor \begin{pmatrix} Marketing \& \\ Location = CA \end{pmatrix} \right) \bigwedge (Age \ge 24)$

Expressive Access Control sk_{User5} $Enc(pk,(\phi,m))$ sk_{User4} sk_{User1} sk_{User3} sk_{User2} $F_{\text{User}}(\phi, m) = \begin{cases} m & \text{if } \phi(\text{User}) = 1 \\ \bot & \text{otherwise} \end{cases}$

This Talk

• Direct applications

• The security of functional encryption

• The road so far: From public-key to functional encryption

• The road ahead

Variants:

- Random vs. selective vs. adaptive
- Bounded vs. unbounded collusions (# of keys)
- Poly-time vs. unbounded simulator

Bad news [BSW11,AGVW13,...]: Generally impossible for unbounded collusions...

Simulation vs. Indistinguishability:

- Equivalent for non-functional encryption [GM82]
- Indistinguishability suffices for most FE applications

This Talk

• Direct applications

• The security of functional encryption

• The road so far: From public-key to functional encryption

• The road ahead

The Road So Far

Shamir (CRYPTO '84): Can Bob's public key be an arbitrary string?

pk = "bob@company.com"

$$F_{ID}(x,m) = \begin{cases} m & \text{if } x = ID \\ \bot & \text{otherwise} \end{cases}$$

Current status:

- First schemes in 2001 [BF01,C01]
- By now a variety of known schemes based on standard assumptions
- Generalizations: Hierarchical IBE [HL02,GS02], fuzzy IBE [SW05],...
- Better security: Anonymity [BF01], leakage resilience [ADNSWW10], function privacy [BRS13],...

The Road So Far

$$F_x(\phi, m) = \begin{cases} m & \text{if } \phi(x) = 1 \\ \bot & \text{otherwise} \end{cases}$$

 $\phi = \left(\begin{pmatrix} CEO's \\ Office \end{pmatrix} \lor \begin{pmatrix} Marketing \& \\ Location = CA \end{pmatrix} \right) \bigwedge (Age \ge 24)$

Current status:

- Various schemes for specific predicates: Inner-product, subspace membership,...
- Recently: Schemes for all predicates based on lattices [GVW13,BGGHNSVV14] or multilinear maps [GGHSW13,GGHZ14]
- Extensive on-going research

The Road So Far

Current status:

- Bounded collusions with "long" ciphertexts based on any PKE [GVW12]
- Bounded collusions with "short" ciphertexts based on lattices [GKPVZ13]
- Unbounded collusions based on breakthroughs in program obfuscation [GHRSW13,W14]

Learns F(m)but nothing else about m

The Road So Far

The Road So Far

The Boneh-Franklin IBE

(In fact, a simplified variant based on a stronger assumption)

Pairing-based cryptography:

- Let **G** and \mathbf{G}_T be cyclic groups of prime order q
- Let $g \in \mathbb{G}$ be a generator of \mathbb{G}
- Let $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ be a non-degenerate bilinear map:
 - e(g,g) generates \mathbb{G}_T
 - $e(g^a, g^b) = e(g, g)^{ab}$ for all $a, b \in \mathbb{Z}_q$

Recall: ElGamal Encryption '84

Setup:

• Sample
$$sk = \alpha \leftarrow \mathbb{Z}_q$$

• Let $pk = h = g^{\alpha}$

Encryption of *m*:

• Sample
$$r \leftarrow \mathbb{Z}_q$$

• Output
$$(c_0, c_1) = (g^r, h^r \cdot m)$$

Decrypting (c_0, c_1) using sk:

$$\frac{c_1}{(c_0)^{\alpha}} = \frac{h^r \cdot m}{g^{r\alpha}} = \frac{g^{\alpha r} \cdot m}{g^{r\alpha}} = m$$

The Decisional Diffie-Hellman (DDH) Assumption:

$$(g,g^{\alpha},g^{r},g^{\alpha r})\approx^{c}(g,g^{\alpha},g^{r},g^{z})$$

where $\alpha, r, z \leftarrow \mathbb{Z}_q$.

Recall: ElGamal Encryption '84

Setup:

• Sample
$$sk = \alpha \leftarrow \mathbb{Z}_q$$

• Let
$$pk = h = g^{\alpha}$$

Encryption of **m**:

• Sample
$$r \leftarrow \mathbb{Z}_q$$

• Output
$$(c_0, c_1) = (g^r, h^r \cdot m)$$

Boneh-Franklin '01: From ElGamal to IBE

- For each *ID* implicitely define pk_{ID} by "projecting" pk onto *ID* in \mathbb{G}_T
- Encrypt to pk_{ID} by splitting El-Gamal between **G** and **G**_T
- Security proof: Projections are "computationally independent"

$$pk = h \xrightarrow{ID} pk_{ID} = e(h, H(ID))$$
$$sk = \alpha \xrightarrow{ID} sk_{ID} = H(ID)^{\alpha}$$

The Boneh-Franklin IBE

Setup:

• Sample $sk = \alpha \leftarrow \mathbb{Z}_q$

• Let
$$pk = h = g^{\alpha}$$

Key generation for *ID*:

• Output
$$sk_{ID} = H(ID)^{\alpha}$$

Encryption of (*ID*, *m*):

• Sample
$$r \leftarrow \mathbb{Z}_q$$
 and output $(c_0, c_1) = (g^r, e(h, H(ID))^r \cdot m)$

Decrypting (c_0, c_1) using sk_{ID} :

$$\frac{c_1}{e(c_0, sk_{ID})} = \frac{e(h, H(ID))^r \cdot m}{e(g^r, H(ID)^\alpha)} = \frac{e(g^\alpha, H(ID))^r \cdot m}{e(g^r, H(ID)^\alpha)} = m$$

IBE Security

IBE security requirement:

For any efficient adversary $|\Pr[b' = b] - 1/2|$ is negligible

This Talk

• Direct applications

• The security of functional encryption

• The road so far: From public-key to functional encryption

• The road ahead

- We are current losing the functionality vs. efficiency battle
 - Deployment beyond identity-based encryption?
 - Better efficiency in the symmetric-key setting?

- We are current losing the functionality vs. efficiency battle
 - Deployment beyond identity-based encryption?
 - Better efficiency in the symmetric-key setting?

- We are current losing the functionality vs. efficiency battle
 - Deployment beyond identity-based encryption?
 - Better efficiency in the symmetric-key setting?

- We are current losing the functionality vs. efficiency battle
 - Deployment beyond identity-based encryption?
 - Better efficiency in the symmetric-key setting?

More schemes based on more standard assumptions

- More bilinear maps & lattices
- Less obfuscation
- Weaker assumptions in the symmetric-key setting? [ABSV14,BS15,KSY15]
- Better security for functional encryption
 - Function privacy: Does *sk*_{*F*} reveal *F*? [BRS13,...]
 - Application-specific security (e.g., deduplication [BKR13,ABMRS13,...])
- We're just getting started...

Thank You

www.cs.huji.ac.il/~segev