
10 JOSEPH (YOSSI) GIL AND RON KIMMELIn other words, asymptotically computing the opening �lter is not moreexpensive than computing just the max-�lter.6. ConclusionsWe presented improvements of the Gil-Werman algorithm for running min andmax �lters. The average computational complexity was shown to be 1:25+o(1)per element for a randomized algorithm, without any assumption on the dis-tribution of the data, and 1:5 + o(1) for a deterministic algorithm. These im-provements, which come close to the best known lower bound for the problem,were enabled by careful examination of the redundancies in the preprocessingand the merge steps of the Gil-Werman algorithm.We continued to study a related problem, namely the computation of themin and the max �lter together. We found that for independently distributedinput elements, it is possible to compute the minimumand the maximum�lterstogether in 2 + o(1) comparisons per data point. This is less than 2:5 + o(1)comparisons required by applying twice the best max �lter algorithm.The opening and closing �lters which are similar to the problem of comput-ing the min- and max-�lters together, can be computed much more e�ciently.We found algorithms for these �lters using 1:5 + o(1) comparisons determinis-tically, or 1:25 + o(1) comparisons randomly, for worst case inputs.All algorithms are readily extendible to higher dimensions.AcknowledgementsStimulating discussions of both authors with Reuven Bar-Yehuda of the Tech-nion during the writeup of this paper are gratefully acknowledged. The secondauthor is grateful to Renato Keshet from HP Labs. Israel, for intriguing dis-cussions on e�cient morphological operators.References1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithmms. MITPress, Cambridge, Massachusetts, 1990.2. D. Z. Gevorkian, J. T. Astola, and S. M. Atourian. Improving gil-werman algorithmfor running min and max �lters. IEEE Transactions on Pattern Analysis and MachineIntelligence, 19(5):526{529, May 1997.3. J. Y. Gil and Z. Gutterman. Compile time symbolic derivation with C++ templates.In Proceedings of the fourth Conference on Object-Oriented Technologies and Systems(COOTS'98), Santa Fe, New Mexico, May 1998. USENIX.4. J. Y. Gil and R. Kimmel. Further improvements to the gil-werman's min and max �lters.Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000.5. J. Y. Gil and M. Werman. Computing 2-D min, median, and max �lters. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 15(5):504{507, May 1993.6. I. Pitas:1989:FAR. Fast algoirthsm for running ordering and max/min recalculations.IEEE Transactions on Circuits and Systems, CAS-36(6):795{804, June 1989.7. J. Serra. Image analysis and mathematical morphology. Academic Press, New York,1982.



EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 9Stated di�erently, we have that asymptotically for large p, and for i.i.d. onecomparison per element is required to compute each of the minimum and themaximum �lters, provided they are computed together. We refer to [4] forfurther details like performance on natural images.5. An E�cient Algorithm for the Opening and Closing FiltersIn this section we describe how the opening (and closing) �lter can be computedmore e�ciently than a mere sequential application of the Max-Filter and thenthe Min-Filter.To understand the improvement, consider the problem of computing thepre�x-minimum, in the case that the input of length p is given as a sequenceof L monotonically increasing or decreasing segments. Suppose that the pre�x-minimum has been computed up to a point i, i.e., that the value of mi =min(x0; : : : ; xi) is known, and that xi+1; : : : ; xi+k is a monotonically decreasingsegment of the input of length k. Then, in order to compute mi+1; : : : ;mi+k,all that is required is to �nd the smallest ` such that m` < mi. This ` can beeasily found using a binary search in dlg ke comparisons. We then havemi+j = � mi if j < `xi+j if ` � j � k.If on the other hand xi+1; : : : ; xi+k is a monotonically increasing sequence, allthat is required in order to computemi+1; : : : ;mi+k is to compare xi+1 and mi.In this case we have that mi+1 = mi+2 = � � � = mj+k = min(xi+1;mi). UsingLagrange multipliers we obtain that the number of comparisons is boundedabove by Lllg pLm: (13)Recall now the improved merge step described in Section 3.1. Each itera-tion of the binary search algorithm generates about half of the outputs of themax-�lter that remained to be computed. Note that all values generated inone such iteration are consecutive in the output. Further, since these valuesare obtained from computing either Ri or Si, they are either monotonicallyincreasing or monotonically decreasing. Thus an application of the modi�edmax �lter algorithm also partitions each stretch of p outputs into at most dlg pemonotonic segments.The improved opening �lter algorithm is thus obtained by �rst applying themodi�ed Gil-Werman max-�lter algorithm, while preserving this partitioningof the output. Then, the results are fed into the modi�ed Gil-Werman min-�lter algorithm. The partitioning information is then used for an e�cientimplementation of the preprocessing stage in which pre�x- and su�x-minimaare computed. It follows from (13) that the preprocessing stage can be donein at most O(lg2 p) comparisons. Since the merge step can be done in O(lgp)comparisons, we obtain:Theorem 4 There exists an algorithm which computes the opening �lter, achiev-ing Co1 = C1 +O( lg2 pp ).



8 JOSEPH (YOSSI) GIL AND RON KIMMELAdding (9) and (10) we have that the expected total number of comparisonsin our solution to Prefix Max-Min is at most3q2 + ln q2 � 2; (11)and the expected amortized number of comparisons per element is 1:5+ ln q2q �2=q. It should be noted that one cannot hope to improve much on this result.The reason is that solving Prefix Max-Min also yields the maximumand theminimumof the whole input. However, computing both these values cannot bedone in less than d3p=2e comparisons [1, page 187] even for randomized inputs.4.2. Computing the Min-Max FilterWe now employ algorithm incorporate-next-input-pair in the pre-processingstage of the modi�ed Gil-Werman algorithm adapted for �nding both the min-imum and the maximum �lters. Speci�cally, we are concerned in this stage in�nding an e�cient algorithm to the Prefix-Suffix Max-Min problem, de-�ned as computing the maximum and the minimum of all pre�xes and allsu�xes of an array of size p + 1. Such an e�cient algorithm is obtainedby partitioning the input array into to two halves. In the lower half whichcomprises q = b(p+ 1)=2c = p=2 + (p mod 2)=2 elements we repetitively ap-ply incorporate-next-input-pair to compute the pre�x maxima and the pre�xminima in this half. A similar computation is carried out in the upper halfwith p� q+1 = d(p+ 1)=2e elements of the input array, except that algorithmincorporate-next-input-pair is mirrored to compute the su�x minima and thesu�x maxima in this half. The total expected number of comparisons so farcan be computed from (11):3q2 + 3(p+1�q)2 + ln q2 + ln(p+1�q)2 � 4 � 3p2 + lnp� 2:5: (12)Once this computation is done, we carry on as before to produce the rest ofthe required output. In two more comparisons we �nd out where the maximumand the minimum of the whole array occur. If the maximum occurs in thelower (resp. upper) half then it remains to compute the su�x (resp. pre�x)maxima from the mid-point down-to (resp. up-to) the location of the maximum.From (4) we have that this computation costs another 0.25 comparison perinput element. A similar completion stage must be carried out for the minimumpre�xes or su�xes, using another 0.25 amortized comparisons. All that remainsis the merge step, which has to be carried out twice, once for the minimumandonce for the maximum. The number of comparisons for the merge is at most2 lgp. Combining this with (12) we obtain:Theorem 3 There exists an algorithm for the 1D Min-Max Filter prob-lem, that at the worst case makes twice the number of comparisons as thatof Theorem 2. For independently distributed inputs, the amortized number ofcomparisons that the algorithm makes isCm1 < 2 + 2lnp+ lg pp = 2 + (2 + ln22 ) lg pp � 2 + 2:3466 lgpp :



EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 7b) Changes to both the maximum and the minimum: xi+1 �Mi and xi+2 � mi.Again, no more comparisons need to be done in this case, and the algorithmoutputs Mi+2 =Mi+1 = xi+1, mi+1 = mi, and mi+2 = xi+2.c) Change to the maximum: xi+1 � Mi and xi+2 � mi. The algorithm out-puts Mi+2 = Mi+1 = xi+1 and mi+2 = mi+1 = mi. without additionalcomparisons.d) Possible change to the minimum: xi+1 � Mi and xi+2 � mi. This is theonly case in which an additional comparison is required: The algorithm �rstoutputs Mi+2 = Mi+1 = Mi, mi+2 = xi+2 and then determines mi+1 bycomparing xi+1 with Mi. If xi+1 < mi then mi+1 = xi+1, otherwise, mi+1 =mi.Thus, in the worst case, the algorithm makes four comparisons for eachpair xi+1 and xi+2, where i > 0 is odd, which does not improve on the twocomparisons for element by the trivial algorithm. The fourth comparison how-ever is needed only in case xi+2 < mi = min0�j�i(xi); (5)or in the dual case, namely when the �rst comparison yields xi+1 � xi+2, andxi+2 < Mi = max0�j�i(xi): (6)With i.i.d. the probability of (5) or (6) holding is 1=(i + 3), for all i > 0.Let u = bq=2c � 1 = (q � (q mod 2)) � 1. Then in the last application of theabove algorithm we deal with the pair x2u and x2u+1. In total, Fq, the expected(with regard to input distribution) number of times the fourth comparison ismade is given byFq = 14 + 16 + 18 + � � �+ 12u+ 2 = (Hu+1 � 1)=2; (7)where Hu is the uth harmonic number. It is well known thatlimu!1Hu = lnu+ 
 and lnu+ 
 � Hu � lnu+ 1; (8)where 
 � 0:577216 is Euler's constant (also called Mascheroni's constant).Combining (7) and (8) we haveFq = ln(u+1)2 + 
2 � 0:5 + o(1)� ln(u+1)2 � 0:211392+ o(1) � ln(u+1)2 � ln q�12 : (9)Other than these, in solving Prefix Max-Min, there are u applications ofincorporate-next-input-pair, in which 3u comparisons are made, one compari-son in which x0 is compared with x1 to determine M0, M1, m0 and m1, and�nally, and only if q is odd, two comparisons to determine Mq�1 and mq�1.The number of these comparisons is1 + 3u+ 2(q mod 2) = 3q2 � 2 + q mod 22 : (10)



6 JOSEPH (YOSSI) GIL AND RON KIMMELThe interested reader is referred to e.g., [3] and the references thereof forexamples of applying the template mechanism for non-trivial compile-time com-putation and code generation that are useful for implementation of logical casesinvolved in the proposed algorithms.4. E�cient Algorithm for Computing the Max and Min TogetherLet us deal with the 1D Max-Min Filter problem, and show how the minand max �lters together can be computed more e�ciently than an independentcomputation of both. We start again from the Gil-Werman algorithm. The gaincomes from partitioning the input signal into pairs of consecutive elements, andcomparing the values in each pair. The greater value in each pair carries onthe maximum computation while the lesser one carries one to the minimumcomputation.4.1. The Prefix Max-Min ProblemLet us �rst consider the following problem,Prefix Max-Min: Given a sequence x0; : : : ; xq�1, compute Mk = max(x0; : : : ; xk),and mk = min(x0; : : : ; xk), for k = 0; : : : ; q � 1.The straightforward solution for Prefix Max-Min uses a total of 2(q�2)+1comparisons. Analyzing this problem from an information theoretic point ofview we �nd that for all i > 2, there are three cases for element xi. It eitherincreases the running pre�x maximum, or it decreases the running pre�x min-imum, or makes no changes to those. There are only two possible cases for x1,while there is exactly one case for x0. Thus, we obtain 1+(q�2) lg 3 � 1:58496q,as an information theoretic lower bound for the number of comparisons for thisproblem.We do not know of a general way of bringing the amortized number ofcomparisons from 2� o(1) closer to the lg 3 lower bound, or proving a strongerlower bound. However, if it is known that the distribution of input elements isindependent, we can even do better than the lower bound! This improvement iscarried out as follows. Suppose that Mi and mi were already computed. Then,to compute Mi+1, Mi+2, mi+1 and mi+2, we apply the following incorporate-next-input-pair algorithm.Algorithm incorporate-next-input-pair: Extend the result of a solution to PrefixMax-Min to include input elements xi+1 and xi+2, using the four following compar-isons:1. Compare xi+1 and xi+2. Assume, without loss of generality, that xi+1 � xi+2.2. Compare Mi with xi+1 = max(xi+1; xi+2).3. Compare mi with xi+2 = min(xi+1; xi+2).4. At this stage, the algorithm has determined both Mi+2 and mi+2. Speci�cally,Mi+2 = max(xi+1;Mi) and mi+2 = min(xi+2;mi). There are four cases toconsider in computing mi+1 and Mi+1.a) No changes: xi+1 � Mi and xi+2 � mi. No more comparisons need tobe done in this case, and the algorithm outputs Mi+2 = Mi+1 = Mi andmi+2 =mi+1 = mi.



EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 5rq�1 = rq�2 = : : : = r1 = rq, and continues to compute sq ; : : : ; sp�1. Asimilar situation occurs if rq � sq�1, in which case it is unnecessary to com-pute sq; : : : ; sp�1. In both cases, the number of comparisons that remain to bedone is b(p + 1)=2c. The total number of comparisons in the more e�cient algo-rithm for Prefix-Suffix Max is (p� 1) + 1+ �p+12 � = 1:5p+ pmod22 . Notingthat each batch requires (on amortization) solving one instance of Prefix-Suffix Max, we can combine our results so far to obtain:Theorem 1 There exists a deterministic algorithm for the 1D Max-Filterproblem, achieving C1 = 1:5 + dlg p�1ep + pmod22p � 1:5 + lg pp .Can we improve on this result? An information theoretical lower bound forthe number of comparisons required to solve Prefix-Suffix Max, is p+lg p�O(1). This bound is derived as follows. A compact output of an algorithm forthe problem uses p+ lg p�O(1) bits comprised as follows:1. lg p bits to designate the location of the overall maximum (for simplicity,we assume that p is a power of 2),2. one bit for each location prior to the maximum, designating whether thecorresponding element changes the pre�x maxima, and3. one bit for each location following to the maximum, designating whetherthe corresponding element changes the su�x maxima.Moreover, there are distinct inputs which produce all the bit combinations ofthis compact representation. Thus, in order to make the distinction betweenthese inputs, the algorithm is forced to make at least p+lg p�O(1) comparisons.Although we are unable to meet this lower bound, we can come close to itin an important special cases. Suppose that in an input to the Prefix-SuffixMax problem, the overall maximum is located at a random location ` in theinput sequence. (This does not necessarily mean that the input is uniformly andindependently distributed). Then, once the comparison between sq�1 and rqis made, all that remains is to proceed to compute outputs sq ; sq+1; : : : ; s`�1in the case that sq�1 < rq, or rq�1; rq�2; : : : ; r`+1 otherwise. The expectednumber of comparisons in this completion stage is1p+1 �Pq�1i=0 i+Pp+1�qi=0 i� = p2�(pmod2)4(p+1) � p4 � 14 + 14(p+1) � p4 : (4)In general, it cannot be assumed that an arbitrary input to the Prefix-Suffix Max problem will have its maximum at a random location. However,in using this procedure as part of an algorithm for solving the 1D Max-Filterproblem, we can achieve this e�ect by choosing at random the starting point forsegmentation. Thus, the segments will be centered at positions indexed �; � +p; �+2p; : : :, where � is an integer selected at random in the range [0; : : : ; p�1].Such a random selection does not degrade the e�ciency due to the assumptionthat p� n. We have thus obtained:Theorem 2 There exists a randomized algorithm for the 1D Max-Filterproblem, achieving E(C1) � 1:25 + dlg p�1ep + � 1:25 + lg pp .



4 JOSEPH (YOSSI) GIL AND RON KIMMELwe have that the preprocessing step requires two comparison operations perelement, while the merge step requires one more comparison.3. The Improved Algorithms For the Max-FilterLet us show how the two steps of the Gil-Werman algorithm can be carried outmore e�ciently.3.1. An efficient merge procedureWe �rst show how to improve the merge step, by reducing the number ofcomparisons from 1 to lg p=p+ o(1). In this step, we computemax(Rk; Sp�k�1); (3)for k = 1; : : : ; p � 2. Observing that Rp�2 � Rp�1 � : : : � R1; and Sp�2 �Sp�1 � : : : � S1, we can eliminate most of these comparisons. Suppose thatfor some speci�c i it was found that Ri � Sp�i�1, then for all k > i, we havethat Rk � Ri � Sp�i�1 � Sp�k�1, and therefore there is no need to do thecomparisons of (3) for all k > i. Similarly, if it is determined that Ri � Sp�i�1,then we do not need to do the comparisons of (3) for all k < i.The optimized procedure for the merge step is therefore a binary search.We start by setting i = d(p� 2)=2e, and then continue with the remaining halfof the problem size. The number of comparisons is thus reduced from p � 2to O(lgp). In fact, it can be easily checked that the number of comparisonsin the binary search of the merge step is exactly dlg p� 1e. The amortizedcontribution of the improved merge step to the complexity is dlg p�1ep .3.2. An efficient preprocessing computationLet us now deal with the preprocessing step of the Gil-Werman algorithm.Gevorkian, Astola and Atourian [2] observed that preprocessing computationcan be made more e�cient for randomized input, using the fact that in the Gil-Werman algorithm, the su�xes Sk of one segment overlap with the pre�xes Rkof the following segment. Speci�cally, the problem that needs to be solved isPrefix-Suffix Max: Given a sequence x0; : : : ; xp, compute all of its pre�x max-ima: sk = max(x0; : : : ; xk); for k = 0; : : : ; p � 1, and all its su�x maxima: rk =max(xk; : : : ; xp); for k = 1; : : : ; p.Note that this problem does not call for computing the overall maximum ofthe input sp = r0 = max(x0; : : : ; xp).The original Gil-Werman algorithm makes 2(p� 2) comparisons in solvingthe Prefix-Suffix Max problem. We propose the following e�cient solutionfor this problem. Let q = b(p + 1)=2c = p=2 + (p mod 2)=2. In the �rst partof the modi�ed implementation, compute all sk, for k = 0; : : : ; q � 1 and rkfor k = q; : : : ; p. This is carried out using p � 1 comparisons.The second part of the modi�ed implementation of the preprocessing stagebegins in comparing sq�1 and rq. If rq � sq�1, then we know that the over-all maximum falls is one of xq; : : : ; xp. Therefore, it is unnecessary to fur-ther compute the value of rq�1; rq�2; : : : ; r1. Instead, the algorithm outputs



EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 3the algorithm makes such an improvement.The problem posed by the opening �lter is similar to 1D Max-Min-Filter,since in both it is required to compute both a Min-Filter and a Max-Filter.However, the fact that in the opening �lter this �lters are computed sequen-tially, where the results of one �lter are fed to the other, makes it mush easier.Let Co1 be the number of comparisons per input sample for computing theopening �lter. Then, we show that Co1 � C1 + O( lg2 pp ). Clearly, the sameresult holds for the closing �lter.As described in [5], a 1D max �lter can be extended to square (or rectan-gular) window 2D max �lter. This is done by �rst applying the 1D �lter alongthe rows, and then feeding the result to a 1D �lter running along the columns.Let C2 be the number of comparison operations required per input point forcomputing the 2D max �lter. We have that C2 = 2C1, and more generally,Cd = dC1, where Cd is de�ned accordingly for the d-dimensional �lter. Wesimilarly have that Cmd = dCm1 and Cod = dCo1.Outline. The remainder of this paper is organized as follows. Section 2 reviewsthe Gil-Werman algorithm. The deterministic and randomized algorithms im-proving it are described in Section 3. In Section 4 we give our algorithm forthe 1D Max-Min Filter problem. The e�cient algorithm for computingthe opening (and closing) �lter is described in Section 5, and conclude withSection 6.2. The Gil-Werman algorithmThe Gil-Werman algorithm is based on a partitioning of the input signal tooverlapping segments of size 2p � 1, centered at xp�1; x2p�1; x3p�1; : : :. Let jbe the index of an element at the center of a certain segment. The maxima ofthe p windows which include xj are computed in one batch of the Gil-Wermanalgorithm as follows: First, de�ne Rk and Sk for k = 0; : : : ; p� 1:Rk = max(xj ; xj�1; : : : ; xj�k); and Sk = max(xj ; xj+1; : : : ; xj+k): (1)Now, the Rk's and the Sk's can be merged together to compute the max �lter:max(xj�k; : : : ; x0; : : : ; xj+p�k�1) = max(Rk; Sp�k�1); (2)for k = 1; : : : ; p � 2. In addition, we have max(xj�p�1; : : : ; xj) = Rp�1 andmax(x0; : : : ; xj+p�1) = Sp�1.There are two steps to the Gil-Werman algorithm:Preprocessing Computing all Rk and Sk from their de�nition (1) which isdone in 2(p� 1) comparisons.Merge Merging the Rk and Sk together using (2), for which another p � 2comparisons are required.Since this procedure computes the maximum of p windows in total, we havethat the amortized number of comparisons per window is 3� 4=p. For large p,



2 JOSEPH (YOSSI) GIL AND RON KIMMEL1D Max-Filter: Given a sequence x0; : : : ; xn�1, and an integer p > 1, computeyi = max0�j<p xi+j; for i = 0; : : : ; n � p.The 1D Min-Filter problem is similarly de�ned.As usual in �ltering, we assume that p � n. As an e�ciency measure ofalgorithms for this problem we use C1, de�ned as the number of comparisonoperations per sample (or output) point as n goes to in�nity.Since any max �lter computation must examine every input element atleast once, we have that (C1 � 1. A trivial algorithm for the 1D Max-Filterproblem gives C1 = p�1. On the other hand, since it is impossible to computethe �lter without examining each input point at least once, there is a trivialinformation theoretical lower bound for the problem of C1 � 1.Two non-trivial algorithms for the problem were published in [6]: The �rstachieves C1 = O(lgp)1 and the second C1 = 3+ o(1) for uniformly distributedindependent input signals. The worst case performance for both of these algo-rithms depends on the window size.Gil and Werman, in their work on computing the median �lter [5], gavethe �rst algorithm for computing the max �lter whose performance does notdepend on p. Their algorithm is more general since it can compute any semi-ring operation, �, �lter of size p while using 3�4=p applications of � per samplepoint. Since max is a semi-ring operation, their result gives C1 = 3� 4=p.Gevorkian, Astola and Atourian [2] observed that in the special case whenthe semi-ring operation is max, the Gil-Werman algorithm can be improved,assuming locally uniform distributed signals, to achieve E(C1) = 2:5 � 3:5=p.The expectation here is respectively to input distribution. In the worst inputcase, the performance of the algorithm of [2] is the same as the Gil-Wermanalgorithm. Here we describe an algorithm achieving further reduction, C1 =1:5+ lg pp �O(1=p). This improvement is deterministic and does not make anyassumptions on the input distribution.Further, we also describe a randomized algorithm which comes even closerto the lower bound in achieving E(C1) = 1:25+ lg pp �O(1=p), where the expec-tation is w.r.t. random selections made by the algorithm. I.e., this expectedperformance is obtained for any input.The optimal L-�lter, the morphological edge detector, and other applica-tions call for the simultaneous computation of the min and max in each window,as summarized in the following problem de�nition.1D Max-Min-Filter: Given a sequence x0; : : : ; xn�1, and an integer p > 1, computeyi = max0�j<p xi+j and zi = min0�j<p xi+j for i = 0; : : : ; n� p.We give an algorithm that solves the 1D Max-Min-Filter problem fasterthan solving the 1D Max-Filter and the 1D Min-Filter. Let Cm1 be thenumber of comparisons per input sample for solving 1D Max-Min-Filter.Then the algorithm achieves E(Cm1 ) � 2 + 2:3466 lgpp , for the special case ofindependent input distribution, i.e., the expectation is with regard to inputdistribution. In the worst case this algorithm does not improve on the inde-pendent computation of the Min- and Max �lters. However, for natural images,1 We use lg(�) to denote log2(�)



EFFICIENT DILATION, EROSION, OPENING ANDCLOSING ALGORITHMSJOSEPH (YOSSI) GIL and RON KIMMELDepartment of Computer ScienceTechnion{Israel Institute of TechnologyTechnion City, Haifa 32000, IsraelAbstract. We propose an e�cient algorithm for computing the dilation and erosion �lters.For a p-element sliding window, our algorithm computes the 1D �lter using 1:5 + o(1) com-parisons per sample point. Our algorithm constitutes improvements over the best previouslyknown such algorithm by Gil and Werman [5]. The previous improvement on [5] o�ered byGevorkian, Astola and Atourian [2] was in better expected performance for random signals.Our result improves on [5] result without assuming any distribution of the input. Further,a randomized version of our algorithm gives an expected number of 1:25+ o(1) comparisonsper sample point, for any input distribution. We deal with the problem of computing thedilation and the erosion �lters simultaneously, and again improve the Gil-Werman algorithmin this case for independently distributed inputs. We then turn to the opening �lter, de�nedas the application of the min �lter to the max �lter, and give an e�cient algorithm for itscomputation. Speci�cally, this algorithm is only slightly slower than the computation ofjust the max �lter. The improved algorithms are readily generalized to two dimensions forrectangular structuring element, as well as to any higher �nite dimension for a hyper-boxstructuring element, with the number of comparisons per window remaining constant.Key words: Max-Filter, Min-Filter, Running Window1. IntroductionIn signal and image analysis one often encounters the problem of min (or max)computation in a window with p elements in the one-dimensional (1D) case,or p � p elements in the 2D case. In mathematical morphology [7], the resultof such an operator is referred to as the erosion (or dilation) of the signal witha structuring element given by a 
at ramp of width p.An important application is the morphological edge detector, obtained byapplying both the min �lter and the max �lter, and then subtracting the re-sults. Denoising is yet another example of using the min and max �lters.The opening (respectively closing) �lter is obtained by feeding the results ofthe max (resp. min) �lter to the min (resp. max) �lter. In image processingthe opening �lter eliminates small dark regions, while closing eliminates smallwhite regions. In both �lters, the size of the window determines the size ofthe regions that can be removed. Some other applications of the min and max�lters in pattern analysis, adaptive signal processing and morphological analy-sis are mentioned in [2]. These applications call our interest to the problem ofe�ciently computing the min and max �lters for a wide range of p.The one-dimensional version of the problem can be formulated as follows:


