On the Geometry of Texture

Ron Kimmel, Nir A. Sochen, and Ravi Malladi

Abstract. We consider texture images as a composition of manifolds in
the feature-space. This geometrical interpretation leads to a natural way
for texture enhancement. A flow, based on manifold volume minimiza-
tion, yields a natural enhancement procedure for texture images. The 2D
Gabor-Morlet transform is first used to decompose the image into sub-
band images, where each sub-image corresponds to a different scale. Each
sub-band image may be considered as a 3D manifold in a 5D space from
which the original image can be reconstructed in a numerically stable way.
Following our previous results, we then invoke Polyakov action from String
Theory, and develop a minimization process through a geometric flow that
efficiently enhances each sub-band image in a spatial-orientation feature
space. Finally, the enhanced sub-band images are composed back into an
enhanced texture image.

§1. Introduction

Texture plays an important role in the understanding process of many im-
ages. Therefore, it became an important research subject in the fields of
psychophysics and computer vision. The study of texture starts from the pre-
image that describes the physics and optics that transforms the 3D world into
an image, through human perception that starts from the image formation
on the retina and tracks its interpretation at the first perception steps in the
brain.

The psychophysical research of these first steps focuses on the way the
brain cells are activated under the stimulus of a given image. Such experi-
ments combined with recent developments in the field of signal representation
led to relatively simple mathematical models that simulate the first steps
in the way our brain represents images. One such model is based on the
2D Gabor/Morlet-wavelet transform of the image. Some nice mathematical
properties and the relation of this transform to the physiological behavior were
studied in [6,10]. This model was used for the segmentation, interpretation
and analysis of texture [2,7], for texture based browsing [8], etc.
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In this paper we use the same space to represent texture images. Then,
we search for a geometrical way to improve and enhance texture based im-
ages. The geometrical feature enhancement procedure we introduce may serve
as a step towards segmentation. This procedure is based on a flow in the
transformed space in which the transform coefficients are treated as higher
dimensional manifolds. A special minimization process preserves domains of
constant /homogeneous texture, enhances the texture in each domain, and
thereby sharpens the boundaries between neighboring domains with different
textures.

The remainder of this paper is organized as follows: Section 2 briefly
reviews our previous results: the definition of arclength, the consideration of
images as surfaces, and the minimization of Polyakov action that leads to a
geometric flow we named the Beltram: flow. Next, Section 3 describes the
relevant feature space to the texture case. It gives the basics for constructing
the 2D Gabor-Morlet wavelet decomposition, and a simple way for composing
the image back. Section 4 presents experimental results of the Beltrami flow
in the decomposition feature space, for simple gray level texture.

§2. Images as Embedded Maps that Flow Toward Harmonic Maps

In [11] we consider images as 2D surfaces in higher dimensional spaces. We
construct enhancement and segmentation procedures for color images as 2D
surfaces in 5D (z,y,r, g, b) space. As shown in [4], the idea of images as curved
spaces is not limited to 2D surfaces, so that movies and volumetric images can
be considered as 3D hypersurfaces (manifolds) in 4D (x,y, z, I(x,y, z)) space.
Our geometric framework finds a seamless link between the L; norm,
used in the Osher-Rudin TV image enhancement and its variants, and the Lo
norms, used in Mumford-Shah image segmentation and its variants. TV (To-
tal Variation) schemes are based on minimizing the L; norm, namely [ |VI],
while the L, norm minimizes [ |VI|?. Our framework is based on the ge-
ometry of the image and its interpretation as a surface. The aspect ratio
between the gray level and the xy image plane, is the switch between the two
commonly used norms. This observation made it possible to show that our
multi-channel (color) enhancement procedure may be considered as a gener-
alization of the powerful TV scheme that is now commonly used in the high
tech image processing industry. This procedure yield very promising results
for color image enhancement [11]. In this work, we propose a flow in a rich
feature space which is different from the image spatial-intensity space.

Representation and Riemannian structure

We represent an image and other local features as embedding maps of a Rie-
mannian manifold in a higher dimensional space. The simplest example is
the image itself which is represented as a 2D surface embedded in IR*. We
denote the map by X : & — R?, where ¥ is a two-dimensional surface, and we
denote the local coordinates on it by (6!, 6%). The map X is given in general
by (X!(ol,0%),X?(c',0%),X3(c!,0%)). In our example we represent it as
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(X! =0, X? = 0%, X3 = I(0',0%)). We choose a Riemannian structure on
this surface, namely, a metric. The metric is a positive definite and symmetric
2-tensor that may be defined through the local distance measurements:

ds? = Guvdotdo” = gll(dal)z + 2¢12dotdo? + g22(d0'2)2, (1)

where we used Einstein summation convention in the second equality. We
denote the inverse of the metric by ¢"”.

Polyakov action: a measure on the space of embedding maps

Let us briefly review our general framework for non-linear diffusion in
computer vision. We will use this framework in Section 4 to diffuse a tex-
tured image in the transformed domain. The equations will be derived by
a minimization problem from an action functional. The functional in ques-
tion depends on both the image manifold and the embedding space. Denote
by (X, ¢) the image manifold and its metric, and by (M, h) the space-feature
manifold and its metric. Then the functional S[X] attaches a real number to

amap X : X — M:
SEX gy i) = [ AVIVXL ), 1, )

where dV is a volume element and (VR, VG), = ¢"?0, R0, G. This functional,
for m = 2, was first proposed by Polyakov [9] in the context of high energy
physics, and the theory is known as string theory.

Using standard methods in the calculus of variations (see [11]), the Euler-
Lagrange equations with respect to the embedding are

1 ilﬁ - L w i
2\/§h SxT = \/Eau(\/gg 0, X"). (3)

Since (g, ) is positive definite, ¢ = det(g,,) > 0 for all o*. This factor is
the simplest one that doesn’t change the minimization solution while giving
a reparameterization-invariant expression. The operator that is acting on X!
is the natural generalization of the Laplacian from flat spaces to manifolds
and is called the second order differential parameter of Beltrami [5], or for short
Beltrami operator, and we will denote it by A,.

For a surface ¥ embedded in 3 dimensional Euclidean space, we get a
minimal surface as the solution to the minimization problem. In order to
see this and to connect to the usual representation of the minimal surface
equation, we notice that the solution of the minimization problem with respect

to the metric is

Guv :aquaqu (4)

Plugging this induced metric in the first Euler-Lagrange equation (3), we get
the steepest decent flow
Xt = HN7 (5)
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where H is the mean curvature, and N is the normal to the surface given by

(1+IHI,, — 2L, 1,1, +(1+ Ij)[m
. g (6)
N=—(-1I,, —I,1)7,

NZ]

and g = 1+ Ig + I;. We see that this choice gives us the mean curvature flow!
This should not be a surprise, since the action functional for the above choice

H =

of metric g,, is

S = /dArea - /d%\/g: /d%\/det(auxiayxi), (7)

which is the Euler functional that describes the area of the surface, also known
in high energy physics as the Nambu action.

In general, for any manifold ¥ and M, the map X : ¥ — M that min-
imizes the action S with respect to the embedding is called a harmonic map.
The harmonic map is the natural generalization of the geodesic curve and the
minimal surface to higher dimensional manifolds.

§3. Gabor/Morlet-wavelets: A Natural Space for Texture Images

In [6] Lee argues that the 2D Gabor/Morlet wavelet transform with specific
coefficients is an appropriate mathematical description for images. He based
his findings on neurophysiological evidence based on experiments on the visual
cortex of mammalian brains. These experiments indicate that the best model
for the filter response of simple cells are self-similar 2D Gabor/Morlet wavelets.

Following Lee [6], let us briefly describe the 2D Gabor/Morlet wavelets
that model the simple cells. The 2D wavelet transform on an image I(x,y) is

defined as

(T I)(20, yo, 6, ) = ||a||—1//dxdyf(x,y)¢e (“’ ;xo,y_%), (8)

a

where a is a dilation parameter, xo and yo are the spatial translations, and 6
is the wavelet orientation parameter. Here

- rT—ZTo Y—Y
bl 20, y0.6,0) = [laf| TMpe(——= T2, (9)

is the 2D elementary wavelet function rotated by 6. Based on neurophysiolog-
ical experiments, a specific Gabor elementary function is used as the mother
wavelet to generate the 2D Gabor/Morlet wavelet family by convolving the
image with

1
2T

TRV (gihe =), (10)

P(a,y) =
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and Yg(x,y) = (&, ) is defined by rotation of (z,y) via

()= (ot 20)-(0) i

The discretization of (8), i.e (T%/7,,1), is denoted by W 41 m and is
given by

Wy gim = ™™ / / dedyI(e, yhiss(a=™ (@ — pAz),a=™(y — gAz)), (12)

where Az is the basic sampling interval, A8 = 27 /L, and the angles are given
by IA6, where | = 0,...,L — 1, and L is the total number of orientations.
p,q and m are integers determining the position and scaling. Note that as
m increases, the sample intervals get larger forming a pyramidal structure.
Equation (12) can be read as a projection onto a discrete set of basis functions

Wpaqalam = <I7 ¢paqalam>' (13)

The real number k£ determines the frequency bandwidth of the filters in
octaves via the approximation

¢ +1
=t o, (14)

a?—1

where ¢ is the bandwidth in octaves, e.g. for ¢ = 2 and ¢ = 1.5 we get
k ~ 2.5. In the above approximation the DC normalization term e=**/2 that
is required to make a wavelet basis out of the Gabor basis is ignored, and
we consider a = k/wg. So the peaks of the scaled mother wavelets in the
frequency domain are (approximately) at the locations a™™wy.

For our application we have chosen to work with a frame. The concept
of frames was introduced in [3]. A family of functions (¢;) is a frame if there

exist A > 0, B < oo that are called frame bounds so that for every f we have

AIIFIP <D 1Fe)l? < BIFIP, (13)
j

where [|f]| = [ f?. One could recognize this as a generalization of Parseval’s
theorem. A discrete family of wavelets that forms a frame provides a complete
representation of any function. In some cases it is possible to recover a function
with good approximation by the inversion formula

2
frgg 20 Ny (16)

J

The ratio B/A measures the tightness of the frame. When A = B, the frame
is tight and the reconstruction by summation is exact. Thus, as B/A ap-
proaches 1, we may still use the above reconstruction equation as a good
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Fig. 1. The wavelet basis functions (up to translations). The basis functions
are presented in a gray level array, real (symmetric) and imaginary (a-
symmetric) for the 8 angles [0, 7] and 5 scales.

Fig. 2. The half peak contours in the frequency domain of the wavelet basis
functions in the previous figure, (5 scales 16 orientations).

approximation. That is, we treat our discrete wavelets as an orthonormal
basis.

We denote the 2D Gabor/Morlet-wavelet transform as W(x,y, 6, 0), such
that R = Real(W) and J = Imag(W), where for the discrete case 0 = ¢ and
f = IAf. The response of a simple cell is then modeled by the projection of
the image onto a specific Gabor/Morlet wavelet.

Motivated by the arrangement of simple cells in our brain, with as tight
a frame as possible, we consider 5 spatial frequency octaves, and 16 angles
that discretize the [0, 27] angular interval. Practically, we used the symmetry
properties of the 2D Gabor/Morlet-wavelet transform: W(x,y,0 + n,0) =
W(z,y,6,0). Thus, only 8 angles are needed to represent the discretization
of the full [0, 27] angular interval into 16. We choose a = 2 and Ax = 1. This
selection results in a frame bounds A = 271.95, B = 233.69, with ratio of
B/A =1.19. The fact that this ratio is close to 1 means that we have a tight
frame that allows simple summation reconstruction. Figs. 1 and 2 show the
basis functions we used. Periodic boundary conditions are used for the real
(symmetric) part, and negative periodicity for the imaginary part, forming
a ‘Klein bottle’ coordinate system in (x,y,6). This enables us to reduce the
memory complexity by a factor of 2.
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Fig. 3. A schematic diagram of Gabor/Morlet wavelet decomposition of the orig-
inal image (at the top) into the (2,y,0, Ws(2,y,0)) and the images that
are the result of reconstruction by summation for each scale o separately
(bottom). The last row presents the reconstruction result after 70 iter-
ation of the Beltrami flow at each scale. In all the examples we use

L=16,a =2,k =2.5,and m € {0,..,4}.

For practical implementation that avoids the special numerical treatment
needed along the pyramidal discrete o scale axis, we consider each scale as a
separate space. The induced metric for each scale is then given by

1+ R2+J? RyR,+J.J, RyRe+ J,Jy
(9uv) = | ReRy + JoJy, 1+ R?ZJ + J; RyRo+ J,Js | . (17)
R.Rg+ J,.Jg RyRe—I—JyJQ 1—|—R5—|—J3
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This result can be understood from the arclength definition in this spatial-
orientation complex space, namely

ds® = da® + dy* 4 d6* + dJ* + dR>. (18)

Applying the chain rule on dR = R,dx+ Rydy+ Rpdf, and similarly for dJ, we
obtain the desired bilinear structure that describes the above induced metric
for this case.

The gradient descent equations for the Polyakov action read
Rt — AgR, Jt — AgJ, (19)

where A X is given in (3) with the metric (17).

§4. Experimental Results

Let us start with a simple example. In Fig. 3 we first decompose an image via
the wavelet transform into 4 separate sub-scale channels. The decomposition
and the result of applying the Beltrami flow on each sub-scale are shown.

Let us gain more motivation on the advantage of the wavelet decomposi-
tion. Fig. 4 shows the result of composing the image back from just the first
2, and then the first 3 sub-scale channels. The cancellation of the shadowing
can also be realized by a very simple high pass filter. However, as a byproduct
of the wavelet decomposition, at each scale ¢ we now have the complex func-
tion Wy (x,y,6). It defines a surface in the 5D space (3 real and one complex
dimensions) (x,y,8, W, ). The extra coordinate 6 that describes the behavior
of the image along a specific direction enables us to smooth the image while
keeping the meaningful orientation structure of the texture. Moreover, we
have the freedom to apply different filters to the different scales. This enables
us to preserve the nature of texture images by processing them only at signif-
icant scales. In other words, we are able to sharpen a specific scale without
effecting the rest of the sub-band images. Fig. 5 is the original image and
the result of applying the Beltrami flow to filter out non-oriented structures.
More examples are shown in Fig. 6.

§5. Concluding Remarks

We proposed to combine a psychophysically supported texture space, the 2D
Gabor/Morlet-wavelet transform, with a geometrical flow to enhance texture
images. The texture was considered as a manifold in its natural space. The
flow was realized by invoking Polyakov action, and the result was the Beltrami
flow in the feature space. The result is a variational-geometric technique that
enhances texture images in their appropriate decomposition space.
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Fig. 4. Reconstruction by summation, of only 2, 3, and all layers of the different
scales: the low frequency scale contribute the shadowing, thus summing
only over the first 3 scales cancels this effect (a simple high pass effect).

Fig. 5. Left: Original image 128 x 128, Right: Result of Beltrami flow for 70

numerical i1terations in each sub-scale.

Fig. 6. Example of 2 snapshots from the evolution for different texture images
Left: Original image 64 x 64.
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