
Voronoi Diagrams

Advanced Topics and Metrics

Chapters 17 and 18



Definitions

• M: a set of n points in Ed,  M1,…,Mn, called sites.

• V(Mi): The intersection of a finite number of closed 
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• V(Mi): The intersection of a finite number of closed 

half-spaces, perpendicular bisectors of point pairs.

• Vor(M): A complex of V(Mi) cells.

• L2-general position: no sphere contains d+2 sites on 

its boundary



Diagram as regions of Sphere Centers

• V(Mi) as the set of the center of spheres 

– Boundary of contains Mi, interior contains no Mj.

– When d=2

• Voronoi Edges: centers of spheres containing exactly 2 • Voronoi Edges: centers of spheres containing exactly 2 

points on their edge

• Voronoi Verteces: center of spheres containing 3 or 

more points on the edge (in L2-general, exactly 3).



Voronoi Diagrams and Polytopes

• By treating points as spheres, we can describe 

the diagram as a polytope in d+1 dimensions



Power of a point w.r.t. a sphere

• Ed : D dimension Euclidean space, origin O. 

• X: a point in Ed. 

• Σ: a sphere in Ed with center C, radius r.

Σ(X)=0, where: Σ(X)=|XC|2-r2 (17.1) Σ(X)=0, where: Σ(X)=|XC|2-r2 (17.1) 

• Interior of the sphere: int(Σ)={X: Σ(X)<0}

• Exterior of the sphere: ext(Σ)={X: Σ(X)>0}



• σ : Power w.r.t. origin: Σ(O) = σ = |C|2-r2   (17.2)

• If D is any line containing X, and intersecting Σ

at A and B Σ(X)=|XA|∙|XB| (17.3)

• When D is tangent at T, Σ(X)=XT2 (17.4)



Representation of Spheres

• Let φ be a mapping that takes a sphere Σ in Ed

with center C, power w.r.t. O σ to the point 

φ(Σ)=(C, σ) in Ed+1. 

• Allows us to treat spheres in Ed as points in • Allows us to treat spheres in Ed as points in 

Ed+1



Embedding Spheres as Points

• Embed Ed as the hyperplane in Ed+1, with 

xd+1=0. 

– xd+1 is the vertical direction, positive is up

– Each point in Ed is a sphere of radius |C|.– Each point in Ed is a sphere of radius |C|.

• X denotes a point in Ed with vector (x1,…,xd),

• X denotes a point in Ed+1, with vector 

(x1,…,xd+1).

• Projection means a vertical projection.



Homogeneous Coordinates and 

Matrix Notation

• X=(x1,…,xd,t), X=(x1,…,xd+1,t)

• We can then rewrite the equation of the 

sphere, Σ, as XΣXt = 0, with 
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Paraboloid P

• φ maps points in Ed, as spheres of radius 0, to 

a paraboloid of revolution, P, with vertical axis 

and equation:
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Paraboloid P

• Real spheres: non-negative radius; on or 

below this paraboloid

• Imaginary spheres: negative radius; above this 

paraboloid.paraboloid.



Polarity

• Any hyperplane H in a projective space has a 

homogeneous equation of the form 

• Let S be the matrix
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• We let H* be the point (h1,…,hd,-hd+1).
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Polarity

• Chapter 7.3

• The polar set, A*: Given a point A, 

A*={X : <X,A> = 1}

– A* the polar hyperplane of A– A* the polar hyperplane of A

– A is the pole of A*

• Polarity is the duality that connects points and 

planes.



Polarity w.r.t. Q

• Consider the quadric Q in Ed+1, defined by the 

homogeneous equation:

• Points X and Y are conjugates w.r.t. Q if 
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• A* ={ X :                   }, 

• Polarity w.r.t. Q maps hyperplane H to the 

pole H*
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Polarity w.r.t. P

• A* = {X :                    }

• If Q=P, and φ(Σ)=(C,σ), φ(Σ)* can be rewritten 

as 

• Since polarity preserves incidences: for point X
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• Since polarity preserves incidences: for point X

and hyperplane H,

– This also preserves the side of the parabola

** iff XHHX ∈∈



Orthogonal Spheres

• Σ1,Σ2 (centers and radii C1,C2,r1,r2) are 

orthogonal if 
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• This shows that 2 spheres are orthogonal if 
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Lemma 17.2.1

• The set of spheres in Ed that are orthogonal to 

a given sphere is mapped by φ to the polar 

hyperplane φ(Σ)*



Paraboloid and Hyperplane

• The set of spheres that passing through X = 

the set of spheres that intersect sphere with 

r=0, centered at X.

• Image of these spheres is φ(X)*• Image of these spheres is φ(X)*

• φ(X)* is tangent to P, since X is only sphere 

with r=0 orthogonal to X



Lemma 17.2.2

• Let Σ be a sphere in Ed. 

• The intersection of φ(Σ)* with P is the image 

under φ of the set of spheres with radius 0 

that are orthogonal to Σ, namely Σ itselfthat are orthogonal to Σ, namely Σ itself

• φ(Σ)* ∩ P in Ed+1 projects onto Σ in Ed.



Lemma 17.2.2

• P ∩ H projects onto Ed as a sphere φ-1(H*), 

centered at the vertical projection of H*

• The points of sphere Σ lifted onto P in Ed+1

belong to a unique hyperplane that intersects belong to a unique hyperplane that intersects 

P exactly at these points.  This hyperplane is 

φ(Σ)*



Lemma 17.2.3

• From 17.2.2, the power of X w.r.t. Σ equals 
square of the radius of the sphere ΣX

– Orthogonal to Σ, centered at X

• This can be computed in Ed+1
• This can be computed in E

• ΣX is mapped to a point I in Ed+1, the 
intersection of the vertical line passing 
through X with φ(Σ)*

• The xd+1 coordinates of φ(X) and I are:

X2 and ΣX(O)=X2- ΣX(X), because rΣX = Σ(X)



Lemma 17.2.3

• The power of X with respect to a sphere Σ

equals the signed vertical distance from the 

point φ(X) to the hyperplane φ(Σ)*



Lemma 17.2.4

• Let X and Σ be respectively a point and a 

sphere in Ed.  If H is a hyperplane in Ed+1, we 

denote by H- the half-space lying below H.  

Then:Then:
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• Any point lying below φ(X)* is the image of a 

sphere whose interior contains X. Any point 

above is the image of a sphere whose exterior 
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contains X.



Radical Hyperplanes

• Given Σ1, Σ2, the set of points in Ed with the 

same power with respect to Σ1 and Σ2 is the 

radical hyperplane H12:

H : Σ (X)- Σ (X)=0H12 : Σ1(X)- Σ2(X)=0

• The points that are the centers of spheres 

orthogonal to both spheres

• These points are mapped to φ(Σ1)* ∩ φ(Σ2)*



Application to Voronoi Diagrams

• By 17.2.1, φ(Mi)* denotes the polar 

hyperplane tangent to P at φ(Mi)

• The set of spheres containing NO site Mi is 

mapped to the intersection of the half-spaces mapped to the intersection of the half-spaces 

lying above the hyperplanes



Voronoi Polytope

• The aforementioned intersection is an 

unbounded polytope that contains P.

• This is the voronoi polytope, V(M)



Theorem 17.2.5

• The Voronoi Diagram of M, Vor(M), is a cell 

complex of dimension d in Ed whose faces are 

obtained by projecting onto Ed the proper 

faces of the Voronoi Polytope V(M)faces of the Voronoi Polytope V(M)



Proof of 17.2.5

• The boundary of V(M) is a pure cell complex 

of dimension d, hence so is Vor(M). 

• Let A be a point on a facet of V(M), that is 

contained in φ(M )*.contained in φ(Mi)*.

• A is the image of a sphere centered on the 

projection of A that passes through Mi, and 

contains no other site.

• Therefore, A must belong to V(Mi)



Implications

• Combinatorial properties of VDs follow 

directly from those of polytopes

– If points are in general position, V(M) is a simple 

(d+1)-polytope(d+1)-polytope

• Each vertex is incident to d+1 hyperplanes

• This is the L2-general assumption

• Computing the VD of n points ≈ computing 

the intersection of n half-spaces in 1 higher 

dimension



Corollary 17.2.6

• The complexity (# of faces) of Voronoi

Diagrams of n points is Θ(nceil(d/2))

• This can be computed in O(nlogn + nceil(d/2)) 

time, which is worst case optimaltime, which is worst case optimal



Delaunay Complexes



Delaunay Complexes

• Define M as before, and the mapping onto the 

paraboloid P as well.

• Denote by D(M) the convex hull of the 

mappings of the points M as well as some mappings of the points Mi as well as some 

‘high’ point O’.

• K-face: a k-dimensional face:

– 0-face is vertex, 1-face is a line, d-1 is a facet



D(M)

• D(M) forms the convex hull of φ(M) and some 

point O’, a high point on xd+1 axis, such that 

the convex hull is stable as O’ rises to infinity

• The faces of this convex hull that do not • The faces of this convex hull that do not 

contain O’ form the lower envelope of conv(φ 

(M))

• Del(M) is the projection of the convex hull.



Del(M)

• A vertical projection of the polytope D(M) Ed.

• The k-faces of Del(M)are in 1-to-1 

correspondence with the k-faces of D(M) that 

do not contain O’do not contain O’



Vor(M) and Del(M)

• Exists a bijection between the faces of V(M) 

and the faces of D(M) that do not contain O’

– Maps the facet of V(M) containing φ(Mi)* to the 

point φ(Mi).point φ(Mi).

• The bijection exists between the k-faces of 

Vor(M) and the (d-k)-faces of Del(M) that 

reverses inclusion relationships

• Del(M) is the dual of Vor(M).



Theorem 17.3.1

• The Delaunay complex of M is the dual to the 

Voronoi Diagram. 

• Its faces are obtained by projecting the faces 

of the lower envelope of the convex hull of of the lower envelope of the convex hull of 

φ(M), obtained by lifting the M onto P.

• Computing the Delaunay complex is 

equivalent to computing the Convex hull



Corollary 17.3.2

• The Delaunay complex of n sites in Ed can be 

computed in time O(nlogn + nceil(d/2)) time, 

which is worst case optimal



Delaunay Triangulations

• In L2-general, V(M) is a simple polytope, D(M) 

is a simplicial polytope, and Del(M) is a 

simplicial complex.

• If not L -general, some of the faces are not • If not L2-general, some of the faces are not 

simple (triangles).

– There could be many valid triangulations.  All of 

them are considered Delaunay triangulations.



Characteristic Properties

• Theorem 17.3.3

– Any d-face in the complex can be circumscribed by 

a sphere that passes through all its vertices 

Mi0,…,Mil, and whose interior contains no site of Mi0,…,Mil, and whose interior contains no site of 

M



Proof of 17.3.3

• Mk : a subset of M containing k sites

• Pick a d-face, T, of Del(M), with vertices Mk.  T

is the convex hull of Mk. The CH of φ(Mk) form 

a d-face F of the total CH, by thm 17.3.1.a d-face F of the total CH, by thm 17.3.1.

• HF : the hyperplane that supports F

• HF∩P projects onto Ed as a sphere Σ

circumscribed to conv(Mi0,…,Mil), centered on 

the projection of the pole, HF *.



Proof, Continued

• HF * is the intersection of the polar 

hyperplanes φ(Mk), and it is projected onto Ed

at C

• C is the vertex of the VD that is incident to the • C is the vertex of the VD that is incident to the 

cells that correspond to the sites Mk, and 

none of the interiors can contain any other 

site.



Theorem 17.3.4

• Let Mk be a subset of k sites in M. The CH of 

Mk is a face of the Delaunay complex iff there 

exists a (d-1) sphere passing through the 

vertexes Mk, and such that no point in M is on vertexes Mk, and such that no point in M is on 

the interior of this sphere.



Proof of 17.3.4

• Necessary

– Result of 17.3.3, and sphere circumscribed to a 

face also circumscribed to a subface.

• Assume exists a (d-1)-sphere Σ that passes • Assume exists a (d-1)-sphere Σ that passes 

through the points of Mk, and has no interior 

sites.  Let H be the hyperplane, φ(Σ)* 

containing the projections of the points



Proof of 17.3.4

• The halfspace lying below H does not contain 

any points in φ(M), according to 17.2.4

• Thus, H is a hyperplane supporting D(M) along 

the convex hull of the k sites, and so the convex hull of the k sites, and so 

conv(φ(Mi0) …. φ(Mik))= H ∩ D(M) is a face of 

D(M)

• Therefore, from 17.3.1, Mk makes a face of 

Del(M)



Corollary 17.3.5

• Any Delaunay Triangulation of a set of M sites 

is such that the sphere circumscribed to any d-

simplex in the triangulation contains no point 

of M in its interior. of M in its interior. 

• Conversely, any triangulation satisfying this 

property is a Delaunay Triangulation



Characteristic of DT

• Consider any DT T(M)

• Let S1=M1…MdMd+1 and S1=M1…MdMd+2 be a 

pair of adjacent d-simplices in T(M) 

(circumscribed to Σ Σ ). that share a common (circumscribed to Σ1 Σ2). that share a common 

face F=M1…Md

• (S1,S2) is regular if Md+1 is not in int(Σ2)



Characteristics

• If Σ1 differs from Σ2, regularity is equivalent to 

Md+2 not being in int(Σ1).

• Md+1 does not belong to int(Σ2) iff Σ2(Md+1)>0.  

But the hyperplane H that supports F is the But the hyperplane HF that supports F is the 

radical hyperplane of Σ1 and Σ2



Theorem 17.3.6

• Since Σ1(Md+1)=0, the half-space bounded by 

HF that contains Md+1 (or resp. Md+2) consists 

of the points whose power w.r.t. Σ1 is smaller 

(resp. greater) than their power w.r.t. Σ2.(resp. greater) than their power w.r.t. Σ2.

Σ1(Md+2) > Σ2(Md+2)=0

• This proves Md+2 does not belong to the 

interior of Σ1



Theorem 17.3.6

• Consider a triangulation T(M)

• Then, T(M) is a DT iff all pairs of adjacent d-

simplices in T(M) are regular



Proof of 17.3.6

• Necessary as a consequence of 17.3.3

• φ(S) = the k-simplex whose vertices are the 

images of the vertices of a k-simplex S.

• C = the union of the φ(S)’s for all the faces S of • C = the union of the φ(S)’s for all the faces S of 

the DT T(M). 

• The sufficiency proof is to show that C is the 

graph of a real valued convex function over 

conv(M)



Proof, Cont.

• We consider S1 and S2 that share the common 
face F, with circumscribing spheres Σ1 and Σ2 

• By 17.2.4, the regularity condition is 
equivalent to φ(Md+1) being in φ(Σ2)*+, and equivalent to φ(Md+1) being in φ(Σ2)* , and 
vice versa.

• If (S1, S2) regular, φ(F) is locally convex (there is 
a hyperplane containing φ(F) such that φ(S1) 
and φ(S2) belong to the half-space above this 
hyperplane)



Proof Cont

• This is true for any (d-1)-face of C incident to 2 

d-faces, and so C is locally convex at any point

• C is defined over a convex subset, the 

conv(M).conv(M).

• Therefore, C is convex and is the lower 

envelope of the polytope D(M) which proves 

that T(M) is a DT of M.



Optimality of a DT

• Because we can triangulate in many ways, we 

have many ways to define optimality

– Compactness

– Equiangularity– Equiangularity



Compactness

• The smallest enclosing sphere of each simplex 

S

• T(M) corresponds to a function ΣT(M), defined 

over conv(M) as the power of a point X w.r.t. over conv(M) as the power of a point X w.r.t. 

the sphere Σ circumscribing any d-simplex 

containing X



Lemma 17.3.7

• Let Det(M) be a Delaunay triangulation of M, 

and T(M) be another triangulation.  Then

– For all X in conv(M), ΣDet(X) ≥ ΣT(X)



Proof of 17.3.7

• Consider a d-simplex T in T(M) containing X, Σ
the cirumscribed sphere, and φ(T) the d-
simplex projection

• By 17.2.3, ΣT(X) is the (negative) vertical • By 17.2.3, ΣT(X) is the (negative) vertical 
distance from φ(Σ)* to φ(X).

• φ(Σ)* is the affine hull of φ(T)

• For a given X, this signed vertical distance is 
maximized when φ(T) is a face of the convex 
hull of φ(M); when T is a simplex of a DT



Lemma 17.3.8

• If T is a d-simplex circumscribed to ΣT, then

• where C’T and r’T are the center and radius of 

the smallest enclosing sphere 

2
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Proof

• Let ΣT be the sphere circumscribed to T, 

centered at CT with radius rT.

– ΣT(X) = XCT
2-rT

2 is minimized when X = CT, and so 

ΣT(X) is greater than –rT
2.ΣT(X) is greater than –rT .

• If CT contained in T, ΣT is the smallest enclosing 

sphere, and so r’T = rT



Proof, Cont.

• If CT not contained in T, the smallest 

containing sphere is centered on a k-face (k<d) 

F, the face such that the orthogonal project of 

CT onto the plane that supports F falls inside F.CT onto the plane that supports F falls inside F.

• r’T of this sphere is that of the (k-1)-sphere 

circumscribed to F

• C’T minimizes XCT. XCT when X is in T

• CTC’T
2 + r’T

2 = rT
2



Most Compact Triangulation

• The maximum min-containment radius of 

T(M):

• The most compact triangulation minimizes 

T
T

rC 'max))((
)(MMMMTTTT

MMMMTTTT
∈

=

• The most compact triangulation minimizes 

C(T(M)).



Theorem 17.3.9

• Delaunay Triangulations are the most compact 

among all triangulations

– Other triangulations might also be the most 

compact, even if not Delaunaycompact, even if not Delaunay



Proof of 17.3.9

• Define T(M), Det(M)

• XT is the point minimizing ΣT(X), and similarly XDet.

• XT is the center of the smallest sphere 
circumscribed to the simplex containing XT (by 
17.3.8)
circumscribed to the simplex containing XT (by 
17.3.8)

• We denote the radii as r’T and r’Det.

• C(T(M))= r’T, C(Det(M))=r’Det

• By 17.3.7 and 8: 

• ΣT(XT) =-r’T
2 ≤ ΣT(Xdet) ≤ ΣDet(XDet)=-r’Det

2



Equiangularity (d=2)

• Given a triangulation T(M), the angle vector is

Q(T(M)) = (a1,…,a3t), where each a is an angle 

of the t triangles, sorted by increasing value.

• We know that the sum of the angles = tπ• We know that the sum of the angles = tπ

• A triangulation that maximizes the angle 

vector for the lexicographic ordering also 

maximizes the smallest ordering

• This is a globally equiangular triangulation



Theorem 17.3.10

• A globally equiangular triangulation of a set of 

M sites in the plane is always a DT



Proof of 17.3.10

• Consider 2 triangles T1=ABC, and T2=BCD, 

where ABCD is a strictly convex quadrilateral 

(all vertices of the convex hull)

• We can flip diagonals to increase • We can flip diagonals to increase 

equiangularity

– This is a regularization rule, since it changes a pair 

of adjacent triangles into a regular pair of triangles



• Let Σ1 and Σ2 be the circumscribing circles.

– AD is flipped only if Σ1 contains D

• Let abcd be the angles at the vertices ABCD, 

and b and c are split into b1, b2, c1 and c2

– We also split a and d into a’1, a’2, b’1, b’2 for the 

potential splitpotential split



• If a is the smallest angle, then we don’t flip, but 

d=π-b2-c2 < π -a, so that a+d< π, so A is not inside 

Σ2

• If b1 is the smallest, then we flip only if d’2 is 

greater, which only happens when D in Σ1

• Parallels for all other smallest angles

• After we flip, Q(T
1
(M))>Q(T(M))

• Progressive flippings increases the angle vector.  

Since there are a finite number of triangulations, 

we must reach a maximum, with only regular 

pairs of adjacent triangles, and is a DT by 17.3.6



Higher Order Voronoi Diagrams



Higher Order Voronoi Diagrams

• Level-k

– A point is at Level k of an arrangement A if it 

belongs to exactly k open half-spaces, φ(Mi)*
-, 

such that each half-space does not the reference such that each half-space does not the reference 

point (the origin).



Voronoi Diagram of Order k

• Let Mk be a subset of M of size k.  

• Vk(Mk): the region or points that are closer to 

Mk than any other sites

{ }XMXMMMMMMXMV ≤∈∀∈∀= ,\,:)(

• The union of Vk forms Vork(M)

• Vor1(M) = Vor(M).

{ }jikjkikk XMXMMMMMMXMV ≤∈∀∈∀= ,\,:)(



Theorem 17.4.1

• Vork(M) is a cell complex of dimension d in Ed.  

The cells of this complex correspond to the 

cells at level k in the arrangement A of the 

hyperplanes induced by the projections of the hyperplanes induced by the projections of the 

points. A cell in the diagram is obtained by 

projecting the corresponding cell in the 

arrangement. The l-faces of Vork(M) are 

obtained by projecting the l-faces common to 

cells at level k in arrangement A.



Proof of 17.4.1

• The proof relies on lemma 17.2.4

• A sphere whose interior contains k points is 

mapped by φ to a point at level k in the 

arrangement A of the hyperplanes.arrangement A of the hyperplanes.

• This is easily verifiable.



Vork(M)

• Once constructed, easy to find k-nearest 

neighbors, by finding the region of the 

arrangement containing the point.

• Theorem 17.4.2• Theorem 17.4.2

– The overall complexity of the first k voronoi

diagrams of a set of n points is 

O(nceil((d+1)/2)kceil((d+1)/2)).  The k diagrams can be 

computed in time O(nceil((d+1)/2)kceil((d+1)/2)) for d≥3, 

or O(nk2log(n/k)) for d=2



Examples

• Vorn-1(M) is the furthest-point Voronoi

Diagram.

• Vor2, Vor3



Projection of Vork(M)



Non-Euclidean Metrics



Power Diagrams

• Let S={Σ1,…, Σn} be a set of spheres in Ed.

• P(Σi) � all points whose power w.r.t. Σi is 
smaller than power w.r.t. any other sphere.

{ })()(,:)( XXijEXP
d Σ≤Σ≠∀∈=Σ

• The region P(Σi) is a convex polytope, the 
intersection of a finite set of half-spaces 
bounded by radical hyperplanes. 

• The complex is called the Power Diagram of S, 
Pow(S).

{ })()(,:)( XXijEXP jii Σ≤Σ≠∀∈=Σ



Power Diagrams

• As before, we map the spheres to a point in 

Ed+1.  However, these points are not on the 

paraboloid. The faces of the Power diagram 

are obtained by projecting the intersections of are obtained by projecting the intersections of 

the polar hyperplanes.



Order-k Power Diagrams

• A similar parallel to the previous.



Affine Diagrams

• Defined for sites and for a distance such that 
the set of points equidistant from 2 objects is 
a hyperplane.

• We can extend the idea of VDs to more • We can extend the idea of VDs to more 
general sites, non-Euclidean distances.

• VD’s and Power Diagrams are Affine Diagrams, 
and any affine diagram is a power diagram. 

• We can also derive many nonaffine diagrams 
from affine diagrams



Affine Diagrams

• Cells of AD’s are convex polytopes.

• To any AD of n objects corresponds a set of

perpendicular bisectors, Hij, 1 ≤ i < j ≤ n

• These hyperplanes must satisfy





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


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n

• These hyperplanes must satisfy

• For any 1 ≤ i < j < k ≤ n

• The diagram is simple if the Iijk are disjoint and 
nonempty

ijk

def

jkikikijjkij IHHHHHH =∩=∩=∩



Theorem 18.2.1

• Any simple AD in Ed is the power diagram of a 

set of spheres in Ed.

• Proof:

– We embed Ed in Ed+1 as the hyperplane of x =0.– We embed Ed in Ed+1 as the hyperplane of xd+1=0.

– We construct a set of n hyperplanes in Ed+1 such 

that the projection of the intersections is exactly 

the hyperplanes Hij



Proof of 18.2.1

• We construct n hyperplanes, P1,…,Pn, in Ed+1

• We ensure that the vertical projections of

for any i<j is exactly Hij

• Each P is the polar hyperplane of a sphere 

ji PP ∩

• Each Pi is the polar hyperplane of a sphere 

Σi=φ-1(Pi*), which is the projection of Pi ∩ P.

• So Hij is the radical hyperplane of Σi and Σj. So 

the affine diagram is the power diagram



Constructing Pi

• Denote hij the vertical projection of Hij onto Pi.

• Take P1 and P2 as non-vertical hyperplanes

that intersect P1 along h12. For any k>2, we 

must take P that make the appropriate must take Pk that make the appropriate 

intersections with P1 and P2.  If I12k exists, then 

Pk must exist.



Proof Cont.

• We show that the projections of the 

intersections are Hij.

• We have constructed H12, H1k, and H2k for one 

k.k.

• If the other cells Iijk exist, then their 

intersections much exist



Theorem 18.2.2

• The affine diagram with Hyperplanes Hij and 

equations of hyperplanes

-2(Ci-Cj)∙X+σi-σj=0

is the power diagram of the spheres Σ .is the power diagram of the spheres Σi.

• Proof: We can rewrite the equation of the 

hyperplane as Σi(X)- Σj(X)=0



Diagrams for General Quadratic 

Distance

• Consider 2 points X and A in Ed.

• The General Quadratic Distance is defined as:

• Where Δ is a real symmetric d x d matrix and 

)()()(),( ApAXAXAX
t

Q +−∆−=δ

• Where Δ is a real symmetric d x d matrix and 

where p(A) is a real number



Diagrams

• VD is when Δ is the identity matrix and p(X)=0

• Furthest point diagrams (VD of order n-1) are 

when Δ is the negative identity matrix, and 

p(X)=0.p(X)=0.

• Power Diagrams are when Δ is the identity 

matrix and p(X) does not equal 0.



General Quadratic Distance

• If A, B are points, then the formula for the 

hyperplane can be rewritten as 

• Therefore, the VD for a general quadratic 

0)()()(2: =−+∆−∆+∆− BpApBBAAXABH
ttt

AB

• Therefore, the VD for a general quadratic 

distance is an affine diagram



Weighted Diagrams

• Non-affine.

• Defined over finite sets of points and a 

weighted Euclidean distance



Additively Weighted Diagrams: 

Vor
+
(M)

• Additive weighted distance formula

• We assume that all ri values, the weights, are 

non-negative.

iii rXMMX −=+ ),(δ

non-negative.



Vor
+
(M)

• Consider Σi in Ed, centered at Mi with radius ri, 

and let ψ be the bijection that maps Σi to the 

point ψ(Σi)=(Mi,ri) in Ed+1

• The spheres of radius 0 correspond to the • The spheres of radius 0 correspond to the 

hyperplane xd+1=0 in Ed+1.



Projection ψ

• Points at additive distance r from Mi are 

centers of spheres tangent to Σi with radius r, 

inside or outside Σi. 

• Ψ generates a cone of revolution • Ψ generates a cone of revolution 

C(Σ) : xd+1=|XC|-r

– Apex of C is (C,-r), 

– symmetrical with respect to xd+1=0, 

– has an aperture angle π/4



ψ

• The projection IX of a point X on the cone C(Σ) 
is the projection under ψ of the sphere 
centered at X and tangent to Σ

• Signed vertical distance from X to IX equals the • Signed vertical distance from X to IX equals the 
additive distance from X to C weighted by r

• Each sphere, Σi, corresponds to a cone C(Σi), 
also denoted Ci.

• The projection of the lower envelope of the 
cones is exactly Vor

+
(M)



Equidistance w.r.t. additive distance

• The set of points in Ed equidistant (w.r.t. 

additive distance) from 2 points == the 

projection of intersection of cones

• C : (x +r )2 = XM 2, x +r >0• C1 : (xd+1+r1)2 = XM1
2, xd+1+r1>0

• C2 : (xd+1+r2)2 = XM2
2, xd+1+r2>0

• H12 : -2(M1-M2)∙X-2(r1-r2)xd+1+M1
2-r1

2-M2
2+r2

2



Vor+ and Power Diagram

• There exists a correspondence between Vor+

and a power diagram

• Take spheres Σi’ in Ed+1, centered at ψ(Σi) with 

radius r √2radius ri √2



Vor+ and PD

• The cell of Vor+(M) that corresponds to Mi

V+(Mi), is the projection of intersection of the 

cone Ci with the cell of the PD corresponding 

to the sphere Σi’to the sphere Σi’

• X is in V+(Mi) iff the projection Xi of X onto Ci

has a smaller xd+1 coordinate than of Xj j≠i

(X,xd+1) of Xi must obey:

(xd+1+ri)
2=XMi

2, (xd+1+rj)
2 ≤ XMj

2, j≠i



Computation of Vor+

• Σi’(Xi) ≤ Σj’(Xi) for any j≠i

• Vor+ can be computed by

– Compute Σi’

– Compute the power diagram of the Σ ’s– Compute the power diagram of the Σi’s

– For all i, project onto Ed the intersection of Ci with 

the cell of the PD that corresponds to Σi’.



Computation of Vor+

• The PD of Σi’ can be computed in time 

O(n(floor(d/2)+1))

• The intersections can be computed in 

O(n(floor(d/2)+1))O(n(floor(d/2)+1))

• Theorem 18.3.1

– Vor+ has complexity O(n(floor(d/2)+1))

– Can be computed in time O(n(floor(d/2)+1))



Optimality of Computation

• This result is optimal in odd dimensions, but is 

not optimal in d=2, and possibly not for any 

even dimension (can be computed in optimal 

time O(nlogn)time O(nlogn)



Multiplicatively Weighted Diagrams

Vor
*
(M)

• Similar to Vor+, but with multiplicative 

distance

• Where p(Mi) is a positive real number (from 

now on, p )

iii XMMpMX )(),(* =δ

now on, pi)



Vor*

• Set of points at equal multiplicative distance 

from 2 sites Mi, Mj is a sphere of the equation

pi(X-Mi)
2 = pj(X-Mj)

2

• In normalized form• In normalized form

• And in Ed+1, the sphere can be represented as
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Point φ(Σij)

• We have mapped the sphere intersection to a 

point in Ed+1.  

• The polar hyperplane Hij, w.r.t. the paraboloid

P has equationP has equation

Hij(X,xd+1)=

(pi-pj)xd+1-2piMi∙X+2pjMj∙X+piMi
2 –pjMj

2

= 0



φ(Σij)

• Hij’s are the radical hyperplanes of spheres Σi

in Ed+1

• Σi is centered at (piMi,-π/2), with σ=piMi
2.

• We now have a correspondence between Vor• We now have a correspondence between Vor*

and the PD of Σi’s



Vor* and PD

• X is a point in Ed, projected onto P
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Computing Vor*

• Compute Σi

• Compute PD of the Σi’s

• For each I, project the intersection of the Σi in 

the PD with the paraboloid Pthe PD with the paraboloid P



Complexity of computation

• Theorem 18.3.2

– Vor* has complexity O(n(floor(d/2)+1)) and can be 

computed in time O(n(floor(d/2)+1))

• This is optimal• This is optimal



L1 metric

• Reminder, L1 distance between X and point M

• Points at distance r from M are a polytope w/ 

vertices at coordinates x =m ±r, and x =m if i≠j

∑
=

−=
d

i

ii mxMX
1

1 ),(δ

vertices at coordinates xi=mi±r, and xj=mj if i≠j

– In 2d- a tilted square

– In 3d- a regular octahedron

• These are dual to the cube, a co-cube



VorL1

• Voronoi Diagram for L1 distance

• We create a similar mapping to Vor+, but 

mapped to a pyramid instead of a cone, with 

x =δ (X,M )xd+1=δ1(X,Mi)



VorL1

• Lower envelope of the Pi pyramids

– The graph of the function min1≤i≤n δ1 (X,Mi)

• Each portion from a distinct pyramid projects 

onto Ed as a facet, a cell of Vor (M)onto Ed as a facet, a cell of VorL1 (M)

• The complexity is O(nda(n)).



Region Bisectors in VorL1

• When d=2, bisectors are generally 3 piece 

polylines.  However, can be 1 linear segment 

connecting 2 regions of dimension 2



L∞ Metric

• Using the distance metric 

δ ∞(X,M)=max|xi-mi|



Voronoi Diagrams in Hyperbolic 

SpacesSpaces



Pencils of spheres

• A set of spheres, S, that are affine 

combinations of 2 given spheres, Σ1 and Σ2

– F={Σ : exists real λ, s.t. for all X in Ed

Σ(X)= λ Σ1(X)+(1-λ) Σ2(X)}Σ(X)= λ Σ1(X)+(1-λ) Σ2(X)}

• When mapping F by φ, the image of F is the 

line φ(F) that connects φ(Σ1) to φ(Σ2)



Types of Pencils



Types of pencils of spheres

• If φ(F) intersects P at 1 point, F contains a 

single sphere of radius 0, F is a pencil of 

concentric spheres

• If 2 intersection points, 2 limit points of radius • If 2 intersection points, 2 limit points of radius 

0

• If 1 tangent point, as if 2 limit points touching, 

a tangent pencil



Types of pencils

• If φ(F) does not intersect P, exists some family 

of hyperplanes tangent to P containing F.

• φ(ΣF) is the set of tangent points

• Σ is the set of points that belong to all spheres • ΣF is the set of points that belong to all spheres 

in F

• All d-spheres in F intersect on the (d-1)-sphere 

Σ1 intersect Σ2

• ΣF is the supporting sphere of the pencil F



Radical Hyperplane

• Any point in H12 of Σ1 and Σ2 has same power 

with respect to any particular sphere

• Therefore, H12 is the radical hyperplane of a 

pencil of spheres, or of any 2 spheres in the pencil of spheres, or of any 2 spheres in the 

pencil



Radical Hyperplane of types of pencils

• Concentric pencil- does not exist

• Pencil with 2 limit points- the bisector

• Tangent pencil- hyperplane bisector

• Supporting Sphere- the affine hull of the • Supporting Sphere- the affine hull of the 

supporting sphere



VD’s in Hyperbolic Spaces

• The Poincare model of hyperbolic space:

– Hd = {X in Ed : xd > 0}

– A half-space

• Hyperbolic distance: sufficient to decide • Hyperbolic distance: sufficient to decide 

whether B or C closer to A



Hyperbolic Distance

• Consider a pencil FA, with limit points A and A’, 

where A’ denotes the symmetric of A w.r.t. 

hyperplane H0 of equation xd=0, the radical 

hyperplane of FAhyperplane of FA

• Distance is the radius of sphere of FA passing 

through the point.



Hyperbolic VD

• Given n sites in the poincare half-space Hd, 

corresponds a region 

Vh(Mi)= {X in Hd , δh(X,Mi) ≤ δh(X,Mj) for any j ≠ i}



Projecting the Hyperbolic Diagram

• Identify with half-hyperplane xd+1=0, xd > 0.  

The hyperplane H0 is now identified with the 

subspace {xd+1=xd=0}.  

• FX is mapped to a line in Ed+1 parallel to the xd• FX is mapped to a line in Ed+1 parallel to the xd

axis.

• X, X’ symmetric w.r.t. H0, FX has limit points at 

X, X’ mapped to φ(X), φ(X’), symmetric to 

hyperplane xd=0 in Ed+1



Hyperbolic Diagram in Ed+1

• A point X belongs to Vh(Mi) iff the ray parallel 

to the xd axis in Ed+1 originating at φ(X) 

(entirely contained in P), directed toward xd>0 

intersects the hyperplane φ(Mi)* before any intersects the hyperplane φ(Mi)* before any 

other φ(Mj)*



Hyperbolic Diagram in Ed+1



Consequences of the Projection

• Bisecting surface of 2 points for hyperbolic 

distance is a half-sphere

– X is only equidistant between A and B if FX

contains a sphere passing through A and Bcontains a sphere passing through A and B

– φ(FX) intersects the intersection of φ(A)* and 

φ(B)*

– We say that φ(X) intersects Γ, the projection of the 

intersection of φ(A)* and φ(B)* parallel to xd axis 

onto P



Bisecting surface

• Γ, the projection of the intersection of φ(A)* 
and φ(B)* parallel to xd axis onto P

• Also the intersection of a hyperplane parallel 
to xd and P, which projects to Ed as a sphere to xd and P, which projects to E as a sphere 
ΣAB, belong to pencil with limit points A,B

• Spheres on that pencil are mapped to 
φ(Σ)=λφ(A)+(1-λ) φ(B), with corresponding 
polar hyperplanes, which all contain the 
intersection of φ(A)* and φ(B)* 



Bisecting Surface

• H is therefore a hyperplane polar to a sphere 

in FAB, limit points AB.

• H has a hyperplane polar to φ(ΣAB), by 17.2.2, 

so Σ belongs to Fso ΣAB belongs to FAB

• Therefore, ΣAB is the sphere in FAB centered on 

H0 (unique)



Consequences (2)

• X is equidistant from d+1 points, A0,…Ad, iff

φ(X) is the projection of the intersection of 

their projected polar halfplanes (intersection 

φ(Ai)*) parallel to xd axis, onto Pφ(Ai)*) parallel to xd axis, onto P

• The point at equal hyperbolic distance from 

d+1 points is the limit point of the pencil 

containing the sphere circumscribed to the 

d+1 points of radical hyperplane H0



Consequences (3)

• HD can be obtained by projecting 

V(M)=intersection φ(Ai)*+ parallel to xd axis 

onto P, then vertically onto xd+1=0

• This double projection creates injection • This double projection creates injection 

between VD and HD

• Can do in 1 projection

• Complexity is O(nceil(d/2)), computed in 

O(nlogn+nceil(d/2)) time


