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1. Introduction. Main results
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3. Possible extensions
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Introduction. Main Results


a) Definition of Voronoi diagrams. 


b) Construction in 2-dim space. Higher dimensions. 


c) Parabolic representation. Voronoi diagrams and 
polytopes.


d) Delaunay triangulation. Connection with Voronoi 
diagrams.


4


Voronoi Diagram: Definition


For a given set of  sites
(points) on space          ,


Voronoi Diagram is the 
subdivision of the space 
into cells, such that each 
point of the space is 
assigned to the nearest 
site.


dE
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Voronoi Diagram: Definition (cont.)


Given                                 set of sites (points ) in       ,


to each         attach the cell as follows:


Here            - Euclidean distance in        .
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Parabolic Construction: Adding 
Dimension


We consider the construction in d dimensions with the time 
complexity .


1. For each point                                        


construct                                             ,


where                             .


2. Now space         is represented 


as a parabolic surface 
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Parabolic Construction: Adding 
Dimension (cont.)


3. For each site                consider the corresponding       


4. For each projected site construct the 
hyperplane         tangent to Q at point        .


5. The intersection of the n half spaces lying above
the hyperplanes defines a polytope in .


6.    The facets of the obtained polytope are projected 
down to        to get exactly the cells of the Voronoi 
Diagram.


iH
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Delaunay Triangulation: Definition


1. Connect all the pairs 
of sites whose Voronoi 
cells are adjacent.
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Delaunay Triangulation: Definition


1. Connect all the pairs 
of sites whose Voronoi 
cells are adjacent.


2. The resulting set of 
segments forms the 
Delaunay 
triangulation.
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Delaunay triangulation: Parabolic 
Construction


1. – 3. the same


4.  Construct L, the lower 
envelope of the convex 
hull of points                .


5.   The facets of L are 
projected down to get 
exactly the cells of the 
Delaunay 
triangulation.


QMi ∈
*
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Theoretical Part
a) Power of a point w.r.t. a sphere.


b) Point representation of spheres.


c) Polarity. Polar hyperplanes.


d) Orthogonal spheres.


e) The connection with Voronoi Diagram.
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Power of a Point w.r.t. a Sphere


Let        be  a sphere in            with center C and radius r.


For any point                   define its power w.r.t. as  


Here          is a vector (                     ).


Σ dE


dEX ∈ Σ


.)( 22 rXCX −=Σ


XC XCXC =
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Properties of
1.


2. 


3.  


4.   If D is any line that contains X; if M and N are the            


intersection points of D with the sphere      , then


)(⋅Σ
Σ∈=Σ XforX ,0)(


Σ>Σ outsideXforX ,0)(
Σ<Σ insideXforX ,0)(


Σ
XNXMX ⋅=Σ )(
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Properties of        (cont.)


• Proof: 
1. If D is a line that connecting X and C:


2. Otherwise:
The triangles XMM’ and XNN’ are similar.
So, 


)(⋅Σ
22)( rXCXNXMX −=⋅=Σ


=⋅=∠⋅⋅=⋅ XNXMMXNXNXMXNXM )cos(
( )( ) )(22 XrXCrXCrXC Σ=−=+−=


NXNXMM '' ∠=∠


XN
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XN
XM '
'
=


( )( )rXCrXCXNXM −+=⋅
22)0cos( rXCXNXM −=⋅⋅


22 rXCXNXM −=⋅
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Point Representation of Spheres


For each sphere          with center C and radius r, define


Pay attention, that pair                     describes sphere   completely.


Introduce the mapping                                           .


The mapping        takes a sphere        in         to the point .


We embed        as the hyperplane in             whose equation is                  .   


Σ
2222)()( rCrOCoriginO −=−=Σ=Σ=σ


),( σC Σ
1),()(: +∈=Σ dEC σφφ


φ Σ dE 1),( +∈ dEC σ


dE 1+dE 01 =+dx
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Point Representation of Spheres


Connection with paraboloid:


Consider a point                 as a sphere with center X and .


The correspondent        equals                           


and  the mapping is                                .


Thus, for any point in                 the correspondent 


lies on the paraboloid                                                      .


dEX ∈


),()( σφ XX =
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Polarity. Polar Hyperplanes


Useful notation:                   , but                   .


For each point                                         define a


unique (polar) hyperplane      as follows:    


Actually, there is a one-to-one correspondence between 


the points of          and the non-vertical hyperplanes in        .


1
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Polarity. Polar Hyperplanes (cont.)


Our case: for a sphere        take the corresponding


and  construct the polar hyperplane            
.   


or


Σ
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Recall…
1. For a point                as a sphere with center X and 


we have                and the correspondent                    
lies on the paraboloid


.


2. Then the polar hyperplane                is tangent to         at 
point .
Proof outline:
a) By definition we get that                           .
b) The hyperplane               intersects a paraboloid in only 
one point:


for any                            we get that necessarily                 .


dEX ∈
),()( σφ XX =2X=σ


}..:{ 22
11


1
dd


d qqqEqQ ++=∈= +
+


Connection with Paraboloid:
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Orthogonal Spheres-1


Two spheres       and        are orthogonal (               )


if their centers        and radii        satisfy


or, equivalently,                      .


The power of        w.r.t. a sphere         equals       .


Actually:                 iff the angle                       at any intersection 


point                            is a right angle (         ).


1Σ 2Σ 21 Σ⊥Σ


iC ir
2
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Orthogonal Spheres-2
Recalling that                                               we have


So, two spheres        and         are orthogonal if  


or, equivalently,                              .


It is said that                                     are conjugate.


Lemma 17.2.1 : The set of spheres in         that are orthogonal 


to a given sphere        is mapped by        to the polar hyper-


plane                             .


2Σ


1212212121 20)(
2
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Orthogonal Spheres-3


The sphere that passes through a given point               is


orthogonal to      as to a zero-radius sphere centered at     .


Corollary: The set of spheres in         that pass through 


a given point        is mapped by        to the polar hyper-


plane                          , tangent to the paraboloid Q at .


dEX ∈
X X


dE
X φ


)()( * XofX φφ )(Xφ
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Orthogonal Spheres-4


Lemma (location of  a polar hyperplane) :


1. The intersection of with Q is the image under    
of the set of spheres with radius    , that are orthogonal 
to      , namely, itself.


2. Let       be a sphere in       . Then, the points of       ,


lifted on the paraboloid Q  in           , belong to a unique 


hyperplane that intersects Q exactly at these points. 


This hyperplane  is the polar hyperplane             of .*)(Σφ


Σ dE


)(Σφ


Σ
1+dE


*)(Σφ φ


Σ Σ
0
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Orthogonal Spheres-5


Lemma 17.2.3 The power of X with respect to a sphere


equals the signed vertical distance from the point 


to the hyperplane           .


Proof: Construct a sphere       ,  centered at X and                   . 


By definition, its radius satisfies                         . 


Now,                and               are placed on the same vertical line, that 


passes through X  and intersects              . This is since                     .


The              - coordinates of                and                are 


,  respectively.


The difference between these coordinates is the signed vertical distance.


*)(Σφ


Σ⊥ΣX


)(Xφ
Σ


XΣ
)(2 Xr


X
Σ=Σ
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1+dx )( XΣφ )(Xφ


)()0( 2222 XXrXandX
XX Σ−=−=Σ Σ
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Orthogonal Spheres-6


Lemma 17.2.4 Let X and       be a point and a sphere in     . 


Then,


1.


2. 


3.


Here                         define the halfspaces lying above and 
below  the hyperplane      , respectively. 


−− ∈Σ⇔Σ∈⇔Σ∈ ** )()()()()int( XXX φφφφ


dE


** )()()()( XXX φφφφ ∈Σ⇔Σ∈⇔Σ∈


Σ


++ ∈Σ⇔Σ∈⇔Σ∈ ** )()()()()( XXextX φφφφ


−+ HandH
H
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Radical Hyperplane


Let        and          be two spheres in        . 
The radical hyperplane          satisfies 


.


I.e.,         is the set of points of         that have the same
power with respect to both spheres.


Observation 1: The spheres that are orthogonal to and       are
mapped by      to the intersection of                          , which
can be projected onto        to          .


Think about  spheres, that pass through two given points….


φ
dE
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Voronoi Diagrams


Let                                      be a set of points in  . 


Embed the space          into            as the hyperplane      . 


As before, construct the paraboloid Q, specify the points 


and the corresponding polar hyperplanes      , 


which are tangent to Q at points  


Let              denote the polytope that is the intersection of the


n halfspaces, lying above the hyperplanes .


},...,{ 1 nMMM = dE


)(MV


1+dEdE 01 =+dx


QMi ∈)(φ *)( iMφ
).( iMφ


*)( iMφ
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Voronoi Diagrams-Intuition
- sites in .


1. Each cell               is the set of  centers of 
spheres, such that the boundary of such a sphere
contains       and its interior does not contain 
another site                 .


2. For each such sphere holds ,
but                                           


lies above  the hyperplanes (see Lemma 17.2.4(1-2)).


3. Therefore, the Voronoi diagram can be represented 
as a polytope in          .


dE},...,{ 1 nMMM =


Σ


)( iMV


1+dE


01 =+dx


iM


*)()( iMφφ ∈Σ


jiM j ≠,


jiM j ≠+∈Σ ,)()( *φφ
jiM j ≠,)( *φ
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Voronoi Diagrams-2


Theorem 17.2.5. The Voronoi diagram of M,                , is the 


cell complex of dimension     in       , whose faces are 


obtained by projecting onto       the proper faces of the


Voronoi polytope              . 


Proof:  The boundary of is a pure cell complex of  dimension     , 


hence so is                   . Let       be a point on a facet of              , that is 


contained in             . This point      is the image under   of  some sphere        


that passes through         and  whose interior contains no other point of       .


There cannot be a site in       closer to the center of         than        . 


That is, A, as the center of         , belongs to the cell                of the Voronoi 


diagram.  A is the projection of        onto .


dE
dE


)(MV


AΣφ*)( iMφ


iM


)( iMV


d
)(MVor


)(MV d
)(MVor A )(MV
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AΣ iM
M


M


AΣ
A dE
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Properties of Voronoi Diagrams 


• - general position assumption: no           points in


lie on the boundary of a sphere. If it is satisfied, then                is a simple 


(d+1) – dimensional polytope, with each vertex incident to d+1 hyperplanes. 


Also,                 is a complex whose vertices are all equidistant from some d+1 


points in M and closer to these points than to any other point in M.  


• The problem of computing the Voronoi diagram of n points in            is  


reduced to the computation of the intersection of n half-spaces of            .


Corollary 17.2.6: The complexity (namely, the number of faces) of 
the Voronoi diagram of n points in          is                  . The 
diagram may be computed in time                                 , which is 
optimal in the worst case.


2L


dE
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1+dE
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Delaunay Complexes


Let                                    be a set of points in    . 
Embed the space         into           as the hyperplane        . 


As before, construct the paraboloid Q and specify the points                      .


Let               be the convex hull of the points              and let             
be the lower envelope  of             .


The projection of             onto         form a complex, whose vertices are  
exactly the points                  . The domain of this complex is the projection
of the convex hull of                               , hence, it is a convex hull of                 .


This complex is called the Delaunay complex - .


dE
},...,{ 1 nMMM = dE


1+dE 01 =+dx


QMi ∈)(φ


)(MD


)(),...,( 1 nMM φφ


)(MD
)(ML


nMM ,...,1


)(ML dE


)(),...,( 1 nMM φφ


nMM ,...,1


)(MDel


32


Delaunay. Connection with Voronoi
1. For                       the k-faces (k-dimensional faces) of               are in a


one-to-one correspondence  with the k- faces of           .


2. There exists a one-to-one correspondence  between the vertices of            
and the faces of            : it maps the facet of         , containing              , 
to the point            . More generally, the k-faces of              are in one-
to-one correspondence with the (d-k) - faces of            . Also, the 
bijection reverses inclusion relationships.


3. In addition, the k-faces of               are in a one-to-one correspondence
with the k - faces of                .


)(ML


)(MV
)(ML


)(MV
*)( iMφ)(MV


)(MV
)(MVor


)(MDeldk ,...,0=
)(ML


)( iMφ
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Delaunay. Connection with Voronoi


Therefore, we have  the bijection between the  k-faces of                 and 
the (d-k) - faces of                  . 


The Delaunay complex is therefore dual to the Voronoi diagram. The 
above duality maps a face of Vor(M), formed by the points, equidistant 
from m sites in M, to the face of Del(M), that is the convex hull of these 
sites.


)(MVor
)(MDel
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Delaunay. Connection with Voronoi


Theorem 17.3.1 The Delaunay complex of points                                 is a 
complex dual to the Voronoi diagram. Its faces are obtained by 
projecting the faces of the lower envelope of the convex hull of the 
points                             , obtained by lifting the    onto the 
paraboloid Q.


Therefore, the computation of the Delaunay complex in           is reduced 
to the computation of the convex hull of n points in .


Corollary: The Delaunay complex of n points  in can be computed 
in time                               , which is optimal in the worst case.


)(),...,( 1 nMM φφ


d
n EMM ∈,...,1


dE


1+dE


d
n EMM ∈,...,1


 )log( 2/dnnnO +


dE
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Delaunay Triangulations


Under          general assumption,              is a simplicial polytope and 
is a simplicial complex which is called then the Delaunay 


Triangulation.


If the assumption is not satisfied, then some  d-face of                   will be 
formed by more than d+1 points and, hence, will not be a simplex. 


2L )(ML
)(MDel


)(MDel
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Delaunay . Properties-1


Theorem 17.3.3 :  Let be a set of points                            . Then, any
d- face in the Delaunay complex can be circumscribed by a sphere that
passes through all its vertices, and whose interior contains no point in     .


Proof:  Assume        general condition. Pick a d-face T of the Delaunay complex. 
Then, T is the convex hull                                  of d+1 cospherical points                       . 
By the bijection between             and                 , the convex hull                                            


is a d-face of                 .


The points                                 lie on paraboloid Q and also belong to           , where        
circumscribes                        . In turn, by the orthogonality argument,           
belongs to the intersection of                                  , and, hence, is a vertex of              .


Again, by the bijection between                and             , the point C (center of      )
is the vertex of                   , incident to the cells that correspond to the sites 


,  therefore, the interior of        cannot contain any other points in M. 


M d
n EMM ∈,...,1


Σ


dii MM ,...,
0


*)(Σφ
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2L
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0 dii MMconv
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0
)(ML )(MDel
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0 )(Σφ
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0 dii MM φφ )(MV


)(MV )(MVor Σ
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Delaunay . Properties-2


Theorem 17.3.4 :  Let be a set of points                               and let       
be a subset of k points in       .   


Then, the convex hull of           is a face of the Delaunay complex if and 
only if there exists a (d-1)- sphere passing through                         and   
such that  no point in         belongs to its interior.


Corollary: Any Delaunay triangulation of a set 
is such that the sphere circumscribed to any d- simplex in the 
triangulation  contains no points of        in its interior. Conversely, 
any triangulation satisfying this property is a Delaunay triangulation.        


M d
n EMM ∈,...,1


M


M


d
n EMMM ∈= },...,{ 1


},...,{~
0 kiik MMM =


kM
~


kii MM ,...,
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Higher-order Voronoi diagrams


Given                                     set of sites (points ) in       .
To each subset                      of size k attach the cell


In other words, it is the set of points in        , that are closer 
to all the sites in         than to any other site in           . 


The total complexity of the Voronoi diagrams of all orders k,
,  is                 .


Note: some of cells now can be empty…


:},...,{ 1 nMMM = dE
MMk ⊂
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Example: Voronoi Diagram of Order 2






