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Talk Overview
• Voronoi diagrams reminder – reviewing results on 

lifting to the paraboloid P in Ed+1.
• Power diagrams and higher order power diagrams.
• Affine diagrams and diagrams for a general 

quadratic distance.
• Weighted diagrams – additive weights.
• Weighted diagrams – multiplicative weights.
• L1 and L∞ metrics diagrams.
• Voronoi diagrams in hyperbolic space.
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Voronoi Diagrams Reminder
Objective: To compute Voronoi diagrams (VDs) of n

sites in Ed.
Σ: a sphere in Ed centered at point C with radius r.
• The power of point X with respect to Σ:

• The power σ of the origin with respect to Σ:

Σ(X)=||X−C||2 − r2

σ =Σ(0)=||C||2 − r2
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Voronoi Diagrams Reminder (cont.)
We map spheres in Ed into points in Ed+1 by the mapping:

Φ(Σ)=(C,σ)
Φ maps points in Ed onto the paraboloid P:

Xd+1=||X||2=ΣXi
2

In a homogeneous system of coordinates P is represented 
as:

X∆PXt=0             where 
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Voronoi Diagrams Reminder (cont.)

The polar hyperplane of AєEd+1, with respect to P is:
A*={X єEd+1 : X∆PAt=0}, i.e.,

Two hyperspheres Σ1 and Σ2 are orthogonal if Σ1(C2)=r2
2

||C1−C2||2 = r1
2+r2

2

2C1˙C2 − σ1 − σ2 = 0
Φ(Σ1) ∆PΦ(Σ2)=0

Geometric interpretation:
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Note: In particular, points on the 
sphere are orthogonal spheres of 
zero radius.
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Voronoi Diagrams Reminder (cont.)
Lemma 17.2.1: The set of all spheres that are orthogonal 

to Σ is mapped by Φ to the polar hyperplane Φ(Σ)* of 
Φ(Σ). 

Lemma 17.2.2: The points of a sphere Σ in Ed lifted on 
the paraboloid P, belong to the polar hyperplane Φ(Σ)* 
of Φ(Σ).
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Voronoi Diagrams Reminder (cont.)
The power of a point X with respect to a sphere Σ is equal 

to the square of the radius of the sphere ΣX orthogonal 
to Σ and centered at X.

Lemma 17.2.3: The power of X with respect to a sphere Σ
is equal to the signed vertical distance from the point 
Φ(X) to the hyperplane Φ(Σ)*.
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Voronoi Diagrams Reminder (cont.)

Σ Xd

Xd+1

X

Φ(X)

Φ(Σ)*

Φ(ΣX)

Σ(X) = X2-(X2-rΣx
2)The power of X with respect to a 

sphere Σ is equal to the signed 
vertical distance from the point 
Φ(X) to the hyperplane Φ(Σ)*:
Φ(X)- Φ(ΣX) = X2-(X2-rΣx

2)
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Voronoi Diagrams Reminder (cont.)
XєΣ Φ(X)є Φ(Σ)* Φ(Σ)є Φ(X)* 

Xєext(Σ) Φ(X)є Φ(Σ)*+ Φ(Σ)є Φ(X)*+

Xєint(Σ) Φ(X)є Φ(Σ)*- Φ(Σ)є Φ(X)*-

Conclusion
The complexity of the Voronoi diagram of n points in Ed

is Θ(n┌d/2┐) in the worst case. We can compute such a 
diagram in O(nlogn + n┌d/2┐) time, which is optimal in 
the worst case.
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Voronoi Diagrams 
with 

Non-Euclidean Metrics
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Power Diagrams
Definition:
Let S={Σ1,…, Σn} be a set of n spheres in Ed. To each Σi

corresponds a region defined by:
P(Σi)={XєEd : Σi(X)≤ Σj(X), i≠j}

The regions P(Σi) and their faces are called the power 
diagram of S and denoted by Pow(S).
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Power Diagrams (cont.)
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Power Diagrams (cont.)
Let P(S) be the intersection of the halfspaces bounded 

below by the polar hyperplanes Φ(Σ1)*,…, Φ(Σn)*.

Theorem 18.1.1: Pow(S) is a cell complex in Ed. Its faces 
are obtained by projecting P(S) from Ed+1 to Ed.
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Power Diagrams (cont.)

Xd

Xd+1

X

Φ(X)

Φ(Σi)*

Φ(ΣiX)

Φ(Σj)*

Φ(ΣjX)

Σi(X)

Σj(X)

The signed distance of the 
point Φ(ΣiX) on the upper 
envelope is smaller than 
any other signed distance
Φ(ΣjX). Therefore X
belongs to the cell of Σi.
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Power Diagrams - Conclusion
Theorem 18.1.2: The complexity of the power diagram of 

n spheres in Ed is Θ(n┌d/2┐). The diagram can be 
computed in O(nlogn + n┌d/2┐) time.

Comments
• There can be redundant hyperplanes (spheres with an 

empty region).
• The spheres may be imaginary (i.e., ||X−C||2 + r2 = 0).
• Any polytope in Ed+1 corresponds to a power diagram.
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Higher-Order Power Diagrams
Definition:
Let Sk be a subset of S of size k. 

P(Sk)={XєEd : Σi(X)≤ Σj(X), ΣiєSk, ΣjєS\Sk}

The structure P(Sk) is called the power cell of Sk. The 
union of non-empty power cells is called the power 
diagram of order k of S and is denoted by Powk(S).
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Higher-Order Power Diagrams and 
Levels of Arrangements

Let A(S) be the arrangement of Φ(Σ1)*,…, Φ(Σn)*, the 
polar hyperplanes of spheres in S.

Theorem 18.1.3: The k-order diagram of S Powk(S) is 
obtained by projecting the faces of the cells at level k of 
the arrangement A(S), onto Ed.

The l-faces of Powk(S) (l<d) are obtained by projecting the 
l-faces common to at least two cells of A(S) at level k. 
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Higher-Order Power Diagrams and 
Levels of Arrangements (cont.)

Xd

Xd+1

Φ(Σ2)*

Φ(Σ1)*

Σ3

Σ1
Σ2

Φ(Σ3)*The 2-order 
diagram 
corresponds to 
level 2 in the 
arrangement of 
polar hyperplanes.
Note that not all 
the l-faces 
(vertices in the 
figure) are 
projected to the 
diagram.



10

Non-Euclidean Voronoi Diagrams19

Higher-Order Power Diagrams 
Conclusions

Theorem 18.1.4: The complexity of the first k power 
diagrams of a set of n spheres in Ed is O(n┌d/2┐k┌d/2┐).

These k-diagrams can be computed in O(n┌d/2┐k┌d/2┐) time 
if d>2 and in O(nk2log(n/k)) time if d=2. 
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Affine Diagrams
An affine diagram is a diagram in which the locus of 

points equidistant from two sites (bisector) is a 
hyperplane.

To any affine diagram correspond a set of bisectors Hij
that satisfy the relation:

Hij∩Hjk = Hij∩Hik =  Hik∩Hjk =  Iijk

The diagram is said to be simple if the Iijk are disjoint and 
not empty.
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Affine Diagrams and Power 
Diagrams

Theorem 18.2.1: Any simple affine diagram in Ed is the 
power diagram of a set of spheres in Ed.

General Idea of Proof: 
Constructing a set of n hyperplanes P1,..,Pn in Ed+1 such 

that the vertical projection of Pi∩Pj is Hij. Then for each 
Pi corresponds a sphere Σi = Φ-1(Pi*) whose polar 
hyperplane is exactly Pi and Hij is the radical hyperplane
between Σi and Σj.
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Affine Diagrams and Power 
Diagrams

Theorem 18.2.2: The affine diagram whose hyperplanes
Hij have equations:

-2(Ci−Cj)·X+σi- σj=0
is the power diagram of the spheres Σi with center Ci and 

power σi.

Proof: Hij can be written as Σi(X) –Σj(X)=0.
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Voronoi Diagrams for Quadratic 
Distance

For two points X, AєEd, the general quadratic 
distance from A to X is:

δQ(X,A) = (X−A)∆ (X−A)t + ρ(A)
Where ρ(A)єR and ∆ is a real symmetric dxd matrix.
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Voronoi Diagrams for Quadratic 
Distance (cont.)

All diagrams we have met so far have been special 
cases of Voronoi diagrams for quadratic distances.

• Standard Voronoi diagrams: ∆=Id and ρ(A)=0.

• Power diagrams: ∆=Id and ρ(A)≠0.
• Furthest-neighbor diagrams: ∆=−Id and ρ(A)=0.
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Voronoi Diagrams for Quadratic 
Distance - Conclusion

Theorem 18.2.3: The Voronoi diagram of n points for 
an arbitrary general quadratic distance in Ed has 
complexity Θ(n┌d/2┐).

It can be computed in O(n log n + n┌d/2┐) time in the 
worst case.

Proof: For any pair of points, the bisector is a 
hyperplane and thus (by 18.2.1) the diagram is an 
affine diagram.
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Weighted Diagrams: Introduction 

An alternative representation for Voronoi diagrams:
For each site Mi there is a cone

C(Mi): Xd+1 = δ(X, Mi) = ||X−Mi||
Which has apex (Mi,0) and an opening angle of π/4.
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Weighted Diagrams: Introduction 
(cont.) 

Observation 1: For an additive distance function  
δ(X, Mi) = ||X−Mi|| − ω,

The cone has apex (Mi, -ω)

ω

||X−Mi||
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Weighted Diagrams: Introduction 
(cont.) 

Observation 2: For a multiplicative distance function  
δ(X, Mi) = ω ||X−Mi||,

The cone has an opening angle of arctan(1/ω).
||X−Mi||

ω||X−Mi||
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Weighted Diagrams: Introduction 
(cont) 

The projection of the lower envelope of the cones 
onto Ed is the Voronoi diagram Vor(M).
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Weighted Diagrams: Additive 
Weight 

Let M = {M1, ..Mn} be a set of n points in Ed. To each 
point Mi corresponds a real ri called the weight of 
Mi. The additive weight distance from X to Mi is:

δ(X, Mi) = ||X−Mi|| − ri,
The Voronoi diagram of M with additive weights is 

denoted Vor+(M).



16

Non-Euclidean Voronoi Diagrams31

Weighted Diagrams: Additive 
Weight 

To get Vor+(M) we will set each cone apex at (Mi,ri). 
The projection of the lower envelope of the cones 
onto Ed is Vor+(M).

We will show that this can be done by computing a 
power diagram in Ed+1.

Non-Euclidean Voronoi Diagrams32

Weighted Diagrams: Additive 
Weight 
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Weighted Diagrams: Additive 
Weight 

The set of equidistant points from two points of M is 
the projection of the intersection of two cones:

C1: (Xd+1 + r1)2 = ||X−M1||2,       Xd+1 + r1> 0
C2: (Xd+1 + r2)2 = ||X−M2||2,       Xd+1 + r2> 0

The intersection of the two cones is contained in the 
hyperplane H12:

H12: -2(M1−M2)·X − 2(r1−r2) Xd+1 + M1
2−M2

2 +r2
2 −r1

2

Q: In R2, what does that make the bisector curves?
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Weighted Diagrams: Additive 
Weight 

Let Σi’ be the sphere (in Ed+1) centered at (Mi,ri) and 
of radius ri√2 (the intersection of Σi’ with Ed is Σi).

What do we need Σi’ for? We will see that the 
Voronoi cell Vor+(Mi) corresponds to the power 
diagram cell of Σi’. 
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Weighted Diagrams: Additive 
Weight 

Theorem: The cell of Vor+(M) that corresponds to Mi
is the projection of the intersection of the cone Ci
and the cell of Σi’ in the power diagram.

Proof: Let Xi be the point (X, xd+1)єEd+1.
Xє Vor+(Mi) 
(xd+1+ri)2 = ||X−Mi||2 and
(xd+1+rj)2 ≤ ||X−Mj||2 , j≠i

Σi’(Xi) ≤ Σj’(Xi)  , j≠i

Xi is on Ci and
Xi is below all Cj

Xi is in the cell of Σi’.
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Weighted Diagrams: Additive 
Weight 

The additive diagram can thus be computed as follows:
1. Compute Σi’ for i=1,…, n.
2. Compute the Ed+1 power diagram of the Σi’s.
3. For all i=1, …, n project onto Ed the intersection 

with the cone Ci of the cell of the power diagram 
that corresponds to Σi’.
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Weighted Diagrams: Additive 
Weight  - Conclusions

Theorem 18.3.1: The Voronoi diagram of a set of n 
points in Ed with additive weights, has complexity 

O(n└d/2┘+1) and can be computed in O(n└d/2┘+1) time.

Note: For d=2, this is not optimal since each cell is connected (cones of π/4 
angle), and thus (why?) the diagram has complexity O(n). 
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Weighted Diagrams: Additive 
Weight  - Conclusions
An example of an O(n2) cell in dimension 3:

Mi

Side view
View from below
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Weighted Diagrams: Multiplicative 
Weight 

Let M = {M1, ..Mn} be a set of n points in Ed. To each 
point Mi corresponds a positive real number ρ(Mi) 
called the weight of Mi. The multiplicative 
distance from X to Mi is:

δ(X, Mi) = ρ(Mi)||X−Mi||,
The Voronoi diagram of M with multiplicative weights 

is denoted Vor*(M).
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Weighted Diagrams: Multiplicative 
Weight 

For each Mi there is a cone given by:
C(Σi): Xd+1 = ρ(Mi)||X−Mi||,
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Weighted Diagrams: Multiplicative 
Weight 

• The projection of the lower envelope of the 
cones Ci onto Ed is exactly Vor*(M). 
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Weighted Diagrams: Multiplicative 
Weight 

• Note that the cell of the diagram need not be 
connected.



22

Non-Euclidean Voronoi Diagrams43

Weighted Diagrams: Multiplicative 
Weight 

The set of all points at equal distance from the sites 
Mi and Mj (the bisector) is the sphere:

02
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Weighted Diagrams: Multiplicative 
Weight 

The bisector sphere is represented in Ed+1 as the point:

02
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jjii

ji

jjii MM
X
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X
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ρρ
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and its polar hyperplane Hij (with respect to the 
paraboloid P) is:


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Weighted Diagrams: Multiplicative 
Weight 

We denote by Σi the spheres in Ed+1 centered at 
(ρiMi, -ρi/2) and σi = ρiMi

2, which have Hij as their 
radical hyperplanes.

Theorem: The cell Vor*(Mi) in Vor*(M) is the 
projection of the intersection of the paraboloid P
with the cell P(Σi) in the power diagram of the 
Σi’s .
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Weighted Diagrams: Multiplicative 
Weight 

Theorem: The cell Vor*(Mi) in Vor*(M) is the 
projection of the intersection of the paraboloid P
with the cell P(Σi) in the power diagram of the 
Σi’s .

Proof:
Xє Vor*(Mi) ρi(X−Mi)2≤ ρj(X−Mj)2, for all i≠j

Hij(X,X2) ≤ 0, for all i≠j
Σi(Φ(X)) ≤ Σj(Φ(X))  , for all i≠j
Φ(X) is in the cell P(Σi).
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Weighted Diagrams: Multiplicative 
Weight 

The multiplicative diagram can thus be computed as 
follows:

1. Compute Σi for i=1,…, n.
2. Compute the Ed+1 power diagram of the Σi’s.
3. For all i=1, …, n, project the intersection of the cell 

of the power diagram that corresponds to Σi, with 
the paraboloid P.
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Weighted Diagrams: Multiplicative 
Weight  - Conclusions

Theorem 18.3.2: The Voronoi diagram of a set of n 
points in Ed with multiplicative weights, has 
complexity O(n└d/2┘+1) and can be computed in 
O(n└d/2┘+1) time.

Example of an O(n2) diagram in dimension 2: n/2 points are put on a 
vertical line and given the same weight, and n/2 points on a horizontal line
with an identical larger weight. 
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L1 and L∞ Metrics: Computing 
VorL1(M) 

The L1 distance from a point X to a point A in Ed is 
defined as:

∑
=

−=
d

i
ii AXAX

1
1 ||),(δ

Let M = {M1, ..Mn} be a set of n points in Ed. 
The Voronoi diagram of M for the L1 distance is 

denoted VorL1(M).
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L1 and L∞ Metrics: Computing 
VorL1(M) 

To each point Mi there corresponds a pyramid Pi of 
equation:

),(11 id MXX δ=+

The vertical projection of the lower envelope of the 
pyramids is the diagram VorL1(M).
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L1 and L∞ Metrics: Computing 
VorL1(M) 

Non-Euclidean Voronoi Diagrams52

L1 and L∞ Metrics: Computing 
VorL1(M) 

The complexity of the diagram VorL1(M) can be 
bounded by the complexity of the lower envelope of 
n d-simplices in Ed+1:

|VorL1(M) | = O(ndα(n))
Where α(n) is an inverse of Ackerman’s function.

Conjecture: For points in general position this bound is 
not attained (we prove this for d=2).
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L1 and L∞ Metrics: Computing 
VorL1(M) in the Plane

P0

P1

(y0+y1)/2

Dx

Dy

P0

P1

Dx

Dy

(x0+x1)/2

P0

P1

Dx

Dy

Dy > Dx

Dy = Dx

Dy < Dx

L1-bisectors in the plane
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L1 and L∞ Metrics: Computing 
VorL1(M) in the Plane

Points are in L1-general position if no two points are 
connected by a line parallel to one of the main 
bisectors, and no four points belong to a common co-
cube.

If M is in L1-general position in the plane then:
• The bisectors are polygonal lines consisting of three 

line segments (two of which are rays).
• VorL1(M) contains n connected cells.
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L1 and L∞ Metrics: Computing 
VorL1(M) in the Plane

The diagram of n points in L1-general position is a planar 
map with n cells whose vertices have degree two or 
three and whose edges consist of at most three 
segments.

From Euler’s relation we get:
The complexity of VorL1(M) (for points in general 

position) in the plane is O(n).
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L1 and L∞ Metrics: Computing 
VorL∞(M) 

The L∞ distance from a point X to a point A in Ed is 
defined as:

||max),(
..1 iidi

AXAX −=
=∞δ

Let M = {M1, ..Mn} be a set of n points in Ed. 
The Voronoi diagram of M for the L∞ distance is 

denoted VorL∞(M).
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L1 and L∞ Metrics: Computing 
VorL∞(M) 

To each point Mi there corresponds a pyramid Qi of 
equation:

),(1 id MXX ∞+ = δ

The vertical projection of the lower envelope of the 
pyramids is the diagram VorL∞(M).
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L1 and L∞ Metrics: Computing 
VorL∞(M) 
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L1 and L∞ Metrics: Computing 
VorL∞(M) 

The complexity of the diagram VorL∞(M) can be 
bounded by the complexity of the lower envelope of 
n d-simplices in Ed+1:

| VorL∞(M)| = O(ndα(n))
Where α(n) is an inverse of Ackerman’s function.
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L1 and L∞ Metrics: Computing 
VorL∞(M) in the Plane

Points are in L∞-general position if no two points are 
connected by a line parallel to the axes, and no four 
points belong to a common co-cube whose facets are 
parallel to the coordinate axes.

If M is in L∞-general position the O(ndα(n)) bound is not 
attained. 
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L1 and L∞ Metrics: Computing 
VorL∞(M)

If the points are in L∞-general position then the complexity 
of VorL∞(M) is the same as that of Vor(M), namely, 
O(n┌d/2┐).

For the case of d=2, this is easy to see – rotate the 
coordinate system by an angle of π/4 and the diagram 
is equivalent to an L1-diagram.
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Application - Voronoi Diagrams in 
Hyperbolic Space
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Voronoi Diagrams in Hyperbolic 
Space

Pencils of Spheres:
A pencil of spheres in Ed is a set of spheres that are 

affine combinations of two given spheres Σ1 and Σ2:













Σ−+Σ=Σ
∈∀∈∃

Σ=
)()1()()(

,,
:

21 XXX
EXR

F
d

λλ
λ

Lifted to Ed+1 with the mapping Φ, 
the pencil F is mapped to the line 
Φ(F) connecting Φ(Σ1) and Φ(Σ2 )
.
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

Pencils Types:
• If Φ(F) intersects the paraboloid P in only one 

point, then Φ(F) is a pencil of concentric spheres.
• If Φ(F) intersects P in two points, then Φ(F) is a 

pencil with two limit points.
• If Φ(F) is tangent to P, then Φ(F) is a tangent 

pencil (two limit points coincide).
• If the line Φ(F) does not intersect P, then Φ(F) is a 

pencil with supporting sphere.
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

Φ(F)
Φ(F)

Φ(F)
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

Let H0 be the hyperplane Xd=0, and let A, B and C be 
points on the halfspace Xd>0. FA is defined to be 
the pencil with two limit points A and A’, where A’
denoted the symmetric of A with respect to H0.

H0

A

B

C

A’
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

Closer point comparison in hyperbolic space:
Given two points B and C and an additional point A, 

the point B is closer than C to A for a hyperbolic 
distance, if the sphere FA that passes through B has 
a smaller radius than that of the sphere that passes 
through C.

H0

A

B

C

A’
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

• If and only if the interior of the sphere in the 
pencil FX that passes through Mi contains no 
point of M.

)( ih MVX ∈

• If and only if the ray parallel to the Xd axis 
originating at Φ(X) (which corresponds to 
Φ(FX)) intersects the hyperplane Φ(Mi)* 
before any other polar hyperplane Φ(Mj)*. 

X is closer to 
Mi than to 
any other 
point in M.

The sphere of 
the pencil FX
that passes 
through Mi
does not 
contain any 
other pencil 
sphere that 
passes 
through Mj.
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

Xd

Xd+1

X

Φ(X)

Φ(Mi)*

Mj Mi

Φ(Mi)

Φ(Mj)

Φ(Mj)*

Φ(FX)

The intersection of Φ(FX) with
Φ(Mi)* corresponds to the sphere
of the pencil that passes through
Mi. Since it intersects Φ(Mi)* before
any other hyperplane, Mi is closer to
X than any other Mj. Therefore, X
belongs to the cell of Mi. 
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Voronoi Diagrams in Hyperbolic 
Space (Cont.)

• The bisector surface of two points in hyperbolic 
distance is a half-sphere.

• A point X is equidistant from d+1 points M0,..,Md iff
Φ(X) is the parallel-to-the-Xd-axis projection of

, onto the half-paraboloid.I
d

i
iM

0

*)(
=

Φ

• The hyperbolic Voronoi diagram can thus be obtained 
by Xd-parallel-projecting the polytope V(M)=∩Φ(Mi)*+ 

onto the half-paraboloid, then projecting the result 
vertically onto the hyperplane Xd+1=0.
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Voronoi Diagrams in Hyperbolic 
Space - Conclusion

• The complexity of the hyperbolic Voronoi
diagram of n points in the hyperbolic half-space 
{Xd>0} is Θ(n┌d/2┐). We can compute such a 
diagram in O(nlogn + n┌d/2┐).

H0
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