
On the Geometry of TextureRon Kimmel, Nir A. Sochen, and Ravi MalladiAbstract. We consider texture images as a composition of manifolds inthe feature-space. This geometrical interpretation leads to a natural wayfor texture enhancement. A ow, based on manifold volume minimiza-tion, yields a natural enhancement procedure for texture images. The 2DGabor-Morlet transform is �rst used to decompose the image into sub-band images, where each sub-image corresponds to a di�erent scale. Eachsub-band image may be considered as a 3D manifold in a 5D space fromwhich the original image can be reconstructed in a numerically stable way.Following our previous results, we then invoke Polyakov action from StringTheory, and develop a minimization process through a geometric ow thate�ciently enhances each sub-band image in a spatial-orientation featurespace. Finally, the enhanced sub-band images are composed back into anenhanced texture image. x1. IntroductionTexture plays an important role in the understanding process of many im-ages. Therefore, it became an important research subject in the �elds ofpsychophysics and computer vision. The study of texture starts from the pre-image that describes the physics and optics that transforms the 3D world intoan image, through human perception that starts from the image formationon the retina and tracks its interpretation at the �rst perception steps in thebrain.The psychophysical research of these �rst steps focuses on the way thebrain cells are activated under the stimulus of a given image. Such experi-ments combined with recent developments in the �eld of signal representationled to relatively simple mathematical models that simulate the �rst stepsin the way our brain represents images. One such model is based on the2D Gabor/Morlet-wavelet transform of the image. Some nice mathematicalproperties and the relation of this transform to the physiological behavior werestudied in [6,10]. This model was used for the segmentation, interpretationand analysis of texture [2,7], for texture based browsing [8], etc.Curve and Surface Design: Saint-Malo 1999 203Pierre-Jean Laurent, Paul Sablonni�ere, and Larry L. Schumaker (eds.), pp. 203{212.Copyright oc 2000 by Vanderbilt University Press, Nashville, TN.ISBN 0-8265-1356-5.All rights of reproduction in any form reserved.



204 R. Kimmel, N. Sochen, and R. MalladiIn this paper we use the same space to represent texture images. Then,we search for a geometrical way to improve and enhance texture based im-ages. The geometrical feature enhancement procedure we introduce may serveas a step towards segmentation. This procedure is based on a ow in thetransformed space in which the transform coe�cients are treated as higherdimensional manifolds. A special minimization process preserves domains ofconstant/homogeneous texture, enhances the texture in each domain, andthereby sharpens the boundaries between neighboring domains with di�erenttextures.The remainder of this paper is organized as follows: Section 2 brieyreviews our previous results: the de�nition of arclength, the consideration ofimages as surfaces, and the minimization of Polyakov action that leads to ageometric ow we named the Beltrami ow. Next, Section 3 describes therelevant feature space to the texture case. It gives the basics for constructingthe 2D Gabor-Morlet wavelet decomposition, and a simple way for composingthe image back. Section 4 presents experimental results of the Beltrami owin the decomposition feature space, for simple gray level texture.x2. Images as Embedded Maps that Flow Toward Harmonic MapsIn [11] we consider images as 2D surfaces in higher dimensional spaces. Weconstruct enhancement and segmentation procedures for color images as 2Dsurfaces in 5D (x; y; r;g;b) space. As shown in [4], the idea of images as curvedspaces is not limited to 2D surfaces, so that movies and volumetric images canbe considered as 3D hypersurfaces (manifolds) in 4D (x; y; z; I(x; y; z)) space.Our geometric framework �nds a seamless link between the L1 norm,used in the Osher-Rudin TV image enhancement and its variants, and the L2norms, used in Mumford-Shah image segmentation and its variants. TV (To-tal Variation) schemes are based on minimizing the L1 norm, namely R jrIj,while the L2 norm minimizes R jrIj2. Our framework is based on the ge-ometry of the image and its interpretation as a surface. The aspect ratiobetween the gray level and the xy image plane, is the switch between the twocommonly used norms. This observation made it possible to show that ourmulti-channel (color) enhancement procedure may be considered as a gener-alization of the powerful TV scheme that is now commonly used in the hightech image processing industry. This procedure yield very promising resultsfor color image enhancement [11]. In this work, we propose a ow in a richfeature space which is di�erent from the image spatial-intensity space.Representation and Riemannian structureWe represent an image and other local features as embedding maps of a Rie-mannian manifold in a higher dimensional space. The simplest example isthe image itself which is represented as a 2D surface embedded in IR3. Wedenote the map by X : �! IR3, where � is a two-dimensional surface, and wedenote the local coordinates on it by (�1; �2). The map X is given in generalby (X1(�1; �2);X2(�1; �2);X3(�1; �2)). In our example we represent it as



Geometry of Texture 205(X1 = �1;X2 = �2;X3 = I(�1; �2)). We choose a Riemannian structure onthis surface, namely, a metric. The metric is a positive de�nite and symmetric2-tensor that may be de�ned through the local distance measurements:ds2 = g��d��d�� � g11(d�1)2 + 2g12d�1d�2 + g22(d�2)2; (1)where we used Einstein summation convention in the second equality. Wedenote the inverse of the metric by g�� .Polyakov action: a measure on the space of embedding mapsLet us briey review our general framework for non-linear di�usion incomputer vision. We will use this framework in Section 4 to di�use a tex-tured image in the transformed domain. The equations will be derived bya minimization problem from an action functional. The functional in ques-tion depends on both the image manifold and the embedding space. Denoteby (�; g) the image manifold and its metric, and by (M;h) the space-featuremanifold and its metric. Then the functional S[X] attaches a real number toa map X : �!M :S[Xi; g�� ; hij ] = Z dV hrXi;rXjighij; (2)where dV is a volume element and hrR;rGig = g��@�R@�G. This functional,for m = 2, was �rst proposed by Polyakov [9] in the context of high energyphysics, and the theory is known as string theory.Using standard methods in the calculus of variations (see [11]), the Euler-Lagrange equations with respect to the embedding are� 12pg hil �S�X l = 1pg @�(pgg��@�Xi): (3)Since (g��) is positive de�nite, g � det(g�� ) > 0 for all ��. This factor isthe simplest one that doesn't change the minimization solution while givinga reparameterization-invariant expression. The operator that is acting on Xiis the natural generalization of the Laplacian from at spaces to manifoldsand is called the second order di�erential parameter of Beltrami [5], or for shortBeltrami operator, and we will denote it by �g.For a surface � embedded in 3 dimensional Euclidean space, we get aminimal surface as the solution to the minimization problem. In order tosee this and to connect to the usual representation of the minimal surfaceequation, we notice that the solution of the minimization problem with respectto the metric is g�� = @�Xi@�Xi: (4)Plugging this induced metric in the �rst Euler-Lagrange equation (3), we getthe steepest decent ow Xt = HN; (5)



206 R. Kimmel, N. Sochen, and R. Malladiwhere H is the mean curvature, and N is the normal to the surface given byH = (1 + I2x)Iyy � 2IxIyIxy + (1 + I2y )Ixxg 32 ;N = 1pg (�Iy;�Ix; 1)T ; (6)and g = 1+ I2x+ I2y . We see that this choice gives us the mean curvature ow!This should not be a surprise, since the action functional for the above choiceof metric g�� isS = Z dArea = Z d2�pg = Z d2�qdet(@�Xi@�Xi); (7)which is the Euler functional that describes the area of the surface, also knownin high energy physics as the Nambu action.In general, for any manifold � and M , the map X : � ! M that min-imizes the action S with respect to the embedding is called a harmonic map.The harmonic map is the natural generalization of the geodesic curve and theminimal surface to higher dimensional manifolds.x3. Gabor/Morlet-wavelets: A Natural Space for Texture ImagesIn [6] Lee argues that the 2D Gabor/Morlet wavelet transform with speci�ccoe�cients is an appropriate mathematical description for images. He basedhis �ndings on neurophysiological evidence based on experiments on the visualcortex of mammalian brains. These experiments indicate that the best modelfor the �lter response of simple cells are self-similar 2D Gabor/Morlet wavelets.Following Lee [6], let us briey describe the 2D Gabor/Morlet waveletsthat model the simple cells. The 2D wavelet transform on an image I(x; y) isde�ned as(TwavI)(x0; y0; �; a) = kak�1 Z Z dxdyI(x; y) � �x � x0a ; y � y0a � ; (8)where a is a dilation parameter, x0 and y0 are the spatial translations, and �is the wavelet orientation parameter. Here (x; y; x0 ; y0; �; a) = kak�1 �(x� x0a ; y � y0a ); (9)is the 2D elementary wavelet function rotated by �. Based on neurophysiolog-ical experiments, a speci�c Gabor elementary function is used as the motherwavelet to generate the 2D Gabor/Morlet wavelet family by convolving theimage with  (x; y) = 1p2� e� 18 (4x2+y2)(eikx � e� k22 ); (10)



Geometry of Texture 207and  �(x; y) =  (~x; ~y) is de�ned by rotation of (x; y) via� ~x~y� = � cos � sin �� sin � cos �� :� xy� : (11)The discretization of (8), i.e (Twavp;q;l;mI), is denoted by Wp;q;l;m and isgiven byWp;q;l;m = a�m Z Z dxdyI(x; y) l��(a�m(x � p�x); a�m(y � q�x)); (12)where �x is the basic sampling interval, �� = 2�=L, and the angles are givenby l��, where l = 0; :::; L � 1, and L is the total number of orientations.p; q and m are integers determining the position and scaling. Note that asm increases, the sample intervals get larger forming a pyramidal structure.Equation (12) can be read as a projection onto a discrete set of basis functionsWp;q;l;m = hI;  p;q;l;mi: (13)The real number k determines the frequency bandwidth of the �lters inoctaves via the approximationk = a� + 1a� � 1p2 ln 2; (14)where � is the bandwidth in octaves, e.g. for a = 2 and � = 1:5 we getk � 2:5. In the above approximation the DC normalization term e�k2=2 thatis required to make a wavelet basis out of the Gabor basis is ignored, andwe consider a = k=!0. So the peaks of the scaled mother wavelets in thefrequency domain are (approximately) at the locations a�m!0.For our application we have chosen to work with a frame. The conceptof frames was introduced in [3]. A family of functions ( j ) is a frame if thereexist A > 0; B <1 that are called frame bounds so that for every f we haveAkfk2 �Xj jhf;  j ij2 � Bkfk2; (15)where kfk = R f2. One could recognize this as a generalization of Parseval'stheorem. A discrete family of wavelets that forms a frame provides a completerepresentation of any function. In some cases it is possible to recover a functionwith good approximation by the inversion formulaf � 2A+BXj h j ; fi j : (16)The ratio B=A measures the tightness of the frame. When A = B, the frameis tight and the reconstruction by summation is exact. Thus, as B=A ap-proaches 1, we may still use the above reconstruction equation as a good
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Fig. 1. The wavelet basis functions (up to translations). The basis functionsare presented in a gray level array, real (symmetric) and imaginary (a-symmetric) for the 8 angles [0; �] and 5 scales.
Fig. 2. The half peak contours in the frequency domain of the wavelet basisfunctions in the previous �gure, (5 scales 16 orientations).approximation. That is, we treat our discrete wavelets as an orthonormalbasis.We denote the 2D Gabor/Morlet-wavelet transform asW (x; y; �; �), suchthat R = Real(W ) and J = Imag(W ), where for the discrete case � = am and� = l��. The response of a simple cell is then modeled by the projection ofthe image onto a speci�c Gabor/Morlet wavelet.Motivated by the arrangement of simple cells in our brain, with as tighta frame as possible, we consider 5 spatial frequency octaves, and 16 anglesthat discretize the [0; 2�] angular interval. Practically, we used the symmetryproperties of the 2D Gabor/Morlet-wavelet transform: W (x; y; � + �; �) =�W (x; y; �; �). Thus, only 8 angles are needed to represent the discretizationof the full [0; 2�] angular interval into 16. We choose a = 2 and �x = 1. Thisselection results in a frame bounds A = 271:95, B = 233:69, with ratio ofB=A = 1:19. The fact that this ratio is close to 1 means that we have a tightframe that allows simple summation reconstruction. Figs. 1 and 2 show thebasis functions we used. Periodic boundary conditions are used for the real(symmetric) part, and negative periodicity for the imaginary part, forminga `Klein bottle' coordinate system in (x; y; �). This enables us to reduce thememory complexity by a factor of 2.
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Fig. 3. A schematic diagram of Gabor/Morlet wavelet decomposition of the orig-inal image (at the top) into the (x; y; �;W�(x; y; �)) and the images thatare the result of reconstruction by summation for each scale � separately(bottom). The last row presents the reconstruction result after 70 iter-ation of the Beltrami ow at each scale. In all the examples we useL = 16, a = 2, k = 2:5, and m 2 f0; ::; 4g.For practical implementation that avoids the special numerical treatmentneeded along the pyramidal discrete � scale axis, we consider each scale as aseparate space. The induced metric for each scale is then given by(g��) = 0@ 1 +R2x + J2x RxRy + JxJy RxR� + JxJ�RxRy + JxJy 1 +R2y + J2y RyR� + JyJ�RxR� + JxJ� RyR� + JyJ� 1 +R2� + J2� 1A : (17)



210 R. Kimmel, N. Sochen, and R. MalladiThis result can be understood from the arclength de�nition in this spatial-orientation complex space, namelyds2 = dx2 + dy2 + d�2 + dJ2 + dR2: (18)Applying the chain rule on dR = Rxdx+Rydy+R�d�; and similarly for dJ , weobtain the desired bilinear structure that describes the above induced metricfor this case.The gradient descent equations for the Polyakov action readRt = �gR; Jt = �gJ; (19)where �gX is given in (3) with the metric (17).x4. Experimental ResultsLet us start with a simple example. In Fig. 3 we �rst decompose an image viathe wavelet transform into 4 separate sub-scale channels. The decompositionand the result of applying the Beltrami ow on each sub-scale are shown.Let us gain more motivation on the advantage of the wavelet decomposi-tion. Fig. 4 shows the result of composing the image back from just the �rst2, and then the �rst 3 sub-scale channels. The cancellation of the shadowingcan also be realized by a very simple high pass �lter. However, as a byproductof the wavelet decomposition, at each scale � we now have the complex func-tion W�(x; y; �). It de�nes a surface in the 5D space (3 real and one complexdimensions) (x; y; �;W� ). The extra coordinate � that describes the behaviorof the image along a speci�c direction enables us to smooth the image whilekeeping the meaningful orientation structure of the texture. Moreover, wehave the freedom to apply di�erent �lters to the di�erent scales. This enablesus to preserve the nature of texture images by processing them only at signif-icant scales. In other words, we are able to sharpen a speci�c scale withoute�ecting the rest of the sub-band images. Fig. 5 is the original image andthe result of applying the Beltrami ow to �lter out non-oriented structures.More examples are shown in Fig. 6.x5. Concluding RemarksWe proposed to combine a psychophysically supported texture space, the 2DGabor/Morlet-wavelet transform, with a geometrical ow to enhance textureimages. The texture was considered as a manifold in its natural space. Theow was realized by invoking Polyakov action, and the result was the Beltramiow in the feature space. The result is a variational-geometric technique thatenhances texture images in their appropriate decomposition space.
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Fig. 4. Reconstruction by summation, of only 2, 3, and all layers of the di�erentscales: the low frequency scale contribute the shadowing, thus summingonly over the �rst 3 scales cancels this e�ect (a simple high pass e�ect).
Fig. 5. Left: Original image 128 � 128, Right: Result of Beltrami ow for 70numerical iterations in each sub-scale.

Fig. 6. Example of 2 snapshots from the evolution for di�erent texture imagesLeft: Original image 64� 64.
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