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A new algorithm for recovering depth to a Lambertian 6! smooth
object given its gray-level image under uniform illumination from
the viewing direction is presented. To recover depth, an almost
arbitrarily initialized surface is numerically propagated on a rec-
tangular grid, so that a level set of this surface tracks the height
contours of the depth function. The image shading controls the
propagation of the surface. When the light direction is tilted with
respect to the viewing direction the problem is solved by tracking
the projection of equal-height contours defined with respect to the
light source direction. This projection approach provides a solution
that overcomes ambiguity problems encountered in previous work,
while the level set approach of implementing the contour propaga-
tion overcomes numerical problems and some of the topology prob-
lems of the evolving contours.  © 1995 Academic Press, Inc.

1. INTRODUCTION

The problem of reconstructing three-dimensional ob-
jects from their shaded images has been extensively inves-
tigated by computer vision researchers over the past two
decades, starting from the classic ““shape from shading”
work of Horn [5]. Until recently, iterative schemes to
solve this problem were derived by regularization ver-
sions of the direct problem formulation; see [6] for a sur-
vey on these methods. New iterative methods were re-
cently suggested by Oliensis and Dupuis [14], and by
Rouy and Tourin [20] and Osher and Rudin {15] based on
viscosity solutions to partial differential equations. They
represented the shape from shading problem as a first-
order Hamilton-Jacobi equation. Viscosity solutions to
the Hamilton-Jacobi equation guarantee uniqueness (up
to +/— ambiguity of the shape from shading problem)
and existence. The viscosity solutions are related to the
smoothness of the Hamiltonian under consideration.

A direct approach to solving the shape from shading

problem based on the characteristic strip expansion
method was provided by Horn in his original work. A
different direct approach, using equal-height contour
propagation, was suggested by Bruckstein (I, 2]. Anaccu-
rate numerical scheme for implementing this method
based on a level set propagation algorithm devised by
Osher and Sethian [18] was then developed in [8, 10] and
was also compared with viscosity solutions and other
traditional methods in [11]. In [10], the numerical proper-
ties of the level set-based approximation were explored,
like the effects of noise and its performance on real im-
ages. This novel level set-based formulation for the equal-
height contour propagation method for the shape from
shading problem turned out to be a general method for
solving Dirichlet problems for Hamilton—Jacobi equa-
tions; see Osher [17].

In this paper we first summarize the level set-based
numerical approach to the equal-height contour propaga-
tion method for solving the shape from shading problem.
As mentioned above it is based on some nice results on
numerical approximation of front propagation, published
by Osher and Sethian in [18]. Then we derive the contour
propagation equation for the case of general light source
direction, where the contours are ‘‘equal-height’” with
respect to the light source direction instead of the height
axis; see Fig. 1. This new formulation solves some ambi-
guity problems that were encountered in our previous
work [8, 10, 11]. We note that light source coordinates
were used in [12] to improve the shape from shading
method of [7, 19] and later in [3] as a natural coordinate
system with respect to the singular peints (the brightness
points in the image}.

In the next section we give a formal definition of the
shape from shading problem under Lambertian re-
flectance. In Section 3, the equal-height contour approach
to the shape from shading problem is summarized and the
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FIG. 1. The case where the viewer and the light source are at differ-
ent directions {f » £) is solved by propagating curves which are “‘equal-
height'* contours with respect to the given light source direction (}.

new formulation 1o the general light source direction is
presented. Section 4 presents the level set-based algo-
rithm for tracking the equal height contours. Section 5
presents results of applying the new algorithm to some
synthetic as well as real shading images.

2, PROBLEM FORMULATION AND THE
REFLECTANCE MAP

Suppose we are given a continucus function of two
variables, z(x, ¥), which describes the surface of an object.
The shaded image of that surface is defined as a brightness
distribution E(x, y). The brightness values are defined by
the properties of the surface, by its orientation at every
point, and by the illumination. The brightness E(x, y) is
determined via a so-called shading rule or reflectance
map, which characterizes the surface properties and pro-
vides an explicit connection between the image and the
surface orientation. The shape from shading problem is
to recover the depth function z(x, y), from the image
Eix, v).

Let us first specify the surface orientation using the
components of the surface gradient p = dz/ox and ¢ =
3z/dy. The surface unit normal ¢an then be written as

- 1
N=o—oe—o_(-p,—q, D"
V1+p2+ gt 7

In case of a surface with so-called Lambertian, or
diffuse reflection properties and uniform illumination,
E(x, y) is proportional to the cosine of the angle between
the surface normal N and the direction to the light source
[ (see Fig. 2).

In the general case we define the light source direction
as

# 1
| = ——(—p, —q;, .. 1)
1+pf+q;2( Py —4q; (

The dependence between brightness and surface orien-
tation (the reflectance map) can be written as a function
mapping the surface normal direction N to the brightness
image E{x, y) as

E(x, y) = Function of (N) = R(p(x, ), q(x, y)). (?)

This is the image irradiance equation. For example in the
Lambertian case we have

1+pp+aq

Ex, ) =R(p,@)=1-N= :
Vi+p+@Vi+pi+q

In this case the normal direction lies on an ambiguity cone

whose main axis is directed toward the light source; see

Fig. 3b. There are some constant factors multiplying the

R function due to the surface albedo, the beam luminance,

etc., in the above equation. It is, however, possible to

factor them out by simply rescaling the image gray levels.
For the simple case where [ = (0, 0, 1)T we have

_ 1
Red) = o

and the ambiguity of the surface normal direction is an
upward directed cone; see Fig. 3a.

Equation (2) is a nonlinear partial differential equation
that has to be satisfied by the surface z(x, y}. Therefore,
solving the shape from shading problem amounts to solv-
ing a nonlinear partial differential equation. Clearly
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FIG. 2. On a patch of a surface, the brightness under Lambertian
shading rule is given by the cosine of the angle between the surface
normal and the light source direction, £ = cos e = N« [
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FIG. 3. (a) When the light source is from above ({ = £) the ambiguity
cone is directed upward. {b} For other light source directions the ambigu-
ity cone is tilted toward the light source.

boundary cenditions are necessary. Any shape from shad-
ing scheme reconstructs a function z(x, y) by implicitly
or explicitly recovering its normal N (x, ¥} everywhere.
The surface normal at each point is represented by two
numbers, and the only constraint we have so far is the
image’s irradiance equation (2). The two variables repre-
senting the surface normal direction at each point can
only be computed by using more than one equation. The
“art” of recovering a shape from its shaded image re-
quires introducing boundary conditions and local con-
straints that follow from reasonable assumptions concern-
ing the relation of each point on the surface to its
neighborhood.

3. SHAPE FROM SHADING VIA
EQUAL-HEIGHT CONTQURS

3.1. Light Source from Above

Let us first brieflv review Bruckstein's shape from shad-
ing approach (sce [1, 2]). An equal-height contour or a
level curve is a continuous curve in the (x, y¥) plane on
which the function z(x, y) is constant. Defining {x(s), y(s)},
5 €[0, §1, as the parametric representation of the contour,
we have

da_dzax  azdy_
ds dxads dyds

or
px; + gy, = 0.

The unit normal to the equal-height contour on the (x, ¥)
plane is given by

1
Vx2(s) +yis)

A(s) =

(yds), — x,(5)).

Clearly 4 is in the direction of the projection of N on the
image plane. When considering the case of propagation
from small circles around the singular points the unit nor-
mal # is directed outward, i.¢., pointing outside the rggion
bounded by the curve. Consider the case where { = £
(that is, | = (0, 0, 1)) and define dz as the height we climb
while progressing a distance % in the normal direction #
in the (x, y) plane. From elementary gcometry we have

D = dz cot a,

where e is the surface orientation angle, the angle between
the surface normal N and the light source direction [ (cos
a = [ - N). Under the simple Lambertian shading rule
where R(p, g) = cos a = 1/V1 + p? + g%, we have

G =dzcota=dz ! = E

=dz .
Vpi+q¢  VI-E

If, from the first contour, we uniformly climb dz, we
get to the next equal-height contour via

{x(s, dz), y(s, d2)} = {x(s, 0), ¥(s, O} + D(s) - #.
This yields the propagation of the equal-height contours

as a nonlinear initial value PDE problem. Given {x(s, 0),
y(s, O} the evolution equations are [1, 2] :

x{s, 1) = F(x, y) —=2

v x.% + y}" (3)
— _xs ’
yis, ) =F(x,y) _x\/ﬁ
where t = z and
F(x(s, 1, y(s, 1) = —ei8: . 345, 1) @)

V1= EXx(s, 1), y(s, 1) |

UThe subscripts s, t, x, y, refer to partial derivatives, (e.g., x, =
ax/ar), and the subscripts (and superscripts) {, # refer to the light source
direction and the planar normal, respectively.
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Note that z is replaced by ¢ so that the equal height contour
propagation in height is now referred to as a curve evolv-
ing in ““time.”’

Define C(0) = {x (s, 0), y(s, 0)} as the smooth (and, in
some cases, closed) initial equal-height curve, and C(1)
as the one-parameter family of curves generated by mov-
ing C(0) along its normal vector field with a speed given
by F. Here, F is a given scalar function of the brightness
E. Using this notation, Eq. (3) can be written as a planar
curve evelution equation (3/00C () = F(x, y) - A. Sethian
[21] called the direct implementation of such propagation
models “‘Lagrangian’” evolution equations because the
physical coordinate system moves with the propagataing
front.

3.2

When the light source direction is / (as defined in (1)),
the brightness map under the Lambertian shading rule is
E = [- N. In this case the surface normal is on a tilted
ambiguity cone as described in Fig. 3b. In [8, 10] it was
discussed how to propagate an equal-height contour in
this situation. It was noted that there are possible ambigu-
ities in recovering the normal direction, and these had to
be solved by adding smoothness constraints along the
equal-height contour or along the surface, In the rest of
this section we present a different kind of curve propaga-
tion that overcomes these ambiguities and frees us from
the need to consider additional constraints while recon-
structing the shape.

Consider the plane P! defined by the light source direc-
tion [ see Fig. 1. The equal-height contours with respect
to this plane are given by the previous propagation rule

General Light Source Direction

Cl=Fl(x!, ¥)ix ],

where { is the tangent vector to C!, and F' is the velocity
which is a function of the image as it would have been
seen from the light source direction. This evelution may
be projected to the (x, y) plane by first projecting the
velocity and then taking only the normal componeat of
the projected velocity v,, since in the case of planar curve
propagation the tangent component of the velocity affects
only the internal parameterization of the curve while the
trace of the curve is determined onty by the normal com-
ponent (see [4] for justification). The projected evolution
is then given by

C, = f:"v,,ﬁ,

where the correction factor v, is calculated in the Appen-
dix (see also [9] for a similar approach to solve the shortest
path problem on surfaces). The fact that the contours
lie on parallel planes, constant heights with respect to /,
enables us to predict the ‘“‘deformation’ in time of F.

Define cos 8 = 7 - [ (where £ = (0, 0, 1)), then
Fx,y,8) = F(x — tpyV1+ p} + ¢,
y—tqg/V1+pt+qi,

which means that the image shifts in time along the direc-
tion defined by (—p,, —g)/V pi + g with a constant veloc-
ity of sin 8, see Fig. 4a.

This formulation forces us to interpolate the image in-
tensity between the pixels as the image moves in time.
Another problem is the fact that we calculate the heights
with respect to P’ so that in the last stage we should
project the heights from P to P/, or stretch the elevation
array given on a uniform grid in P with respect to the light
source direction. This stretching results in a nonuniform
elevation array. :

Another manipulation on the evolution equation frees
us from the need to take care of these problems. Instead
of shifting the image forward it is possible to include a
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FIG. 4. (a) When propagating an equal-height contour with respect
to [ on P*, the underlying image which specifies the propagation velocity
shifts in time with a constant velocity of sin 8. (b) The constant velocity
of the shifting image may be converted to a constant shifting of the
evolving curve.
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backward propagation constant velocity term in the curve
evolution rule. This way we can keep the image in its
place and transfer the constant motion to the evolving
curve; see Fig. 4b. It also frees us from the need to project
the heights to the P! plane, and the height at each grid
point may be calculated without any interpelation. The
new evolution rule is given by

C, = F(x, y)v,fi — Sin'ﬂw , &)
V1+pi+aqf

and again, taking only the normal component of the sec-
ond term (the tangential components have no effect on
traces of the evolving curves), we obtain

©)

C, = (F(x, Vv, + M) /i

V1+pi+qf

where /A = (n,, n,). By using the v, obtained in the Appen-
dix, we define

1

Cor® = e
X [F(x, yYVni(1 + g}) + n¥(1 + p}) — nyny2p g,
+ (pyn; + giny)l. )

Then, Eq. (6) may be written as
C, = G(x, y, A, (8)

which is again a Lagrangian formulation of the new evolu-
tion rule. Note that Eq. (3) is a special case of Eq. (8).

Direct numerical implementations of Lagrangian for-
mulations suffer from instability and topological problems
due to the fact that local representations of propagating
fronts are followed; see [18, 21]. Control algorithms are
needed where topological changes occur. If, for example,
we start with two separate closed contours that grow up
to a merging point from which they continue to grow as
a single contour, it is necessary to handle this merging
process by an external control procedure. To avoid the
various problems that occur in this approach, a novel and
miraculous ‘‘Eulerian formulation,”” described below,
was developed by Osher and Sethian [18].

4. SOLUTION VIA THE EULERIAN FORMULATION

The Eulerian scheme is a recursive procedure that prop-
agates height contours while inherently implementing a
so-called entropy condition. This entropy condition is nec-
essary to select the ‘‘physically correct™ propagation [13]
among all possible weak solutions.

Introduce a function ¢{x, y, t) initialized so that
¢(x, y, 0) = 0 yields the curve C(0). Assume that C(0) is
a closed curve and restrict ¢ to be negative in the interior
and positive in the-exterior of the level set ¢(x, ¥, 0) =
0. Furthermore ¢ has to be smooth and Lipschitz con-
tinuous.

The idea is to determine an evolution of the surface
&(x, v, 1) so that the level sets ¢(x, y, £) = 0 provide the
height contours C(?) as if propagated by (8) and obeying
the entropy condition. If ¢(x, y, 1) = 0 along C(¢) then,
by the chain rule, we have

¢+ Vo - (1) = 0. )

The scalar velocity of each curve point in its normal direc-
tion is

G = C[(1) - A1) (10)
In our case the velocity is given by the scalar function
G(x, y, A) as defined in Eq. (7), which is a function of
the local image brightness and the given normal of the
propagating curve. The gradient Vo = (8/x, 4/9y)¢ is
always normal to the curve given by ¢(x, v, #} = 0 so that
A(s, £y = — V/||V¢||, the minus sign indicating the inward
direction of propagation, hence

_qu
G=C, =7 (1D
Vel
Substituting this into (9) yields
¢, - G|[Ve| =0, (12)
or explicitly
o1
" VIt @
X IF(e, vV + gD + 301 + pD — 6.6,204,
— (P, + 99,)]. (13)

Sethian called this approach based on propagating the ¢
function Eulerian, since the coordinates here are the natu-
ral physical coordinates (x, y). Therefore, if we have a
surface ¢ propagating according to (13) with the level set
é(x, ¥, 0) = 0 coinciding with C(0), then ¢(x, ¥, £} = 0
will produce C(#) propagated according to (8} and solve
topological problems. In order to derive a numerical
scheme for the surface propagation equation which obeys
the natural entropy condition, we modify results obtained
in [18] (see also [22]) based on Hamilton—Jacobi equa-
tions, weak solutions, and conservation laws.

Define ¢f; = $(iAx, jAy, nAr). We use a simple forward
derivative approximation in time
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FIG. 5. Reconstruction of synthetic images given on a 64 x 64 grid. (a) The light source direction is from above (f = 2). (b} A tilted light
source direction ! = (—0.364, 0, 1} (8 = 20%. (c) The light source direction is from above (/ = 2). (d) A tilted light source direction | = (—0.364,
0, 1} (8 = 20°. (e} The light source direction is from above {f = 2). (f) A tilted light source direction { = (-0.364, 0, 1) (8 = 20°). (g) The light

source direction is from above ({ = 7).

ntl _ 4n
¢£|l=nm = %a

and slope-limiter approximations [13] for the spatial deriv-
atives. The squared terms are approximated by

€b§|x=iAx.y=jAy = maX(D':Ld’u, - Digy;, 0¥,

and the same for ¢2. Here D ¢ = (] — ¢7 )/
Ax, D, dF = (¢l — &)/ Ax, and the same for the y deriva-
tives. The minmod [13] function is used to approximate
¢, and ¢,

¢xfx=mx,y=j5y = minmod(Dé¢;;, D¢, ),

and the same for ¢,, where

minmod(a, ) = {sign(a) min(al, [6)) ifab>0
0 otherwise.

All the above approximations vield a so-called first-
order numerical scheme that approximates Eq. (13). This
scheme automatically enforces the entropy condition and
frees one from the need to take care of topological
changes. In fact this formulation deals with the topology
of all up-going (or down-going) surfaces with respect to
the light source direction without any external control or
outside interference.

The algorithm also deals with the shock formation in
the propagating contours which indicates sharp corners
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FIG. 5-Continued

in the reconstructed surfaces within the numerical flow.
One of the great advantages of the Eulerian formulation
is that the coordinate system of the propagated ¢ function
is fixed, thereby avoiding the stability problems of the
Lagrangian formulation. More sophisticated higher order
schemes are presented in [16, 18].

In our problem the velocity & is position- and normal-
dependent. In order to avoid numerical problems in which
F — =, we truncate the brightness function to the maxi-
mum values of E_,, < 1, which yields F,,, = E_../
V1-EL,.

4.1. Initialization and Height Assighment

Every ¢ function which obeys the demands described
earlier provides a good initialization. We present a simple
way to initiate the ¢ function, obeying smoothness and
continuity so that ¢(x, y, 0) = 0 gives the initial contour.

Let us define the initial height contour by first thresholding
the gray levels in the picture and separating all the *‘singu-
lar areas’ (the singular areas is the set of points in the
image for which E(x, ¥} = 1, at such points the normal
is known to be | and therefore may be used as boundary
conditions or candidates to start the propagation). The
“‘singular’” points are the saddle, minima, and maxima
points with respect to the light source direction. Then use
the gray-level function to initiate the ¢ function in a simple
way. For example, if the singular areas are defined by
{ix, y):E(x, ¥) > T} (where T € (0, 1) is the selected
threshold), then the first level contour can be approxi-
mated as the level set E(x, y) = T. In this case we can
take ¢(x, y, 0) = E(x, y) — T near the selected singular
areas as the required initialization, making direct use of
the continuity of the gray levels in the picture, without
any extra calculations. This is the initialization method
used in our examples. Observe that the set E(x, y) = T
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FIG. 5-Continued

is not a set of discrete points, but an implicit representa-
tion of a curve given by the zero level set of ¢(x, y, 0).

After initialization has been completed the ¢ is propa-
gated according to the above described algorithm. Our
goal is to find the elevation at each grid point while the
¢ function is propagated on the grid. A way to achieve
accurate results using a simple linear interpolation is as
follows:

At every iteration step, for each grid point, check
If (&7 &7 ' < 0)
then height;;, = - [At (n - ﬁ)}
¢u - Py
V1+pi+qi + ibxp, + jAyq,.
-Using the above procedure each grid point gets its

height at the ‘‘time’’ when the ¢ function’s zero level
passes through it.

5. EXAMPLES AND RESULTS

We demonstrate the performance of the proposed algo-
rithm by applying it to several synthetic and real shaded
images. The synthetic images were generated for surfaces
assumed to be Lambertian, the size of these images being
quite small (64 X 64 pixels). The real images were taken
by a simple CCD camera and scaled to 128 x 128 pixels.
The initialization is achieved by using gray-level thresh-
olding to specify initial singular areas.

The reconstruction of the synthetic models is displayed
in Fig. 5 where the upper right is the given shading image,
the upper left surface is the original model, the middle
left surface is the reconstructed surface, and the middle
right ts a description of the curve evolution starting from
the gray-level contour (dotted line). An error surface for
cach experiment, computed by subtracting the recon-
structed surface from the original one, is displayed on the



TRACKING LEVEL SETS BY LEVEL SETS 55

FIG. 5-Continued

lower left. For each surface model two light direction
were applied; the first is the vertical [ = (0, 0, 1) (that is,
B = (0°), and the second is a tilted light source direction
of I = (—0.364, 0, 1) (that is, 8 = 20°). The propagation
is performed from the singular area outward, outside the
singular region surrounded by the initial contour, This
causes the singular areas to appear flat in the recon-
structed surfaces.

Figures 5a and 5b show two examples of reconstruction
for a ‘“‘volcano’ surface, starting from a small curve
around the singular area at the top of the mountain, shown
as a dotted line. In the equal-height contours picture of
the reconstructed surface one can observe the way topo-
logical problems like the saddle on the lowest left corner
are inherently solved through this *‘down-going”’ process.
Note however that starting at the base of the volcano
would require special treatment to proceed beyond the
saddie point; such issues are discussed in [8, 10]. Figures

3¢ and 5d, demonstrate the reconstruction of part of a
sphere surface. Figures 5e and 5f show the topological
mistake that occurs when trying to reconstaruct a *‘Mexi-
can hat”’-like object. This topological error may be
avoided if one chooses the singular strip surrounding the
middie hill as a starting area; see Fig. 5g. In this case
there are two initial contours segmenting the singular se-
lected area from the rest of the image; the first is propagat-
ing outward and the second inward yielding the desired
reconstruction.

The next two examples show the reconstruction of a
nose and face from real images. Figure 6a presents a low
resolution, low quality image of a nose taken by a CCD
camera and the reconstructed surface displayed from
three different viewpoints. The first contour was selected
to be around the singuiar area at the tip of the nose. The
second example is an attempt to apply the algorithm to
a facial image containing texture, background non-Lam-
bertian face, etc. Though the reconstruction is obviously
not perfect, it is possible to learn about the 3D shape of
the face from the reconstructed surface. Observe the way
the eyebrow is reconstructed to be concave instead of
convex due to topological errors that cannot be avoided.
In our next paper we will address such problems by adding
a new kind of smoothness assumption that will help re-
solve the topology ambiguity.

6. CONCLUDING REMARKS

We have described a method for recovering the shape
of a smooth object from its shaded image by an equal-
height contour propagation method and gave a new formu-
lation to the general light source direction problem. A
numerically stable implementation in which topological
problems in the propagated height contours are often in-
herently avoided was presented. In this method shocks,
cusps, and other singularities formed in the contours are
also readily dealt with in an efficient numerical scheme
originally developed to solve wavefront propagation.

APPENDIX: PLANAR NORMAL
VELOCITY CALCULATION

Given the simple propagation rule on the plane defined
by the light source direction P’

s

Cl=tx|,

we want to project this evolving curve to the (x, y) plane
P and take only the normal component of the velocity
vector of the curve in P; see Fig. 7.
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FIG. 6. Reconstaruction of real images given on a 128 x 128 grid. (a) A ‘‘real” nose and the reconstructed surface from three different

viewpoints. The process starts at the tip of the nose. (b) *‘Real’’ face and the reconstructed surface from three different viewpoints. The process
starts at the tip of the nose.

The above equation may be written as as
P, . —wy, + Whox
Xy 2) = G Yur Z) X (p, gy, ) b, = {(w, wy), Ay = lyz 22 o
Vxi+yl+zz V1+pi+g Vil 1y
w1 Yu " P 7 .

= vy, W, wy), By calculating the vector product and eliminating (due

where u is the parameter of the curve Cl(u, ) = (x(u, 1), to the projection) the £ component, we get

y(u, 1), z(u, ).

The projection of this curve evolution on the (x, y) Y+ @iz, —x, — piz)

. X (wy, wy) = .
plane may be written using C, = v, A, or e Vxi+yl+z22VI+pl+ g
(x,, y) = v, 2w X Now we are ready to calculate v,,
Vxi + i
. . L L + ¢z, — X, — —Yus Xy
We are looking for the velocity v, , which is the projection u, S’ u = Pz Loy )

. . - 2 2 2 2 :
of (w,, w;) on the planar normal A. This may be written V1+pt+gVal+yi+ 22 Vil+)y!
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FIG. 6-Continued

Using the chain rule Lo = oKy + Zy¥u = Py, + 4y, wWe
get

oo Xl = e+ Yl g) + 2pigxy,
" (1+pf + gDl + 3

Writing the planar normal as its compoenents A =
(ny, ny) = (=¥, x,)/Vxi+ yi, we conclude with

[
U = \/’ﬁ(l + g7+ (1 + P%) = nn2pg;.
V1 +pf+ g
FIG. 7. C'isevolving with a constant unit velocity along its normals (14

directions, and C is the projection of C' to P. The propagation rule that
determines the evolution of C is specified by a velocity v, along its . . .
notmals, v, is achieved by first projecting the C! normals to P and then We have noted in Section 4 that the planar unit normal

taking only the planar components of that projection. to any level set of a given continuous function ¢ can be
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written as # = —Vg/|[Vg|. Using this notation in Eq. (14)
we obtain

_ 1
V¢i+ 2 V1+pl+qt
X Vil + g + A1 + pP) — d,0,2p4,.

Uy
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