10 JOSEPH (YOSSI) GIL AND RON KIMMEL

In other words, asymptotically computing the opening filter is not more
expensive than computing just the max-filter.

6. Conclusions

We presented improvements of the Gil-Werman algorithm for running min and
max filters. The average computational complexity was shown to be 1.25+40(1)
per element for a randomized algorithm, without any assumption on the dis-
tribution of the data, and 1.5+ o(1) for a deterministic algorithm. These im-
provements, which come close to the best known lower bound for the problem,
were enabled by careful examination of the redundancies in the preprocessing
and the merge steps of the Gil-Werman algorithm.

We continued to study a related problem, namely the computation of the
min and the max filter together. We found that for independently distributed
input elements, it is possible to compute the minimum and the maximum filters
together in 2 + o(1) comparisons per data point. This is less than 2.5+ o(1)
comparisons required by applying twice the best max filter algorithm.

The opening and closing filters which are similar to the problem of comput-
ing the min- and max-filters together, can be computed much more efficiently.
We found algorithms for these filters using 1.5 4 o(1) comparisons determinis-
tically, or 1.25 4 o(1) comparisons randomly, for worst case inputs.

All algorithms are readily extendible to higher dimensions.

Acknowledgements

Stimulating discussions of both authors with Reuven Bar-Yehuda of the Tech-
nion during the writeup of this paper are gratefully acknowledged. The second
author is grateful to Renato Keshet from HP Labs. Israel, for intriguing dis-
cussions on efficient morphological operators.

References

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithmms. MIT
Press, Cambridge, Massachusetts, 1990.

2. D. Z. Gevorkian, J. T. Astola, and S. M. Atourian. Improving gil-werman algorithm
for running min and max filters. ITEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(5):526-529, May 1997.

3. J. Y. Gil and Z. Gutterman. Compile time symbolic derivation with C+4 templates.
In Proceedings of the fourth Conference on Object-Oriented Technologies and Systems
(COOTS’98), Santa Fe, New Mexico, May 1998. USENIX.

4. J.Y. Gil and R. Kimmel. Further improvements to the gil-werman’s min and max filters.
Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000.

5. J. Y. Gil and M. Werman. Computing 2-D min, median, and max filters. TEFE Trans-
actions on Pattern Analysis and Machine Intelligence, 15(5):504-507, May 1993.

6. 1. Pitas:1989:FAR. Fast algoirthsm for running ordering and max/min recalculations.
IEEFE Transactions on Circuits and Systems, CAS-36(6):795-804, June 1989.

7. J. Serra. Image analysis and mathematical morphology. Academic Press, New York,
1982.

EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 9

Stated differently, we have that asymptotically for large p, and for 1.i.d. one
comparison per element is required to compute each of the minimum and the
maximum filters, provided they are computed together. We refer to [4] for
further details like performance on natural images.

5. An Efficient Algorithm for the Opening and Closing Filters

In this section we describe how the opening (and closing) filter can be computed
more efficiently than a mere sequential application of the Max-Filter and then
the Min-Filter.

To understand the improvement, consider the problem of computing the
prefix-minimum, in the case that the input of length p is given as a sequence
of L. monotonically increasing or decreasing segments. Suppose that the prefix-
minimum has been computed up to a point ¢, i.e., that the value of m; =
min(zg, ..., ;) is known, and that #;41, ..., ;45 is a monotonically decreasing
segment of the input of length k. Then, in order to compute m;41, ..., M4k,
all that is required is to find the smallest £ such that my; < m;. This £ can be
easily found using a binary search in [lg k] comparisons. We then have

[my ifj<
M Ty, i< G <k

If on the other hand ;y1, ..., #;4x is a monotonically increasing sequence, all
that is required in order to compute m;41, ..., M4k 18 to compare ;41 and m;.
In this case we have that m;y1 = mijys = -+ = mjy, = min(z;41, m;). Using

Lagrange multipliers we obtain that the number of comparisons is bounded
above by

4@%. (13)

Recall now the improved merge step described in Section 3.1. Each itera-
tion of the binary search algorithm generates about half of the outputs of the
max-filter that remained to be computed. Note that all values generated in
one such iteration are consecutive in the output. Further, since these values
are obtained from computing either R; or S;, they are either monotonically
increasing or monotonically decreasing. Thus an application of the modified
max filter algorithm also partitions each stretch of p outputs into at most [lg p]
monotonic segments.

The improved opening filter algorithm is thus obtained by first applying the
modified Gil-Werman max-filter algorithm, while preserving this partitioning
of the output. Then, the results are fed into the modified Gil-Werman min-
filter algorithm. The partitioning information is then used for an efficient
implementation of the preprocessing stage in which prefix- and suffix-minima
are computed. It follows from (13) that the preprocessing stage can be done
in at most O(lg” p) comparisons. Since the merge step can be done in O(lg p)
comparisons, we obtain:

Theorem 4 There exists an algorithm which computes the opening filter, achiev-
2
ing CY =C1 + O(lgp—p).

8 JOSEPH (YOSSI) GIL AND RON KIMMEL

Adding (9) and (10) we have that the expected total number of comparisons
in our solution to PREFIX MAX-MIN is at most

3¢ Ing

-+ — -2 11

5+t —2 (11)
and the expected amortized number of comparisons per element is 1.5 + l%q —

2/q. Tt should be noted that one cannot hope to improve much on this result.
The reason is that solving PREFIX MAX-MIN also yields the maximum and the
minimum of the whole input. However, computing both these values cannot be
done in less than [3p/2] comparisons [1, page 187] even for randomized inputs.

4.2. COMPUTING THE MIN-MAX FILTER

We now employ algorithm incorporate-next-input-pair in the pre-processing
stage of the modified Gil-Werman algorithm adapted for finding both the min-
imum and the maximum filters. Specifically, we are concerned in this stage in
finding an efficient algorithm to the PREFIX-SUFFIX MaX-MIN problem, de-
fined as computing the maximum and the minimum of all prefixes and all
suffixes of an array of size p + 1. Such an efficient algorithm is obtained
by partitioning the input array into to two halves. In the lower half which
comprises ¢ = [(p+ 1)/2] = p/2 4+ (p mod 2)/2 elements we repetitively ap-
ply incorporate-next-input-pair to compute the prefix maxima and the prefix
minima in this half. A similar computation is carried out in the upper half
with p—q¢+1=[(p+ 1)/2] elements of the input array, except that algorithm
incorporate-next-input-pair is mirrored to compute the suffizr minima and the
suffix maxima in this half. The total expected number of comparisons so far
can be computed from (11):

3 3(p+1— In In(p+1- 3
7q+ (P2 q)+Tq+ (P2 q)_4§7p+1np_2.5. (12)

Once this computation 1s done, we carry on as before to produce the rest of
the required output. In two more comparisons we find out where the maximum
and the minimum of the whole array occur. If the maximum occurs in the
lower (resp. upper) half then it remains to compute the suffix (resp. prefix)
maxima from the mid-point down-to (resp. up-to) the location of the maximum.
From (4) we have that this computation costs another 0.25 comparison per
input element. A similar completion stage must be carried out for the minimum
prefixes or suffixes; using another 0.25 amortized comparisons. All that remains
is the merge step, which has to be carried out twice, once for the minimum and
once for the maximum. The number of comparisons for the merge is at most
21gp. Combining this with (12) we obtain:

Theorem 3 There exists an algorithm for the 1D MIN-MAX FILTER prob-
lem, that at the worst case makes twice the number of comparisons as that
of Theorem 2. For independently distributed inputs, the amortized number of
comparisons that the algorithm makes s

lgp

Inp+lgp _ 2 18P 94 93466182
P

2-1—(2-1-—)7

CTP <242
1 <2+ 7

EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 7

b) Changes to both the maximum and the minimum: z;41 > M; and x;42 < m;.
Again, no more comparisons need to be done in this case, and the algorithm
outputs M,‘+2 = M,‘+1 = Ti41, Mif1 = My, and Mi42 = Ti42.

c) Change to the maximum: z;41 > M; and ;42 > m;. The algorithm out-
puts Miyo = M;y1 = xi41 and miyo = miy1 = m,. without additional
comparisons.

d) Possible change to the minimum: z;41 < M; and z;4> < m;. This is the
only case in which an additional comparison is required: The algorithm first
outputs Miyo = M;y1 = M;, miy2 = xiy2 and then determines m;y1 by
comparing x;41 with M;. If z;41 < m; then m;41 = x;41, otherwise, m;y1 =
m;.

Thus, in the worst case, the algorithm makes four comparisons for each
pair z;41 and x;42, where ¢ > 0 is odd, which does not improve on the two
comparisons for element by the trivial algorithm. The fourth comparison how-
ever is needed only in case

Tipa <My = Ogljigi(l‘i)a (5)

or in the dual case, namely when the first comparison yields ;41 < #;42, and

Tiyo < M; = o%lfé(m (6)
With i.i.d. the probability of (5) or (6) holding is 1/(¢ + 3), for all ¢ > 0.
Let w = [¢/2] — 1 = (¢ — (¢ mod 2)) — 1. Then in the last application of the
above algorithm we deal with the pair z2, and z2,41. In total, Fy, the expected
(with regard to input distribution) number of times the fourth comparison is
made is given by
11 1 1

F =4 -4+ - 4... =
4 4+6+8+ +2u—|—2

(Hupr—1)/2, (7)
where H, 1s the uth harmonic number. It is well known that

lim H, =Ilnu++ and lnu+y<H, <lnu+1, (8)

U—00

where v & 0.577216 is Euler’s constant (also called Mascheroni’s constant).

Combining (7) and (8) we have

Fy = BBl 43 =05+ o(1)

In({u+1 In{u+1 ng—
v D 0.211392 4 o(1) < ROt < Ing=l

)

Other than these, in solving PREFIX MAX-MIN, there are u applications of
incorporate-next-input-pair, in which 3u comparisons are made, one compari-
son in which xg is compared with #; to determine My, My, my and mq, and
finally, and only if ¢ is odd, two comparisons to determine M,_; and mg_1.
The number of these comparisons is

3q g mod 2

1+3u—|—2(qmod2):7—2—|— 5 (10)

6 JOSEPH (YOSSI) GIL AND RON KIMMEL

The interested reader is referred to e.g., [3] and the references thereof for
examples of applying the template mechanism for non-trivial compile-time com-
putation and code generation that are useful for implementation of logical cases
involved in the proposed algorithms.

4. Efficient Algorithm for Computing the Max and Min Together

Let us deal with the 1D MaX-MIN FILTER problem, and show how the min
and max filters together can be computed more efficiently than an independent
computation of both. We start again from the Gil-Werman algorithm. The gain
comes from partitioning the input signal into pairs of consecutive elements, and
comparing the values in each pair. The greater value in each pair carries on
the maximum computation while the lesser one carries one to the minimum
computation.

4.1. THE PREFIX MAX-MIN PROBLEM

Let us first consider the following problem,

PREFIX MaAX-MIN: Given a sequence o, ..., %q—1, compute M = max(zo,...,%x),
and my = min(zo,...,zx), for k =0,...,q— 1.

The straightforward solution for PREFIX MAX-MIN uses a total of 2(¢ —2)+1
comparisons. Analyzing this problem from an information theoretic point of
view we find that for all ¢ > 2, there are three cases for element x;. It either
increases the running prefix maximum, or it decreases the running prefix min-
imum, or makes no changes to those. There are only two possible cases for z1,
while there is exactly one case for 2y. Thus, we obtain 1+(¢—2) lg 3 ~ 1.58496¢,
as an information theoretic lower bound for the number of comparisons for this
problem.

We do not know of a general way of bringing the amortized number of
comparisons from 2 — o(1) closer to the lg3 lower bound, or proving a stronger
lower bound. However, if 1t 1s known that the distribution of input elements is
independent, we can even do better than the lower bound! This improvement is
carried out as follows. Suppose that M; and m; were already computed. Then,
to compute M;11, M2, mip1 and m;4a, we apply the following incorporate-
next-input-pair algorithm.

Algorithm incorporate-next-input-pair: Extend the result of a solution to PREFIX
MAX-MIN to include input elements z;41 and #;4+2, using the four following compar-
isons:

1. Compare x;4+1 and x;42. Assume, without loss of generality, that x;y1 > x;42.

2. Compare M; with x;11 = max(zit1, Tiy2).

3. Compare m; with T;42 = min(zi41, Tiy2).

4. At this stage, the algorithm has determined both M;;1> and m;y2. Specifically,
Miy2 = max(ziqy1, M;) and miy2 = min(ziy2, m;). There are four cases to
consider in computing miy1 and M;4,.

a) No changes: ;41 < M; and z,42 > m;. No more comparisons need to
be done in this case, and the algorithm outputs M;y» = M;y1 = M; and
Mit2 = M1 = M.

EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 5

Tg—1 = Tg—2 = ... = 71 = 14, and continues to compute sq,...,5,_1. A
similar situation occurs if v, < s4_1, in which case it is unnecessary to com-
pute sg,...,5p—1. In both cases, the number of comparisons that remain to be
doneis [(p + 1)/2]. The total number of comparisons in the more efficient algo-
rithm for PREFIX-SUFFIX MAX is (p — 1) + 1+ | 221 | = 1.5p 4 22292 Noting
that each batch requires (on amortization) solving one instance of PREFIX-
SUFFIX MAX, we can combine our results so far to obtain:

Theorem 1 There exists a deterministic algorithm for the 1D MAX-FILTER
problem, achieving C1 = 1.5 + rkg’;'%ﬂ + ’%‘;dz <154 lgpﬁ.

Can we improve on this result? An information theoretical lower bound for
the number of comparisons required to solve PREFIX-SUFFIX MaAX, is p+lgp—
O(1). This bound is derived as follows. A compact output of an algorithm for
the problem uses p 4+ lgp — O(1) bits comprised as follows:

1. lgp bits to designate the location of the overall maximum (for simplicity,

we assume that p is a power of 2),

2. one bit for each location prior to the maximum, designating whether the
corresponding element changes the prefix maxima, and

3. one bit for each location following to the maximum, designating whether
the corresponding element changes the suffix maxima.

Moreover, there are distinct inputs which produce all the bit combinations of

this compact representation. Thus, in order to make the distinction between

these inputs, the algorithm is forced to make at least p+lg p—O(1) comparisons.

Although we are unable to meet this lower bound, we can come close to it
in an important special cases. Suppose that in an input to the PREFIX-SUFFIX
MaX problem, the overall maximum is located at a random location £ in the
input sequence. (This does not necessarily mean that the input is uniformly and
independently distributed). Then, once the comparison between s,_; and 7,
is made, all that remains is to proceed to compute outputs sq,sg41,...,Se—1
in the case that s;_1 < rg, or rq_1,7¢—2,...,7¢41 otherwise. The expected
number of comparisons in this completion stage is

SN

1 q=1 p+l-g -\ _ p’=(pmod2) - p _ 1 1
4T (Zi:O i+ 255 Z) =3 Si itapm S

NS

In general, it cannot be assumed that an arbitrary input to the PREFIX-
SUFFIX MAX problem will have its maximum at a random location. However,
in using this procedure as part of an algorithm for solving the 1D MaX-FILTER
problem, we can achieve this effect by choosing at random the starting point for
segmentation. Thus, the segments will be centered at positions indexed 7,7 +
p, T+2p, ..., where 7 is an integer selected at random in the range [0, ..., p—1].
Such a random selection does not degrade the efficiency due to the assumption
that p < n. We have thus obtained:

Theorem 2 There exists a randomized algorithm for the 1D MAX-FILTER
problem, achieving F(C1) < 1.25+ ﬂng_ll—k < 1.25+ lﬁpﬁ,

4 JOSEPH (YOSSI) GIL AND RON KIMMEL

we have that the preprocessing step requires two comparison operations per
element, while the merge step requires one more comparison.

3. The Improved Algorithms For the Max-Filter

Let us show how the two steps of the Gil-Werman algorithm can be carried out
more efficiently.
3.1. AN EFFICIENT MERGE PROCEDURE

We first show how to improve the merge step, by reducing the number of
comparisons from 1 to lgp/p+ o(1). In this step, we compute

max(Re, Sp_k—1), (3)
for K =1,...,p— 2. Observing that R,_2 > Rp_1 > ... > Ry, and Sp_2 >
Sp—1 > ... > Si, we can eliminate most of these comparisons. Suppose that

for some specific ¢ it was found that R; > S,_;_1, then for all & > ¢, we have
that Ry > R; > Sp—s—1 > Sp—k—1, and therefore there is no need to do the
comparisons of (3) for all k& > 4. Similarly, if it is determined that R; < S,_;_1,
then we do not need to do the comparisons of (3) for all k£ < ¢.

The optimized procedure for the merge step is therefore a binary search.
We start by setting ¢ = [(p — 2)/2], and then continue with the remaining half
of the problem size. The number of comparisons is thus reduced from p — 2
to O(lgp). In fact, it can be easily checked that the number of comparisons
in the binary search of the merge step is exactly [lgp — 1]. The amortized

contribution of the improved merge step to the complexity is lgz;_l .

3.2. AN EFFICIENT PREPROCESSING COMPUTATION

Let us now deal with the preprocessing step of the Gil-Werman algorithm.
Gevorkian, Astola and Atourian [2] observed that preprocessing computation
can be made more efficient for randomized input, using the fact that in the Gil-
Werman algorithm, the suffixes Si of one segment overlap with the prefixes Ry
of the following segment. Specifically, the problem that needs to be solved is

PREFIX-SUFFIX MAX: Given a sequence xo,...,%p, compute all of its prefix max-
ima: s = max(zo,...,2x), for k = 0,...,p — 1, and all its suffix maxima: rp =
max(zk,...,op), fork=1,...,p.

Note that this problem does not call for computing the overall maximum of
the input s, = ro = max(zo, ...,).

The original Gil-Werman algorithm makes 2(p — 2) comparisons in solving
the PREFIX-SUFFIX MAX problem. We propose the following efficient solution
for this problem. Let ¢ = [(p+1)/2] = p/2 + (p mod 2)/2. In the first part
of the modified implementation, compute all s, for ¥ = 0,...,¢g — 1 and rg
for k =¢q,...,p. This is carried out using p — 1 comparisons.

The second part of the modified implementation of the preprocessing stage
begins in comparing s,—; and r4. If r; > s,_1, then we know that the over-
all maximum falls is one of x,,...,x,. Therefore, it is unnecessary to fur-
ther compute the value of r4_1,74_2,...,71. Instead, the algorithm outputs

EFFICIENT DILATION, EROSION, OPENING AND CLOSING ALGORITHMS 3

the algorithm makes such an improvement.

The problem posed by the opening filter is similar to 1D MAX-MIN-FILTER,
since in both it is required to compute both a Min-Filter and a Max-Filter.
However, the fact that in the opening filter this filters are computed sequen-
tially, where the results of one filter are fed to the other, makes it mush easier.
Let ¢ be the number of comparisons per input sample for computing the

opening filter. Then, we show that C7 < Cy + O(Lg;—p). Clearly, the same
result holds for the closing filter.

As described in [5], a 1D max filter can be extended to square (or rectan-
gular) window 2D max filter. This is done by first applying the 1D filter along
the rows, and then feeding the result to a 1D filter running along the columns.
Let C'5 be the number of comparison operations required per input point for
computing the 2D max filter. We have that C's = 2C, and more generally,
Cyq = dCy, where Uy is defined accordingly for the d-dimensional filter. We
similarly have that C']' = dCT* and C'j = dC7.

Qutline. The remainder of this paper is organized as follows. Section 2 reviews
the Gil-Werman algorithm. The deterministic and randomized algorithms im-
proving it are described in Section 3. In Section 4 we give our algorithm for
the 1D MaAX-MIN FILTER PROBLEM. The efficient algorithm for computing
the opening (and closing) filter is described in Section 5, and conclude with
Section 6.

2. The Gil-Werman algorithm

The Gil-Werman algorithm is based on a partitioning of the input signal to
overlapping segments of size 2p — 1, centered at xp,_1,Top_1,%3p—1,.... Let j
be the index of an element at the center of a certain segment. The maxima of
the p windows which include z; are computed in one batch of the Gil-Werman
algorithm as follows: First, define Ry and Sg for k=0,... p—1:

Ry =max(z;, zj_1,...,2j_x), and Sy =max(z;, zj41,...,Tj4k). (1)

Now, the Ry’s and the Si’s can be merged together to compute the max filter:

max(&;_k,...,%0,...,Ljtp—k—1) = max(Rg, Sp—k—1), (2)
for k =1,...,p— 2. In addition, we have max(z;_p_1,...,2;) = Rp_1 and
max(zo, ..., Zj4p=1) = Sp_1.

There are two steps to the Gil-Werman algorithm:

Preprocessing Computing all R, and S, from their definition (1) which is
done in 2(p — 1) comparisons.

Merge Merging the Ry and Sy together using (2), for which another p — 2
comparisons are required.

Since this procedure computes the maximum of p windows in total, we have
that the amortized number of comparisons per window is 3 — 4/p. For large p,

2 JOSEPH (YOSSI) GIL AND RON KIMMEL

1D MaX-FILTER: Given a sequence xg,...,Tn—1, and an integer p > 1, compute
Yi = MaXo<j<p Ti+y, fort =0,...,n —p.

The 1D MIN-FILTER problem is similarly defined.

As usual 1n filtering, we assume that p < n. As an efficiency measure of
algorithms for this problem we use C7, defined as the number of comparison
operations per sample (or output) point as n goes to infinity.

Since any max filter computation must examine every input element at
least once, we have that (C; > 1. A trivial algorithm for the 1D MaX-FILTER
problem gives 7 = p— 1. On the other hand, since it is impossible to compute
the filter without examining each input point at least once, there is a trivial
information theoretical lower bound for the problem of C; > 1.

Two non-trivial algorithms for the problem were published in [6]: The first
achieves C; = O(lgp)! and the second C} = 3 + o(1) for uniformly distributed
independent input signals. The worst case performance for both of these algo-
rithms depends on the window size.

Gil and Werman, in their work on computing the median filter [5], gave
the first algorithm for computing the max filter whose performance does not
depend on p. Their algorithm is more general since it can compute any semi-
ring operation, o, filter of size p while using 3 —4/p applications of ¢ per sample
point. Since max is a semi-ring operation, their result gives C; =3 —4/p.

Gevorkian, Astola and Atourian [2] observed that in the special case when
the semi-ring operation is max, the Gil-Werman algorithm can be improved,
assuming locally uniform distributed signals, to achieve E(Cy) = 2.5 —3.5/p.
The expectation here is respectively to input distribution. In the worst input
case, the performance of the algorithm of [2] is the same as the Gil-Werman
algorithm. Here we describe an algorithm achieving further reduction, Cy =
1.5+ lgpﬁ — O(1/p). This improvement is deterministic and does not make any
assumptions on the input distribution.

Further, we also describe a randomized algorithm which comes even closer
to the lower bound in achieving F(C7) = 1.25+ lgpﬁ —O(1/p), where the expec-
tation is w.r.t. random selections made by the algorithm. I.e.; this expected
performance is obtained for any input.

The optimal L-filter, the morphological edge detector, and other applica-
tions call for the simultaneous computation of the min and max in each window,
as summarized in the following problem definition.
1D Max-MiN-FILTER: Given a sequence g, ..., tn—1, and an integer p > 1, compute
Yi = MaXo<;j<p Tit; and z; = min0$]<p Tiyy; for1=0,...,n —p.

We give an algorithm that solves the 1D MAX-MIN-FILTER problem faster
than solving the 1D MAX-FILTER and the 1D MIN-FILTER. Let C7" be the
number of comparisons per input sample for solving 1D MaAX-MIN-FILTER.
Then the algorithm achieves E(C7) & 2 + 2.3466%—3, for the special case of
independent input distribution, i.e., the expectation is with regard to input
distribution. In the worst case this algorithm does not improve on the inde-
pendent computation of the Min- and Max filters. However, for natural images,

1 We use lg(+) to denote log,(+)

EFFICIENT DILATION, EROSION, OPENING AND
CLOSING ALGORITHMS

JOSEPH (YOSSI) GIL and RON KIMMEL
Department of Computer Science
Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract. We propose an efficient algorithm for computing the dilation and erosion filters.
For a p-element sliding window, our algorithm computes the 1D filter using 1.5 4+ o(1) com-
parisons per sample point. Our algorithm constitutes improvements over the best previously
known such algorithm by Gil and Werman [5]. The previous improvement on [5] offered by
Gevorkian, Astola and Atourian [2] was in better expected performance for random signals.
Our result improves on [5] result without assuming any distribution of the input. Further,
a randomized version of our algorithm gives an expected number of 1.25 4 o(1) comparisons
per sample point, for any input distribution. We deal with the problem of computing the
dilation and the erosion filters simultaneously, and again improve the Gil-Werman algorithm
in this case for independently distributed inputs. We then turn to the opening filter, defined
as the application of the min filter to the max filter, and give an efficient algorithm for its
computation. Specifically, this algorithm is only slightly slower than the computation of
just the max filter. The improved algorithms are readily generalized to two dimensions for
rectangular structuring element, as well as to any higher finite dimension for a hyper-box
structuring element, with the number of comparisons per window remaining constant.

Key words: Max-Filter, Min-Filter, Running Window

1. Introduction

In signal and image analysis one often encounters the problem of min (or max)
computation in a window with p elements in the one-dimensional (1D) case,
or p X p elements in the 2D case. In mathematical morphology [7], the result
of such an operator is referred to as the erosion (or dilation) of the signal with
a structuring element given by a flat ramp of width p.

An important application is the morphological edge detector, obtained by
applying both the min filter and the max filter, and then subtracting the re-
sults. Denoising is yet another example of using the min and max filters.
The opening (respectively closing) filter is obtained by feeding the results of
the max (resp. min) filter to the min (resp. max) filter. In image processing
the opening filter eliminates small dark regions, while closing eliminates small
white regions. In both filters, the size of the window determines the size of
the regions that can be removed. Some other applications of the min and max
filters in pattern analysis, adaptive signal processing and morphological analy-
sis are mentioned in [2]. These applications call our interest to the problem of
efficiently computing the min and max filters for a wide range of p.

The one-dimensional version of the problem can be formulated as follows:

