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Abstract. We apply the Fast Marching Method on triangulated domains

to e�ciently compute Voronoi diagrams and o�set curves on triangulated

manifolds. The computational complexity of the proposed algorithm is

optimal, O(M logM), where M is the number of vertices. The algorithm

also applies to weighted domains in which a di�erent cost is assigned to

each surface point.

x1. Introduction

Voronoi diagrams play important roles in many research �elds such as robotic

navigation and control, image processing, computer graphics, computational

geometry, pattern recognition, and computer vision. Its Euclidean version,

for which there is an e�cient implementation, is a building block in many

applications.

The Voronoi diagram sets boundaries between a given set of source points,

and splits the domain into regions such that each region corresponds to the

closest neighborhood of a source point from the given set. Let our domain

be D, let the set of given n points be fp

j

2 D; j 2 0; ::; n � 1g, and the

distance between two points p; q 2 D be d(p; q). Then the Voronoi region G

i

corresponds to the set of points p 2 D such that d(p; p

i

) < d(p; p

j

);8j 6= i.

O�sets computation is often used in approximation and singularity theo-

ries, and comes into practice in computer aided design (CAD) and numerical

control (NC machines). Given a curve and its embedding space, an o�set

curve is de�ned by a set of points with a given �xed distance from the original

curve.

There are some numerical and topological di�culties, even in the com-

putation of o�sets for curves in the 2D Euclidean plane, e.g. the formation

of singularities in the curvature, self intersection of the o�setting curve, and

the fact that an o�set of a polynomial parametrized curve is not necessarily

polynomial. Some of the numerical di�culties were addressed in [9], where
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the Osher-Sethian level set method [16,20], which grew out of Sethian's ear-

lier work on curve evolution, see [21], was used to overcome the topological

changes.

E�cient construction of distance maps, minimal geodesics, Voronoi dia-

grams, and o�set curves for non-
at and weighted domains is a challenging

problem, see e.g. [15,13,8,12,6,10]. The core of our approach is Sethian's Fast

Marching Method, [22,19,20] which solves the Eikonal equation on a rectan-

gular orthogonal mesh in O(M logM) steps, where M is the total number of

grid points. Contingent upon the triangulated upwind and monotonic update

schemes given by Barth and Sethian [1], this technique was extended to trian-

gulated surfaces by Kimmel and Sethian in [11]. The triangulated version of

the Fast Marching Method has the same computational complexity, and solves

the Eikonal equation on triangulated domains in O(M logM) steps, whereM

is the number of vertices. Using this technique, one can compute distances on

curved manifolds with local weights. For other applications which rely on the

Fast Marching Method, see [14,4].

Here we apply our method to compute Voronoi diagrams of a given set of

points (or regions), and to �nd o�sets from curves and points on triangulated

manifolds. The computational complexity of the proposed algorithm is opti-

mal O(M logM), its implementation is simple, and it also applies to weighted

domains in which a di�erent cost is assigned to each surface point.

The key idea is based on upwind �nite di�erence operators as numerically

consistent approximation to the di�erential operators in the Eikonal equation.

Such an approximation selects the correct viscosity solution. The upwind

operators allow us to construct a solution to the Eikonal equation by optimally

sorting the updated points using a heap structure.

The outline of this paper is as follows. The key for fast computation of

o�sets and Voronoi diagrams is a fast algorithm for computing the distance.

Hence, we �rst comment on the connection between the Eikonal equation and

distance maps on weighted domains. We refer the reader to Sethian's Fast

Marching Method for solving the Eikonal equation and for computing dis-

tance maps on orthogonal grids, and to [11] for details on our extension for

computing the solution on triangulated domains. We then apply the method

for the computation of fast Voronoi diagrams and o�sets on triangulated man-

ifolds.

x2. Fast Marching Method and the Eikonal Equation

We �rst explore some aspects of distance computation on weighted domains.

In order to compute the distance between two points, we need to de�ne a

measure of length. A de�nition of an arclength allows us to measure distance

by integrating the arclength along a curve connecting two points. The distance

between the points corresponds to the length of the shortest curve connecting

them.

Given a 2D weighted 
at domain, or in other words an isotropic nonhomo-

geneous domain, the distance may be de�ned via the arclength de�nition. For
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example, the arclength may be written as a function of the x and y Cartesian

coordinates of the planar domain

ds

2

= F(x; y)

2

(dx

2

+ dy

2

);

where F(x; y) : R

2

! R

+

is a function that de�nes a weight for each point in

the domain.

The distance map T (x; y) from a given point p

0

assigns a scalar value

to each point in the domain that corresponds to its distance from p

0

. It is

easy to show, see e.g. [2], that the gradient magnitude of the distance map is

proportional to the weight function at each point

jrT (x; y)j = F(x; y);

where jrT j �

q

T

2

x

+ T

2

y

. This equation is known as the Eikonal equation.

The `viscosity' solution to the Eikonal equation coupled with the boundary

condition T (p

0

) = 0 results in the desired distance map.

Our �rst goal is to solve the Eikonal equation. The key is to construct

a numerical approximation to the gradient magnitude that selects an appro-

priate `weak solution'. Consider the following upwind approximation to the

gradient, given by

�

max(D

�x

ij

T;�D

+x

ij

T; 0)

2

+max(D

�y

ij

T;�D

+y

ij

T; 0)

2

�

1=2

= F

ij

;

where for example D

�x

ij

T �

T

ij

�T

i�1;j

h

is the standard backwards derivative

approximation, and T

ij

� T (i�x; j�y). The use of upwind schemes in hyper-

bolic equations is well known, see for example, Godunov's paper from 1959

[7]. For Hamilton-Jacobi equations, see e.g. [17,3].

The solution T can be systematically constructed in an upwind fashion.

The upwind di�erence approximation of the above equation means that infor-

mation propagates one way from smaller values of T to larger values. The Fast

Marching Method exploits this order of events. A point gets updated only by

points with smaller values. This `monotone property' allows us to keep a front

of candidate points that tracks the 
ow of information, ordered in a heap tree

structure in which the root is always the smallest value. An update of an

element in the heap tree is done in O(logM) operations. Thereby, the total

computational complexity is O(M logM). We refer to [22,19,20] for further

details on the Fast Marching Method.

One could recognize similarity to Dijkstra's method [5,18] that computes

minimum costs of paths on networks. Dijkstra algorithm would obviously

fail to consistently solve our geometric problems. Actually, any graph-search-

based algorithm induces the arti�cial metric imposed by the graph network,

and would be inconsistent with the continuous case, and thus fail to converge

as the graph resolution is re�ned.

The FastMarchingMethod that works for orthogonal grids may be viewed

as a selection for the update of one of the four right angle triangles that share
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the same vertex. The extension to triangulated domains is motivated by this

observation, by the geometric interpretation of the update step, and by an

additional special treatment of obtuse angles. We refer to [11] for details on

the extension of the fast marching method to triangulated domains. It is also

based on a �nite di�erence approximation to the Eikonal equation, this time

on the surface, monotone by construction, consistent, upwind, and converges

to the viscosity solution.

x3. O�sets and Voronoi Diagrams

We have an algorithm to compute distances on triangulated manifolds, and

hence construct o�set curves. First, we solve the Eikonal equation with speed

F = 1 on the triangulated surface to compute the distance from a source

point or a region that de�nes an initial curve. We then �nd the equal geodesic

distance curves on the surface by interpolating the intersection with a constant

threshold using a `marching triangle' procedure, again an O(M) operation.

The o�sets on the triangulated surface, or the equi-geodesic-distance curves,

are shown in Figure 1. The black curve is the original curve, and the white

curves are the o�sets.

Figure 2 presents Voronoi diagrams on several beads and a synthetic head.

We �rst compute the distance from each of the initial given source points

simultaneously using a single heap structure, and allow one vertex overlap

between distance maps form di�erent sources. The complexity for the distance

computation is still O(M logM). Next, we `march' along the triangles, and

for each triangle linearly interpolate the intersection curve between the two

di�erent distance maps, again an O(M) operation.

The algorithm complexity remains the same as we add weights to the

surface. In Figures 3 and 4 a di�erent cost is assigned to each vertex. The

cost, or weight function, is texture mapped onto the triangulated surface. The

weighted o�sets, or weighted equal geodesic distance contours are shown in

Figure 3, while weighted geodesic Voronoi diagrams for several surfaces are

presented in Figure 4. In both examples, dark intensity mapped onto the

surface indicates a low cost, and the brighter the intensity the higher the cost.
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Fig. 1. O�sets on four beads and a Synthetic Head.
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Fig. 2. Voronoi diagrams of �ve points on four beads and a Synthetic Head.
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Fig. 3. Weighted o�sets on four beads and a Synthetic Head.
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Fig. 4. Weighted Voronoi diagrams of �ve points on four beads and a Synthetic Head.
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