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Non-Euclidean Voronoi Diagrams

Talk Overview

Voronoi diagrams reminder — reviewing results on
lifting to the paraboloid P in E4*,

Power diagrams and higher order power diagrams.

Affine diagrams and diagrams for a general
quadratic distance.

Weighted diagrams — additive weights.
Weighted diagrams — multiplicative weights.
L, and L metrics diagrams.

Voronoi diagrams in hyperbolic space.
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Voronoi Diagrams Reminder

Objective: To compute Voronoi diagrams (VDs) of n
sites in E7.

X a sphere in £ centered at point C with radius r.

» The power of point X with respect to X:
ZX)=|-Cp -2
» The power o of the origin with respect to X:

o =Z(0)=|C[]>—
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Voronoi Diagrams Reminder (cont.)

We map spheres in E4 into points in E4"! by the mapping:
D(X)=(C,0)
® maps points in E“ onto the paraboloid P:
X=X P=2X2

In a homogeneous system of coordinates P is represented
as:

I, O 0
XApX'=0 where A,=10 0 -05
0 -05 O
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Geometric interpretation:

Note: In particular, points on the

sphere are orthogonal spheres of
zero radius.

5

Voronoi Diagrams Reminder (cont.)

The polar hyperplane of 4eE?"!, with respect to P is:
A*={X eE“"" : XApA'=0}, i.e.,
d

A ={XeE™: x,, = ZZ Ax; = Ay
i=1
Two hyperspheres X, and %, are orthogonal if X,(C,)=r,2
1C=GlIP = r*try?
D(X)) Ap D(X,)=0

A
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Voronoi Diagrams Reminder (cont.)

Lemma 17.2.1: The set of all spheres that are orthogonal
to X 1s mapped by @ to the polar hyperplane ®(X)* of

D).

Lemma 17.2.2: The points of a sphere X in £¢lifted on
the paraboloid P, belong to the polar hyperplane ®(X)*

of O().

>
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Voronoi Diagrams Reminder (cont.)

The power of a point X with respect to a sphere X is equal
to the square of the radius of the sphere X, orthogonal
to X and centered at X.

Lemma 17.2.3: The power of X with respect to a sphere X
is equal to the signed vertical distance from the point
®(X) to the hyperplane O(X)*.
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Voronoi Diagrams Reminder (cont.)

D(X)
] 1
The power of X with respect to a } ‘ IX) = )‘@‘(Xz'rzxz) ‘
sphere X is equal to the signed OEy T
vertical distance from the point
d(X) to the hyperplane P(X)*:
DY) B(Zy) = X-(Xor?) |
5
z X X4
(I)(Zy
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Voronoi Diagrams Reminder (cont.)

XeX & O(X)e D(X)* = D(X)e DX)*
Xeext(Z) & O(X)e D(X)** & O(X)e O(X)**
Xeint(X) <& O(X)e O(X)* <& O(X)e D(X)*-

Conclusion

The complexity of the Voronoi diagram of n points in E¢
is @(n"@21) in the worst case. We can compute such a
diagram in O(nlogn + n "¥2") time, which is optimal in
the worst case.
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Voronoi Diagrams
with
Non-Euclidean Metrics
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Power Diagrams

Definition:

Let S={%,,..., X, } be a set of n spheres in E%. To each X,
corresponds a region defined by:

P(E){XeE! : S 5,X), i#}

The regions P(X.) and their faces are called the power
diagram of S and denoted by Pow(S).
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Power Diagrams (cont.)
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Power Diagrams (cont.)

Let P(S) be the intersection of the halfspaces bounded
below by the polar hyperplanes ®(X))*,..., D(Z,)*.

Theorem 18.1.1: Pow(S) is a cell complex in E7. Its faces
are obtained by projecting P(S) from E¢™! to E¥.
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Power Diagrams (cont.)

The signed distance of the
point (X, ) on the upper X D(X)
envelope is smaller than al :
any other signed distance Z(X)
d(Z.,). Therefore X ; .
X 010
belongs to the cell of Z,. i (2ix) z(X)
FDEj)

/ X X,
o) o y/
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Power Diagrams - Conclusion

Theorem 18.1.2: The complexity of the power diagram of
n spheres in E9 is ©(n"92"). The diagram can be
computed in O(nlogn + n"427) time.

Comments

* There can be redundant hyperplanes (spheres with an
empty region).

 The spheres may be imaginary (i.e., || X—=C||* + r2=0).

 Any polytope in E4"! corresponds to a power diagram.
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Higher-Order Power Diagrams

Definition:
Let S, be a subset of S of size k.
P(Sp=1XeE? : T(X)< Z(X), ZeS), LeS\Sy}

The structure P(S)) is called the power cell of S,. The
union of non-empty power cells is called the power
diagram of order k of § and is denoted by Pow,(S).
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Higher-Order Power Diagrams and
Levels of Arrangements

Let A(S) be the arrangement of ®(Z,))*,..., O(Z,)*, the
polar hyperplanes of spheres in S.

Theorem 18.1.3: The k-order diagram of S Pow,(S) is

obtained by projecting the faces of the cells at level k of

the arrangement A4(S), onto E¥.

The [-faces of Pow,(S) (/<d) are obtained by projecting the

[-faces common to at least two cells of 4(S) at level k.
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Higher-Order Power Diagrams and
Levels of Arrangements (cont.)

The 2-order
diagram
corresponds to
level 2 in the
arrangement of
polar hyperplanes.
Note that not all
the 1-faces
(vertices in the
figure) are
projected to the
diagram.
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Higher-Order Power Diagrams
Conclusions

Theorem 18.1.4: The complexity of the first £ power
diagrams of a set of n spheres in E9 is O(n "2 fTd21),

These k-diagrams can be computed in O(n "¥2" k421 time
if @>2 and in O(nk?log(n/k)) time if d=2.
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Affine Diagrams

An affine diagram is a diagram in which the locus of
points equidistant from two sites (bisector) is a
hyperplane.

To any affine diagram correspond a set of bisectors
that satisfy the relation:

Hymij - ]—Iijm[_[ik - ]_Iikml_[jk - Iij
The diagram is said to be simple if the /;; are disjoint and

not empty.
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Affine Diagrams and Power

Diagrams
Theorem 18.2.1: Any simple affine diagram in E¢ is the
power diagram of a set of spheres in E¢.

General Idea of Proof:

Constructing a set of n hyperplanes P,,...P, in E4! such
that the vertical projection of P,N\P; is H;;. Then for each
P; corresponds a sphere X, = ®-!(P;*) whose polar
hyperplane is exactly P; and H; is the radical hyperplane
between %, and X,
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Affine Diagrams and Power

Diagrams
Theorem 18.2.2: The affine diagram whose hyperplanes
H,; have equations:

-2(C~C) Xto-670
1s the power diagram of the spheres X, with center C; and
power G,

Proof: H; can be written as 2,(X) — X,(X)=0.
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Voronoi Diagrams for Quadratic
Distance

For two points X, 4eE¥, the general quadratic
distance from 4 to X is:

Sp(X,A) = (X=A)A (X=A)' + p(4)
Where p(4)eR and A is a real symmetric dxd matrix.
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Voronoi Diagrams for Quadratic
Distance (cont.)

All diagrams we have met so far have been special
cases of Voronoi diagrams for quadratic distances.

 Standard Voronoi diagrams: A=/, and p(4)=0.

» Power diagrams: A=/, and p(4)#0.
* Furthest-neighbor diagrams: A=—/, and p(4)=0.
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Voronoi Diagrams for Quadratic
Distance - Conclusion

Theorem 18.2.3: The Voronoi diagram of n points for
an arbitrary general quadratic distance in £ has
complexity @(n 421,

It can be computed in O(n log n + n"¥2") time in the
worst case.

Proof: For any pair of points, the bisector is a
hyperplane and thus (by 18.2.1) the diagram is an
affine diagram.
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Weighted Diagrams: Introduction

An alternative representation for Voronoi diagrams:

For each site M, there is a cone
C(M)): Xy = 8(X, M) = || X=M]|
Which has apex (M;,0) and an opening angle of n/4.
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Weighted Diagrams: Introduction
(cont.)

Observation 1: For an additive distance function
O(X, M) = ||IX-M|| - w,

The cone has apex (M, -w) X-Mi|
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Weighted Diagrams: Introduction
(cont.)

Observation 2: For a multiplicative distance function
O(X, M) = o [|X=M,

The cone has an opening angle of arctan(1/w).

[IX=Mil|

|| X-Mil|
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Weighted Diagrams: Introduction
(cont)

The projection of the lower envelope of the cones
onto E? is the Voronoi diagram Vor(M).

>
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Weighted Diagrams: Additive
Weight

Let M= {M,, ..M} be a set of n points in £%. To each
point M, corresponds a real r; called the weight of
M. The additive weight distance from X to M, is:

O(X, M) = [|X=M}[| — r,,
The Voronoi diagram of M with additive weights is
denoted Vor, (M).
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Weighted Diagrams: Additive
Weight

To get Vor (M) we will set each cone apex at (M,,r,).
The projection of the lower envelope of the cones
onto E4 is Vor,(M).

We will show that this can be done by computing a
power diagram in E“4*1,
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Weighted Diagrams: Additive
Weight

>
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Weighted Diagrams: Additive
Weight

The set of equidistant points from two points of M is
the projection of the intersection of two cones:

Cpt Xy Tr? = X=M|P, Xy + 1> 0

Cot Xy T = XM|P, Xy + 1> 0

The intersection of the two cones is contained in the
hyperplane H,,:

Hyp: -2(M =My X = 2(r=73) Xy + MP=My? +ry? —r)?

’ Q: In R?%, what does that make the bisector curves? ‘
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Weighted Diagrams: Additive
Weight

Let X be the sphere (in E4"!) centered at (M,,r;) and
of radius V2 (the intersection of ;" with E7is Z)).

What do we need X" for? We will see that the
Voronoi cell Vor,(M,) corresponds to the power
diagram cell of Z,”.
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Weighted Diagrams: Additive
Weight
Theorem: The cell of Vor, (M) that corresponds to M,

is the projection of the intersection of the cone C,
and the cell of £’ in the power diagram.

Proof: Let X, be the point (X, x| )eE?"!,
Xe Vor, (M) <

(xge11r)* = [ X=M}||* and } X,is on C, and

(xdﬂ-i-rj)z < ||)(—]\4]||2 , JFI X; is below all C,

® LX) < Zj’()(i) J# } X is in the cell of Z,".
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Weighted Diagrams: Additive
Weight

The additive diagram can thus be computed as follows:
1. Compute X, for i=1,..., n.
2. Compute the E4*! power diagram of the X.’s.

3. Forall i=1, ..., n project onto E? the intersection
with the cone C, of the cell of the power diagram
that corresponds to ..
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Weighted Diagrams: Additive
Weight - Conclusions

Theorem 18.3.1: The Voronoi diagram of a set of n
points in £ with additive weights, has complexity

d/23+1 : g+l .
O(n"“"~ ") and can be computed in O(n """ " ) time.

Note: For d=2, this is not optimal since each cell is connected (cones of n/4
angle), and thus (why?) the diagram has complexity O(n).

>
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Weighted Diagrams: Additive
Weight - Conclusions

’ An example of an O(#?) cell in dimension 3: ‘

View from below
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Weighted Diagrams: Multiplicative
Weight

Let M= {M,, ..M} be a set of n points in £%. To each
point M, corresponds a positive real number p(M))
called the weight of M.. The multiplicative
distance from X to M, is:

O(X, M) = p(M))||X—M,

The Voronoi diagram of M with multiplicative weights

1s denoted Vor.(M).
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Weighted Diagrams: Multiplicative
Weight

For each M, there is a cone given by:
CE): Xygep = p(M) || X=M|,

>
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Weighted Diagrams: Multiplicative
Weight

The projection of the lower envelope of the
cones C; onto E? is exactly Vor.(M).

41

Weighted Diagrams: Multiplicative
Weight

Note that the cell of the diagram need not be
connected.
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Weighted Diagrams: Multiplicative
Weight

The set of all points at equal distance from the sites
M, and M, (the bisector) is the sphere:

2 2
oM. —p M. oM, —p M.
X2 Pl Py L T 2
Pi—P; Pi— P,
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2o PMimo M, pMI—p M)
Pi=p; Pi=p;

Weighted Diagrams: Multiplicative
Weight

The bisector sphere is represented in E4*/ as the point:

pM;—pM, piMiz_p'M'z
(D(zl_j):( i ey,

pi_pj pi_pj

and its polar hyperplane H;; (with respect to the
paraboloid P) is:

(P =P )X —2pM, +2ijj)'X+piMi2 _p‘/sz =0
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Weighted Diagrams: Multiplicative
Weight

We denote by X. the spheres in E4*/ centered at

(p:M;, -p/2) and o; = p, M7, which have H; as their
radical hyperplanes.

Theorem: The cell Vor.(M,) in Vor.(M) is the
projection of the intersection of the paraboloid P

with the cell P(%;) in the power diagram of the
2’S .
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Weighted Diagrams: Multiplicative
Weight

Theorem: The cell Vor.(M,) in Vor.«(M) is the
projection of the intersection of the paraboloid P
with the cell P(X;) in the power diagram of the

2’s.
Proof:
Xe VordM,) & p(X—M,*< p(X—M,)?, for all i#j
& Hy(X,X?) <0, for all i#/
& Z(DWX)) < (D)) , for all i#
< ®(X) is in the cell P(X)).
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Weighted Diagrams: Multiplicative
Weight

The multiplicative diagram can thus be computed as
follows:

Compute X, for i=1,...,n
Compute the E4*/ power diagram of the X.’s.

For all i=1, ..., n, project the intersection of the cell
of the power diagram that corresponds to X,, with
the paraboloid P.
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Weighted Diagrams: Multiplicative
Weight - Conclusions

Theorem 18.3.2: The Voronoi diagram of a set of n

points in £¢ with rrzlultlphcatlve weights, has

complgx{tly O(n ) and can be computed in
O(n ") tim

Example of an O(n?) diagram in dimension 2: n/2 points are put on a

vertical line and given the same weight, and 7/2 points on a horizontal line
with an identical larger weight.
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L, and L., Metrics: Computing
Vor,,(M)

The L, distance from a point X to a point 4 in E is
defined as:

d
S(X, A=) | X,— 4|
i=1

Let M= {M,, ..M} be aset of n points in E7.

The Voronoi diagram of M for the L, distance 1s
denoted Vor;,(M).
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L, and L., Metrics: Computing
Vor,,(M)

To each point M, there corresponds a pyramid P, of
equation:

Xin=0(X, M)

The vertical projection of the lower envelope of the
pyramids is the diagram Vor,,(M).
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L, and L., Metrics: Computing
Vor;,(M)
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L, and L., Metrics: Computing
Vor,,(M)

The complexity of the diagram Vor, (M) can be
bounded by the complexity of the lower envelope of
n d-simplices in E4*/:

[Vor, (M) | = O(n“a(n))
Where a(n) is an inverse of Ackerman’s function.

Conjecture: For points in general position this bound is
not attained (we prove this for d=2).
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L, and L., Metrics: Computing
Vor, (M) in the Plane

’ L,-bisectors in the plane ‘

P, —_—
3 Wpty)2 T \ ””””””” Dy
Dy

Py H—)
X
A0
\ } Dy
N
Py H_/
Dx Dy =Dx
53 Non-Euclidean Voronoi Diagrams

L, and L., Metrics: Computing
Vor, (M) in the Plane

Points are in L,-general position if no two points are
connected by a line parallel to one of the main
bisectors, and no four points belong to a common co-
cube.

If M 1s in L,-general position in the plane then:

» The bisectors are polygonal lines consisting of three
line segments (two of which are rays).

* Vor, (M) contains n connected cells.
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L, and L., Metrics: Computing
Vor, (M) in the Plane

The diagram of # points in L,-general position is a planar
map with n cells whose vertices have degree two or
three and whose edges consist of at most three
segments.

From Euler’s relation we get:

The complexity of Vor,,(M) (for points in general
position) in the plane is O(n).

55 Non-Euclidean Voronoi Diagrams

L, and L., Metrics: Computing
Vor, (M)

The L, distance from a point X to a point 4 in E¢ is
defined as:

5w(X,A):r1}la§|Xi—Ai |
Let M= {M,, ..M} be a set of n points in E7.

The Voronoi diagram of M for the L distance is
denoted Vor; _(M).
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L, and L., Metrics: Computing
Vor, (M)

To each point M, there corresponds a pyramid Q, of
equation:

Xd+1 :500(X9Mi)

The vertical projection of the lower envelope of the
pyramids is the diagram Vor; (M).
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L, and L., Metrics: Computing
Vor, (M)

a e
e
~4/
[ T
AT
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L, and L., Metrics: Computing
Vor, (M)

The complexity of the diagram Vor; (M) can be
bounded by the complexity of the lower envelope of
n d-simplices in E4*/:

| Vor, (M) = O(n“a(n))
Where a(n) is an inverse of Ackerman’s function.
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L, and L., Metrics: Computing
Vor, .(M) in the Plane

Points are in L-general position if no two points are
connected by a line parallel to the axes, and no four
points belong to a common co-cube whose facets are
parallel to the coordinate axes.

If M is in L-general position the O(na(n)) bound is not
attained.
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L, and L., Metrics: Computing
Vor, (M)

If the points are in L,-general position then the complexity
of Vor; (M) is the same as that of Vor(M), namely,
O(n Fd/2 ).

For the case of d=2, this is easy to see — rotate the
coordinate system by an angle of n/4 and the diagram
1s equivalent to an L -diagram.
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Application - Voronoi Diagrams in
Hyperbolic Space

|
NG \/
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Voronoi Diagrams in Hyperbolic
Space

Pencils of Spheres:

A pencil of spheres in £ is a set of spheres that are
affine combinations of two given spheres X, and X,:

s JAeR, VX e EY,
(12X = 22, (X)) + (1= D, (X)
Lifted to 4"/ with the mapping @,

the pencil F is mapped to the line @
®(F) connecting O(X,) and O(Z, )
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Voronoi Diagrams in Hyperbolic
Space (Cont.)

Pencils Types:

* If ®(F) intersects the paraboloid P in only one
point, then ®(F) is a pencil of concentric spheres.

* If O(F) intersects P in two points, then O(F) is a
pencil with two limit points.

* If O(F) is tangent to P, then O(F) is a tangent
pencil (two limit points coincide).

» If the line ®(F) does not intersect P, then ®(F) is a
pencil with supporting sphere.
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Voronoi Diagrams in Hyperbolic
Space (Cont.)

(9 (&)
VARV,

O(F)
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Voronoi Diagrams in Hyperbolic
Space (Cont.)

Let H,, be the hyperplane X =0, and let 4, B and C be
points on the halfspace X >0. F, is defined to be
the pencil with two limit points 4 and 4°, where 4’
denoted the symmetric of 4 with respect to H,,.
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Voronoi Diagrams in Hyperbolic
Space (Cont.)

Closer point comparison in hyperbolic space:

Given two points B and C and an additional point 4,
the point B is closer than C to A for a hyperbolic
distance, if the sphere F', that passes through B has
a smaller radius than that of the sphere that passes
through C.
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Voronoi Diagrams in Hyperbolic
Space (Cont.)

X eV,(M,)

. . . . X s closer to
If and only if the interior of the sphere in the } M, than to
pencil F'y that passes through M, contains no

point of M.

any other
point in M.

If and only if the ray parallel to the X, axis ;ie;gf;?{;f
originating at ®(X) (which corresponds to tﬁat passcs
®(F'y)) intersects the hyperplane ®(M,)* doosrot |
)k contain any
before any other polar hyperplane ®(M))*. e
sphere that

passes
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Voronoi Diagrams in Hyperbolic
Space (Cont.) o

@ (Fy)

»

(X
Xd+l ( );

The intersection of ®(F) with
®(M,)* corresponds to the sphere oM,
of the pencil that passes through :
M,. Since it intersects P(M,)* before
any other hyperplane, M, is closer to
X than any other M;. Therefore, X

D(M)*

belongs to the cell of M,. O(M,)
/ ! '
/ M/ M; x X4
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Voronoi Diagrams in Hyperbolic
Space (Cont.)

» The bisector surface of two points in hyperbolic
distance is a half-sphere.

* A point X is equidistant from d+1 points M,,..,M ; iff
®(X) is the parallel-to-the-X axis projection of

ﬁcD(M,.)* , onto the half-paraboloid.

* The hyperbolic Voronoi diagram can thus be obtained
by X -parallel-projecting the polytope V(M)=ND(M)**
onto the half-paraboloid, then projecting the result
vertically onto the hyperplane X, ,=0.
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Voronoi Diagrams in Hyperbolic

Space - Conclusion
The complexity of the hyperbolic Voronoi
diagram of » points in the hyperbolic half-space
{X>0} is @(n"92"). We can compute such a
diagram in O(nlogn + n'42").
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LS E@@
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