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Motivation: Lower Envelopes |- -

e Consider the lower envelope of a set of
functions with up to s pairwise intersections

e \What is the complexity of their lower
envelope? , £

b
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Davenport-Schintzel 85880
Sequences 8888

e Let n,s be positive integers. A sequence
U =<uy,u,,....,u, > of symbols from a finite alphabet
2. of size n is a Davenport-Schintzel Sequence -
DS(n,s) - if:
1.Vi<m u, #u,,
2. There are no s+2 indices 1<i <i, <...<i,,<m
for which there are g,beX a5 that hold:

u, =u, =..=a,u, =u, =..=b
1 3

ip iy
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DS Sequences — cont’d 8588

e A DS(n,s) is actually a sequence that doesn’t
allow alternation of two letters more than s+17
times.

e “DAVENPORT SCHINTZEL SEQUENCES’
is a DS(26,5) (‘ESESES’).

e How does it apply to lower envelopes?
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Lower Envelopes are DS
sequences

o Let F = { .7 beacollection of n
real-valued continuous functions on
a common interval L, with at most s

pairwise intersections. The lower \
envelope is: E,(x)= 11nm fi(x), xeL

e The envelope is a (maximal)
connected list of function portions,
by function index:

UCCf, [y f,)=< U Uy, U, >

19/12/2005
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elLemmai:<u,u,,..,u,>Iisa
DS(n,s)-sequence.

e Proof:

19/12/2005

by definition there are no adjacent identical
elements.

Suppose that there are s+2 indices for which
there is a substring of two alternately repeating
functions f.f, (w.l.o.g. f, is first):

e In Odd substring indices, we get f<f, .

e In even substring indices, we get f>f, .
Therefore, f,, f, must intersect at least at s+71
points! A contradiction.
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e Conversely to Lemma 1, for any given §§§§Z
DS(n,s)-sequence U, one can construct a| 5595
collection of functions f,, f5,.., f, © 0
suchthat v =U (f,, f,.... f,) (again,
with at most s pairwise intersections).

Proof: Given a DS(n,s)-sequence

U=<u,,u,,...,u, >, we define a set of
functions f,, f5,.., f, so that:

e w.l.0.g, a function’s first appearance on the
lower envelope is by order of indices.
e m-1 transition points are defined: < X;,-.,X,,_; >
e n+m-1 horizontal y-levels are defined.
000
. . 0000
e At X <X, all function assume f,(x) =1. | 555°
O0000
e Ineach x=x, , /, falls down 3383

to the highest free y-level
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Proof: U =U (f,, f,.... f,) 8666"

e By construction, the lower envelope is U.

e ltis left to show that there are at most s
pairwise intersections:

e Intersection between f; & f; occurs when there is
an appearance of j before a j in the sequence (or
vice versa).

e Therefore, should these functions intersect s+17
times, there would be a subsequence <i..j..i..j..> of
length s+2! A contradiction to U=DS(n,s).
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Complexity of DS(n,s)- 55880
sequences

® A (n)=max {‘U‘ :U is a DS(n,s)—sequence}
e Some simple bounds:
° ﬂq(l’l) =n
e A(n)<n - norepeats allowed.
e A(n)>n - <1,23...n>isaDS(n1).

® L(n)=2n-1
o L(n)=22n-1 -<1,23,....,n-1,n,n-1,...... ,1>isa
DS(n,2).

o A, (n)<2n-1 - Proof using induction (in next slide).

19/12/2005 Advanced Topics in Computational Geometry 10




e For n=1 the upper bound is trivial. 09990
e Assuming A(n—-1)<2n-3:
e Uis any DS(n,2)-sequence.
e Removing from U the letter (denoted “a”) which
appear last for its first time. “a” only appears once
(because of DS terms). The letter preceding “a”

might be removed as well — we get a DS(n-1,2)-
sequence U'.

e [U]<2n-3 by assumption, and so

U|<U|-2<2n-1

Q.E.D.
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A Weak Bound for 4,(n) S

e 4, (n)<2n(Inn+O(1)).

e Proof: Let U be a DS(n,3)-sequence. Let a
be the least frequent appearing symbol in U.
Then, the number of occurrences of a must
be at most 4,(n)/n times.

e Removing a and possible adjacent letters
(can only appear in a first or final occurrence
of a), we get a DS(n-1,3)-sequence, and
therefore: A, (n)<A,(n-1)+A4,(n)/n+2=

= A,(n) < 2n(Inn+O(1)).
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A Tight Bound for A,(n)

e It can be shown (through many-a-page..) that
A;(n) = O(na(n))

e a(n) is the very-slow growing functional
inverse of the ackermann’s function.

e For any practical value of n, a(n) < 4.
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Bounds for Higher Orders 8885

e It can also be shown, somehow, that:
® 4, (n)=6(n-2") .

=22, o .
p 20T TG S is even

(s=3)/2 .
n- 2a(n) loga(n)+C;(n) S is Odd

° ﬁs(n)ﬁ{

e C (n) is a function of a(n) and s.
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Some More Lower Envelopes | -

e Lemma 2: Let F = {/,--/.} be a collection of
partially defined functions on an interval L,
with at most s pairwise intersections, then
U=UC(f, [y f,) isa DS(n,s+2)-sequence.
Conversely, one can construct such a
collection to fit a given DS-sequence.
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e Proof: We extend each function’s 80600
. . _ 0000

endpoints by an infinite, almost 99090
vertical, rays. It can be easily seen °8°¢8

that we get fully continuous
functions with at most s+2 pairwise
intersections.

e Corollary to Lemma 2: The lower
envelope of n line segments in the
plane is a DS(n,3)-sequence -
Thus, U=8na(n)).

e There is a possible geometric
realization of that bound — a simple

example of the Ackermann’s function
in nature!

fi=z)
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80600
0000
Geometric Applications of DS | =
e DS-sequences can be used to shed light on
many problems. Demonstrated are:
e Lower Envelopes
e Cells in arrangement of segments
e Nearest Neighbors (for dynamic points)
e Geometric Graphs
e ...and many more.
8060
Arrangement of Segments
0000
O O

e Let S be a set of n segments in
the plane.

e The arrangement A(S) is
composed of:

e Vertices — Endpoints & intersection
points of segments.

e Edges — Portions of segments
between vertices.

e Cells — Connected components of
E%S.
e Trivial cells do not contain
endpoints, and are O(n). We
investigate non-trivial cells.
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Lower Bound for a Single Cell |

e According to Corollary 2, U = @(na(n)).
e This bound can be realized.

e With a choice of such S, 2n segments are added,
almost vertical and long enough.

¢ A final horizontal segment is added.

e Now, the lower envelope is an unbounded cell of
complexity Q(na(n)) . S e
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Upper Bound for A Single Cell | -

e General position assumed (as always).

e Segment sides (edges) are treated (2n sides).

e The boundary of a cell is a single connected
component, denoted as I .

e Should there be other components inside, the additive
complexity will vouch for them.

e Lemma 3: Let 5 € § contain at least one edge of ",
then the edges of 1" contained in s are traversed on
the boundary of I" in the same order they are
traversed on s.

e Proof: By Definition.
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0000
e Labeling the sequence I" (considering | 5c55”
different sides of segments) leads to a 8856
. O O
circular sequence (denoted ).
e It is linear by choosing a point of origin.
e [tis not always possible to choose an origin O
such that the sequence would be DS(2n,3).
S
000
. . L 0000
e To solve this, extra labeling is introduced: 86838°
O0000
e Every portion of a segment side s intersecting with a 9909
before the origin point is now s’, and after that pointitis| © ©

s” (in the same orientation, say clockwise).

e Lemma 4: The new sequence (denoted Z;) is a
DS(4n,3)-sequence (actually, a DS(3n,3)-sequence..).
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e Proof: X has at most 4n (3n) distinct 8883
labels, and does not contain identical 3888
consecutive elements. It is left to show o
that ababa is not a subsequence of X
e Aiding argument: if abab is a subsequence

of X1, then a and b intersect.

e Proof: Let QR,S, T be pointson I in that

order, and of the segment A and B, such

that 0,Sed4 RTeB

e If any of these points are adjacent in Iy, there is a
an intersection.

e Otherwise, disconnected components are
created. b

000

e If ababa is a subsequence of 3", thena | 5ooc°

and b would have to intersect twice! §§§§O
O O

e Because of the sequence abab, a and b
intersect with a former in the sequence.
having the sequence baba denotes another
intersection with b first, which is a
contradiction.

e Therefore, Lemma 4 holds, and the
complexity of a single cell is (na(n)).
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0000
Geometric Graphs
e A geometric graph G(V,E) is a graph of
straight line segments as edges between
vertices.
000
%
Convex Positions

e Two Edges of a Geometric Graph are in Convex
Position, if they can be a part of a convex
quadrilateral.

e What are the bounds on the number of edges e of a
graph with n vertices in which no two edges are in
convex position? (also called an improper graph).
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Lower Bound of e

e The following construction shows that
e>2n—2
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Upper bound of e 8588

e The bound of e <2n—1 will be proven
(seems familiar? But first some
Lemmata):

e Lemma 5: Let 4,4, 4,, A be four points

19 ]’

appearing in this order on a closed

convex curve y. Let P,Q be two points A Ak

inside y. Then, among the four segments "
PA4;,04;,PA,, 04,

two will be in convex position if no

segment contains one of P,Q and its

supporting line £ contains both.
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e Proof: Let / = /(P,)be the line through | c55¢0
these points, and ¢+ and ¢/-be the two half
planes defined by it. Then, if ¢* (¢7) contains
two disjoint segments, they are in convex
position.

e Other cases:

e One of the points is on / (regarding the terms)

e One half-plane contains more than two of the
points.

A, A
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e An edge xy is right (left) of an edge xz if | 5555,
xy is obtained from ., by a (counter) °8°8
clockwise rotation around x by positive angle,
less than 1t1. xy is the rightmost (leftmost)
edge of x, if there is no edge to its right (left).

z y

Xw

xz Xy

X

19/12/2005 Advanced Topics in Computational Geometry 30




Proving The Upper Boundone|

o lLet V={v,v,,.v }andacircle
C that contains G. Each
segment of G is extended from
both sides to reach two points of
C. Each point is labeled ¢;; ,
being onv,y; .

e The Colorof &; is dark jif vv,
is an interior edge of v, , and
light if it is leftmost or rightmost
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Some More Definitions 33550

O0000
e D(G) - The sequence of all points (cyclic). 8§8§

An arc — a maximal sequence of points with the
same color (light or dark).

PS(G) — The sequence of colors in D(G)

4

In this example:

o Arcs: (ay,,a,,a;) (0 )@, a ) (@), a,)(ay,)
e PS(G)=(4,2,1,2,3,2
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Key Lemmata

e Lemma 6: PS(G) is a DS(n,2)-cycle (the
maximum length of a DS(n,2)-cycle is 2n-2,
proved in a similar fashion to the maximum
length of a DS(n,2)-sequence).

e Lemma 7: An arc contains at most one dark
point.
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Upper bound approved 33

e Resulting from Lemmata 6 & 7:
o |D(G)|=2e=#light+#dark
e Every vertex has at most one rightmost (leftmost)
arc, and so #light<2n.
o #dark <|PS(G)| (Lemma 7).
e |PS(G)| <2n-2, and so:

e e <2n-1
e The proof will be complete after actually proving
Lemmata 6 and 7.
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Proof of Lemma 6

e It is obvious that there are no adjacent
elements.

e Assume that there are four points «,,.a,, .4, .,
along the circle. Then (assuming general
position), according to Lemma 5, this is a
contradiction, since they would be in convex
position.

4
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Proof of Lemma 7

e Suppose that points @.,-%.. are both dark.
Assume (w.l.0.g.) that ac is to the right of ab.
These edges are interiors of b,c, respectively.

e Let bx (cy) be an edge to the right (left) of ba
(ca). Let r || ca.
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o If xeq, ,thenc,.a, are noton the same| 5582,
arc.

o If xea, , then bx and ca are in convex
position.

e Therefore, xea; (and similarly, yea, ), and
then we get that bx and cy are |n convex
position! A contradiction. >

e Therefore, Lemma6 &7 hold,ﬁand as
promised: Q.E.D.
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Dynamic point — Nearest
Neighbor 8§8§
e Let P={p,,p,...p,}be a set of points in the

plane, whole locations are time-based
functions: p;(?) = {x,(), y,(t)}

e The functions are assumed to be polynomials
of maximum degree s.
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Nearest Neighbors

e Attime ¢, let P(t) denote the position of all
points. p,(n e P@t) Is the nearest neighbor of

p;(0)eP(1) if dist(p(0), p;(O) < st (pi (D), p; )

k+#i,j

e What is the maximum possibléynumber of
changes in the nearest neighbor for a given
point?
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e For every i#j, define: 00

D, (t)=dist>(p,(1), p, (1)) = (x,() = x,())" + (¥, () =, (1))’

e We get a polynomial of degree at most 2s.

e The lower envelope of all D,(»)is the nearest
neighbor, and its complexity is the number of
changes.

e Therefore, the nearest neighbor changes at
most 4,,(n) times.
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Summary 83

e Davenport-Schinzel Sequences are
sequences that doesn'’t allow long
alternations.

e They can used to set bounds for known
geometrical applications, such as lower
envelopes, geometric graphs and nearest
neighbors.

19/12/2005 Advanced Topics in Computational Geometry 41

Bibliography 3568

e Jean-Daniel Boissonnat and Mariette Yvinec.
Algorithmic geometry. Cambridge University Press,
1998,

e Micha Sharir and Pankaj K. Agarwal. Davenport-
Schintzel sequences and their geometric
applications. Cambridge University Press, 1995

e M. Katchalski and H. Last. On geometric graphs with
no two edges in convex position. Discrete and
computational geometry, 19, 1998.

19/12/2005 Advanced Topics in Computational Geometry 42




Thank You!

e Couldn’t find a picture of A. Schintzel, so |
brought a picture of A Schnitzel:
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