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vs.

Measuring a 2GHz 
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expansive and bulky 
equipment 
(compared to a 100 
MHz smart card)

vs.
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Ground-potential analysis

• Attenuating EMI emanations

“Unwanted currents or electromagnetic fields? 

Dump them to the circuit ground!”

(Bypass capacitors, RF shields, …)

• Device is grounded, but its “ground” potential 

fluctuates relative to the mains earth ground.

Computation

affects currents and EM fields

dumped to device ground

connected to conductive chassis

Key = 

101011… 
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Demo: 
distinguishing instructions

Key = 

101011… 
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Distinguishing various CPU operations

frequency (2-2.3 MHz)
ti
m

e
 (

1
0

 s
e

c
)
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exponent 𝑒

Encryption
𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

Decryption

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

A quicker way used by 

most implementations

𝑚𝑝 = 𝑐𝑑𝑝 𝑚𝑜𝑑 𝑝

𝑚𝑞 = 𝑐𝑑𝑞 𝑚𝑜𝑑 𝑞

Obtain 𝑚 using Chinese 

Remainder Theorem
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Key extraction
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A: This is a side channel countermeasure meant to protect 𝑑

no key dependent 
operation to measure



84

GnuPG modular exponentiation

modular_exponentiation(c,d,p){
m=1
for i=1 to n do
m = m2 mod p
t = m*c mod p //always mult
if d[i]=1 then

m=t
return m

}

𝑚 depends on both 𝑑𝑖
and 𝑐



85

GnuPG modular exponentiation

modular_exponentiation(c,d,p){
m=1
for i=1 to n do
m = m2 mod p
t = m*c mod p //always mult
if d[i]=1 then

m=t
return m

}

𝑚 is used in next 
iteration of the main loop

𝑚 depends on both 𝑑𝑖
and 𝑐



86

GnuPG modular exponentiation

modular_exponentiation(c,d,p){
m=1
for i=1 to n do
m = m2 mod p
t = m*c mod p //always mult
if d[i]=1 then

m=t
return m

}

𝑚 is used in next 
iteration of the main loop

craft 𝑐 to affect 𝑚 in the 
next loop iteration, 

based on 𝑑𝑖

measure changes 
inside squaring 

operation and obtain 𝑑𝑖

𝑚 depends on both 𝑑𝑖
and 𝑐



87

GnuPG modular exponentiation

modular_exponentiation(c,d,p){
m=1
for i=1 to n do
m = m2 mod p
t = m*c mod p //always mult
if d[i]=1 then

m=t
return m

}

𝑚 depends on both 𝑑𝑖
and 𝑐

𝑚 is used in next 
iteration of the main loop

craft 𝑐 to affect 𝑚 in the 
next loop iteration, 

based on 𝑑𝑖

measure changes 
inside squaring 

operation and obtain 𝑑𝑖

can only see drastic 
changes inside 

squaring operation
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Amplifying the key dependency

• Difficulties when attacking RSA 

– 2GHz CPU speed vs. 1.5MHz measurements

– Cannot rely on a single key-dependent instruction

• Idea: leakage self-amplification [Genkin Shamir Tromer 2014]

abuse algorithm’s own code to amplify its own leakage!

– Craft suitable cipher-text to affect the inner-most loop 

– Small differences in repeated inner-most loops cause a big overall 

difference in code behavior

– Measure low-bandwidth leakage
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GnuPG modular exponentiation

modular_exponentiation(c,d,p){
m=1
for i=1 to n do
m = m2 mod p
t = m*c mod p //always mult
if d[i]=1 then

m=t
return m

}

karatsuba_sqr( m ){
…
basic_sqr( x )
…

}

basic_sqr( x ){
…

}

if( x[j]==0)
y = 0

else 
y = x[j]*x

x7

craft 𝑐 such that
𝑑[𝑖] = 1 → 𝑥[𝑗] = 0
𝑑[𝑖] = 0 → 𝑥 𝑗 ≠ 0
(for most 𝑗’s)

x27

repeated 189 
times per bit of 𝑑

~0.2ms of 
measurement 
per bit of 𝑑



102

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]):

A chosen ciphertext attack



103

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]):
− RSA: 𝑐 = 𝑁 − 1

A chosen ciphertext attack



104

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]): 
− RSA: 𝑐 = 𝑁 − 1
− ElGamal: 𝑐 = 𝑝 − 1

A chosen ciphertext attack



105

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]): 
− RSA: 𝑐 = 𝑁 − 1
− ElGamal: 𝑐 = 𝑝 − 1

• Total #measurements: 

Attack type # of traces Time Bandwidth Cipher

A chosen ciphertext attack



106

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]):
− RSA: 𝑐 = 𝑁 − 1
− ElGamal: 𝑐 = 𝑝 − 1

• Total #measurements: 

Attack type # of traces Time Bandwidth Cipher

Non-adaptive

chosen ciphertext

3-15 3 sec 2 MHz ElGamal,

RSA

A chosen ciphertext attack



107

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]):
− RSA: 𝑐 = 𝑁 − 1
− ElGamal: 𝑐 = 𝑝 − 1

• Total #measurements: 

Attack type # of traces Time Bandwidth Cipher

Non-adaptive

chosen ciphertext

3-15 3 sec 2 MHz ElGamal,

RSA

Adaptive chosen 

ciphertext

2048 1 hour 50 kHz RSA

[GST14]

A chosen ciphertext attack



108

• Non-adaptive ciphertext choice 𝑐 ≡ −1 mod 𝑝
(similar to [YLMH05]):
− RSA: 𝑐 = 𝑁 − 1
− ElGamal: 𝑐 = 𝑝 − 1

• Total #measurements: 

• Send chosen ciphertexts using Enigmail

Attack type # of traces Time Bandwidth Cipher

Non-adaptive

chosen ciphertext

3-15 3 sec 2 MHz ElGamal,

RSA

Adaptive chosen 

ciphertext

2048 1 hour 50 kHz RSA

[GST14]

A chosen ciphertext attack
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Empirical results
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Reading the secret key (non-adaptive attack)

• Acquire trace

• Filter around carrier (1.7 MHz)

• FM demodulation

• Read out bits (“simple ground analysis”)

interrupt
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Demo: 
key extraction
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Reading the secret key (non-adaptive attack)

carrier

FM-modulated key
due to squaring of 
a random-looking /

mostly zero limb 
value of 𝑚
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RSA and ElGamal key extraction in a few seconds using
direct chassis measurement (non-adaptive attack)

Key = 

101011…
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RSA and ElGamal key extraction in a few seconds using
human touch (non-adaptive attack)

Key = 

101011… 
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Ground-potential analysis

• Attenuating EMI emanations

“Unwanted currents or electromagnetic fields? 

Dump them to the circuit ground!”

(Bypass capacitors, RF shields, …)

• Device is grounded, but its “ground” potential 

fluctuates relative to the mains earth ground.

Computation

affects currents and EM fields

dumped to device ground

connected to conductive chassis

Key = 

101011… 
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Ground-potential analysis

• Attenuating EMI emanations

“Unwanted currents or electromagnetic fields? 

Dump them to the circuit ground!”

(Bypass capacitors, RF shields, …)

• Device is grounded, but its “ground” potential 

fluctuates relative to the mains earth ground.

Computation

affects currents and EM fields

dumped to device ground

connected to conductive chassis

connected to shielded cables

Key = 

101011… 

Even when no data, or 

port is turned off.
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Demo: 
key extraction
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RSA and ElGamal key extraction in a few seconds using

the far end of 10 meter network cable (non-adaptive attack)

Key = 

101011…

works even if a 
firewall is present, 
or port is turned off
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using a mobile phone



126

Key extraction on far side of Ethernet cable
using a mobile phone



127

Key extraction on far side of Ethernet cable
using a mobile phone



128

Key extraction on far side of Ethernet cable
using a mobile phone



129

Key extraction on far side of Ethernet cable
using a mobile phone



130

Key extraction on far side of Ethernet cable
using a mobile phone



131

Key extraction on far side of Ethernet cable
using a mobile phone



132

Key extraction on far side of Ethernet cable
using a mobile phone



133

Key extraction on far side of Ethernet cable
using a mobile phone



134

Key extraction on far side of Ethernet cable
using a mobile phone



135

Key extraction on far side of Ethernet cable
using a mobile phone



136

Key extraction on far side of Ethernet cable
using a mobile phone



137

Key extraction on far side of Ethernet cable
using a mobile phone



138

Key extraction on far side of Ethernet cable
using a mobile phone



139

Key extraction on far side of Ethernet cable
using a mobile phone



140

Key extraction on far side of Ethernet cable
using a mobile phone



141

Key extraction on far side of Ethernet cable
using a mobile phone



142

Key extraction on far side of Ethernet cable
using a mobile phone



143

Key extraction on far side of Ethernet cable
using a mobile phone



144

Key extraction on far side of Ethernet cable
using a mobile phone
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Ineffective countermeasures:

1. Add analog noise

2. Parallel software load

Main problem: decryption of adversarial inputs

Solution: ciphertext randomization use equivalent 

but random-looking ciphertexts

• Negligible slowdown for RSA

• x2 slowdown for ElGamal

Countermeasures
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