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Motivation: Lower Envelopes


Consider the lower envelope of a set of 
functions with up to s pairwise intersections
What is the complexity of their lower 
envelope?
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Davenport-Schintzel
Sequences


Let n,s be positive integers. A sequence 
of symbols from a finite alphabet       


of size n is a Davenport-Schintzel Sequence -
DS(n,s) - if:


1.


2. There are no s+2 indices
for which there are                         that hold:
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DS Sequences – cont’d


A DS(n,s) is actually a sequence that doesn’t 
allow alternation of two letters more than s+1
times.
“DAVENPORT SCHINTZEL SEQUENCES”
is a DS(26,5) (“ESESES”).
How does it apply to lower envelopes?
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Lower Envelopes are DS 
sequences


Let                     be a collection of n
real-valued continuous functions on 
a common interval L, with at most s
pairwise intersections. The lower 
envelope is:


The envelope is a (maximal) 
connected list of function portions, 
by function index: 


}..{ 1 nffF =


LxxfxE iniF ∈=
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1


>=< mn uuufffU ,...,,),..,,( 2121


19/12/2005 Advanced Topics in Computational Geometry 6


Lemma 1:                       is a      
DS(n,s)-sequence.


Proof: 
by definition there are no adjacent identical 
elements.
Suppose that there are s+2 indices for which 
there is a substring of two alternately repeating 
functions    (w.l.o.g.     is first):


In Odd substring indices, we get          . 
In even substring indices, we get          . 


Therefore, must intersect at least at s+1
points! A contradiction.
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Conversely to Lemma 1, for any given 
DS(n,s)-sequence U, one can construct a 
collection of functions                         
such that                                  (again, 
with at most s pairwise intersections).


Proof: Given a DS(n,s)-sequence
, we define a set of 


functions                     so that:
w.l.o.g, a function’s first appearance on the 
lower envelope is by order of indices.
m-1 transition points are defined:                     
n+m-1 horizontal y-levels are defined.                          


nfff ,..,, 21
),..,,( 21 nfffUU =
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At             all function assume                .
In each             ,       falls down 
to the highest free y-level


1xx < ixfi =)(
jxx = ju
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Proof:


By construction, the lower envelope is U.
It is left to show that there are at most s
pairwise intersections:


Intersection between     &  occurs when there is 
an appearance of i before a j in the sequence (or 
vice versa).
Therefore, should these functions intersect s+1
times, there would be a subsequence <i..j..i..j..> of 
length s+2! A contradiction to U=DS(n,s).


),..,,( 21 nfffUU =


if jf
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Complexity of DS(n,s)-
sequences


Some simple bounds:


- no repeats allowed.
- <1,2,3…,n> is a DS(n,1).


- <1,2,3,…..,n-1,n,n-1,……,1> is a 
DS(n,2).


- Proof using induction (in next slide).     


}),(:max{)( sequencesnDSaisUUns −=λ


nn =)(1λ
nn ≤)(1λ
nn ≥)(1λ
12)(2 −= nnλ
12)(2 −≥ nnλ


12)(2 −≤ nnλ
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For n=1 the upper bound is trivial.
Assuming                             :


U is any DS(n,2)-sequence.
Removing from U the letter (denoted “a”) which 
appear last for its first time. “a” only appears once 
(because of DS terms). The letter preceding “a”
might be removed as well – we get a DS(n-1,2)-
sequence U’.


by assumption, and so  


Q.E.D. 


32)1(2 −≤− nnλ


32' −≤ nU


122' −≤−≤ nUU
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A Weak Bound for 


Proof: Let U be a DS(n,3)-sequence. Let a
be the least frequent appearing symbol in U. 
Then, the number of occurrences of a must 
be at most               times.
Removing a and possible adjacent letters 
(can only appear in a first or final occurrence 
of a), we get a DS(n-1,3)-sequence, and 
therefore: 


)(3 nλ
)).1((ln2)(3 Onnn +≤λ
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A Tight Bound for 


It can be shown (through many-a-page..) that      


α(n) is the very-slow growing functional 
inverse of the ackermann’s function.
For any practical value of n,              . 


)(3 nλ


))(()(3 nnn αθλ =


4)( ≤nα
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Bounds for Higher Orders


It can also be shown, somehow, that:
.


is a function of α(n) and s.
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Some More Lower Envelopes


Lemma 2: Let                     be a collection of 
partially defined functions on an interval L, 
with at most s pairwise intersections, then            


is a DS(n,s+2)-sequence. 
Conversely, one can construct such a 
collection to fit a given DS-sequence.    


}..{ 1 nffF =


),..,,( 21 nfffUU =
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Proof: We extend each function’s 
endpoints by an infinite, almost 
vertical, rays. It can be easily seen 
that we get fully continuous 
functions with at most s+2 pairwise 
intersections. 
Corollary to Lemma 2: The lower 
envelope of n line segments in the 
plane is a DS(n,3)-sequence -
Thus,                  . 


There is a possible geometric 
realization of that bound – a simple 
example of the Ackermann’s function 
in nature!


))(( nnU αθ=
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Geometric Applications of DS


DS-sequences can be used to shed light on 
many problems. Demonstrated are:


Lower Envelopes
Cells in arrangement of segments
Nearest Neighbors (for dynamic points)
Geometric Graphs
…and many more.
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Arrangement of Segments


Let S be a set of n segments in 
the plane.
The arrangement A(S) is 
composed of:


Vertices – Endpoints & intersection 
points of segments.
Edges – Portions of segments 
between vertices.
Cells – Connected components of 
E²/S.


Trivial cells do not contain 
endpoints, and are O(n). We 
investigate non-trivial cells.
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Lower Bound for a Single Cell
According to Corollary 2,                         .
This bound can be realized.
With a choice of such S, 2n segments are added, 
almost vertical and long enough.
A final horizontal segment is added.
Now, the lower envelope is an unbounded cell of 
complexity                   . 


))(( nnU αθ=


))(( nnαΩ
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Upper Bound for A Single Cell
General position assumed (as always).
Segment sides (edges) are treated (2n sides).
The boundary of a cell is a single connected 
component, denoted as     .


Should there be other components inside, the additive 
complexity will vouch for them.


Lemma 3: Let           contain at least one edge of    , 
then the edges of      contained in s are traversed on 
the boundary of     in the same order they are 
traversed on s.


Proof: By Definition.  


Γ


Ss∈
Γ


Γ


Γ
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Labeling the sequence       (considering 
different sides of segments) leads to a 
circular sequence (denoted     ).
It is linear by choosing a point of origin.


It is not always possible to choose an origin O 
such that the sequence would be DS(2n,3).


Γ


ΓΣ


},,,,,,,,,,,,,,{ 121222121121121 bbaabccbbcaacca=ΣΓ
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To solve this, extra labeling is introduced:
Every portion of a segment side s intersecting with a 
before the origin point is now s’, and after that point it is 
s’’ (in the same orientation, say clockwise).


Lemma 4: The new sequence (denoted       ) is a 
DS(4n,3)-sequence (actually, a DS(3n,3)-sequence..).


*
ΓΣ


a’ a’’a’’


O


b’







Advanced Topics in CG


12


19/12/2005 Advanced Topics in Computational Geometry 23


Proof:       has at most 4n (3n) distinct 
labels, and does not contain identical 
consecutive elements. It is left to show 
that ababa is not a subsequence of 


Aiding argument: if abab is a subsequence 
of       , then a and b intersect.
Proof: Let Q,R,S,T be points on      in that 
order, and of the segment A and B, such 
that                            . 


If any of these points are adjacent in    , there is 
an intersection.
Otherwise, disconnected components are 
created. 


*
ΓΣ


*
ΓΣ


*
ΓΣ


Γ


BTRASQ ∈∈ ,,
*
ΓΣ a


b
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If ababa is a subsequence of      , then a
and b would have to intersect twice!


Because of  the sequence abab, a and b
intersect with a former in the sequence. 
having the sequence baba denotes another 
intersection with b first, which is a 
contradiction.


Therefore,  Lemma 4 holds, and the 
complexity of a single cell is                .  


*
ΓΣ


))(( nnαθ
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Geometric Graphs


A geometric graph G(V,E) is a graph of 
straight line segments as edges between 
vertices.
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Convex Positions
Two Edges of a Geometric Graph are in Convex 
Position, if they can be a part of a convex 
quadrilateral.


What are the bounds on the number of edges e of a 
graph with n vertices in which no two edges are in 
convex position? (also called an improper graph).
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Lower Bound of e


The following construction shows that 
22 −≥ ne
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Upper bound of e
The bound of                   will be proven 
(seems familiar? But first some 
Lemmata):


Lemma 5: Let                     be four points 
appearing in this order on a closed 
convex curve γ. Let P,Q be two points 
inside γ. Then, among the four segments                         


two will be in convex position if no 
segment contains one of P,Q and its 
supporting line    contains both.


12 −≤ ne


lkji AAAA ,,,


lkji QAPAQAPA ,,, P
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Aj


Ai


Q


Al


l







Advanced Topics in CG


15


19/12/2005 Advanced Topics in Computational Geometry 29


Proof: Let                  be the line through 
these points, and     and    be the two half-
planes defined by it. Then, if      (    ) contains 
two disjoint segments, they are in convex 
position.
Other cases:


One of the points is on    (regarding the terms)
One half-plane contains more than two of the 
points.  


),( QPll =
+l −l


+l −l


jAkA


P Q


l
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An edge xy is right (left) of an edge xz if 
is obtained from      by a (counter) 


clockwise rotation around x by positive angle, 
less than π. xy is the rightmost (leftmost)
edge of x, if there is no edge to its right (left). 


xy xz


xy


x


xz


xw


yz
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Proving The Upper Bound on e


Let                          and a circle 
C that contains G. Each 
segment of G is extended from 
both sides to reach two points of 
C. Each point is labeled      , 
being on      .        
The Color of       is dark i if         
is an interior edge of     , and 
light if it is leftmost or rightmost.      


},..,,{ 21 nvvvV =


ijα
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jivv
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Some More Definitions
D(G) - The sequence of all points (cyclic).
An arc – a maximal sequence of points with the 
same color (light or dark).
PS(G) – The sequence of colors in D(G)


In this example:
Arcs:
PS(G)=(4,2,1,2,3,2)


))(,)()(,)()(,,( 41414124141223434241 αααααααααα
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Key Lemmata


Lemma 6: PS(G) is a DS(n,2)-cycle (the 
maximum length of a DS(n,2)-cycle is 2n-2, 
proved in a similar fashion to the maximum 
length of a DS(n,2)-sequence).


Lemma 7: An arc contains at most one dark 
point.
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Upper bound approved
Resulting from Lemmata 6 & 7:


|D(G)|=2e=#light+#dark
Every vertex has at most one rightmost (leftmost) 
arc, and so #light≤2n.
#dark ≤|PS(G)| (Lemma 7).
|PS(G)| ≤2n-2, and so:


e ≤2n-1
The proof will be complete after actually proving 
Lemmata 6 and 7.
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Proof of Lemma 6


It is obvious that there are no adjacent 
elements.
Assume that there are four points           
along the circle. Then (assuming general 
position), according to Lemma 5, this is a 
contradiction, since they would be in convex 
position.


4321
,,, bvavbvav αααα
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Proof of Lemma 7
Suppose that points           are both dark. 
Assume (w.l.o.g.) that  ac is to the right of ab. 
These edges are interiors of b,c, respectively.
Let bx (cy) be an edge to the right (left) of ba
(ca). Let         . 


acab αα ,


car ||r
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If           , then            are not on the same 
arc.
If           , then bx and ca are in convex 
position.  
Therefore,           (and similarly,          ), and 
then we get that bx and cy are in convex 
position! A contradiction.


Therefore, Lemma 6 & 7 hold, and as 
promised: Q.E.D.


1α∈x acab αα ,


2α∈x


3α∈x 4α∈y
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Dynamic point – Nearest 
Neighbor


Let                       be a set of points in the 
plane, whole locations are time-based 
functions: 


The functions are assumed to be polynomials 
of maximum degree s. 


},..,,{ 21 npppP =


)}(),({)( tytxtp iii =
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Nearest Neighbors
At time t, let P(t) denote the position of all 
points.               Is the nearest neighbor of


if                                               .


What is the maximum possible number of 
changes in the nearest neighbor for a given 
point?


)()( tPtpi ∈


)()( tPtp j ∈ ))(),(())(),((
,


tptptptpdist jk
jik


ji dist
≠


≤


)(tPi


)(tPj
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For every i≠j, define:


We get a polynomial of degree at most 2s.
The lower envelope of all         is the nearest 
neighbor, and its complexity is the number of 
changes.
Therefore, the nearest neighbor changes at 
most          times.  


222 ))()(())()(())(),(()( tytytxtxtptpdisttD jijijiij −+−==


)(tDij
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Summary


Davenport-Schinzel Sequences are 
sequences that doesn’t allow long 
alternations.
They can used to set bounds for known 
geometrical applications, such as lower 
envelopes, geometric graphs and nearest 
neighbors.
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Thank You!


Couldn’t find a picture of A. Schintzel, so I 
brought a picture of A Schnitzel:






