COMPUTER VISION AND IMAGE UNDERSTANDING
Vol. 62, No. 3, November, pp. 382-391, 1995

Skeletonization via Distance Maps and Level Sets

Ron KiMMEL, DORON SHAKED, AND NaHUM KirRYATI

Electrical Engineering Department, Technion, Haifa 32000, Israel

AND

ALFRED M. BRUCKSTEIN

Computer Science Department, Technion, HHaifa 32000, Israel

Received September 6, 1994; accepted November 7, 1994

The medial axis transform (MAT) of a shape, better known
as its skeleton, is frequently used in shape analysis and related
areas. In this paper a new approach for determining the skele-
ton of an object is presented. The boundary is segmented at
points of maximal positive curvature and a distance map from
each of the segments is calculated. The skeleton is then located
by applying simple rules to the zero sets of distance map differ-
ences. A framework is proposed for numerical approximation
of distance maps that is consistent with the continuous case
and hence does not suffer from digitization bias due to metrica-
tion errors of the implementation on the grid. Subpixel accuracy
in distance map calculation is obtained by using gray-level
information along the boundary of the shape in the numerical
scheme. The accuracy of the resulting efficient skeletonization
algorithm is demonstrated by several examples. 1995 academic

Press, Inc.

1. INTRODUCTION

In this paper we present a new approach to shape skele-
tonization, The importance of the skeleton, or medial axis,
was discussed by Blum in [6, 7] with motivation fron visual
perceplion analysis. Mathematical properties of the medial
axis transform (MAT) has been investigated over the years
in many papers starting with [21, 22] and are still of great
interest to the computer vision community {23, 34, 4. Skel-
etons are frequently used as shape descriptors, e.g., in
character recognition.

In [21] Montanari gives four (equivalent} definitions for
the skeleton of shapes in the real plane. The first is the
prairie fire model, the skeleton points being the locations
where the propagating wavefront initiated on the shape
boundary “intersects itself.” This model of wavefront
propagation uses the Hilygens principle and shock captur-
ing as in optics and fluid dynamics. The boundary propa-
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gates with a constant velocity along its normal direction
and the skeleton points are the shocks that appear during
the propagation, Shocks are the collisions of “ignition
lines” [28], as seen in Fig. 1a. The propagating wavefront
carries information about the boundary. Thus, using the
prairie fire point of view, the skeleton points may be re-
garded as points in which shape boundary information
vanishes. The second approach defines the skeleton as the
set of “ridges” on the distance map surface measured from
the boundary; see Fig. 1b. The third model considers the
skeleton as the geometric location of centers of maximal
disks. A maximal disk is a disk contained in the shape, for
which there exists no other disk in the shape that contains
it; see Fig. 1c. The last model defines a skeleton as the set
of points that do not belong to any straight line segment
connecting other points to their respective closest bound-
ary points; see Fig. 1d.

The four definitions mentioned above motivated a
wealth of discrete implementations on binary images over
the last two decades [1, 2, 9, 16, 19]. A skeletonization
approach thal has recently gained attention is the use of
the Voronoi diagrams, c.g., |5, 23, 32

Roughly speaking, the skeletonization algorithms may
be divided into three classes. Most algorithms operate on
binary pixel images {1, 2,9, 16, 19]. Other algorithms oper-
ate on polygons that are assumed to be provided by some
polygonal approximation of the boundary [3, 15, 21]. Only
few algorithms try to deal with the general problem of
skeletonization for smooth shapes [11, 30]. The algorithm
proposed in this paper belongs to ail three classes. Moti-
vated by global properties of the boundary and skeleton
curves, we present a discrete implementation that is consis-
tent with the continuous case.

In principle, each skeleton point corresponds to at least
two boundary points. Those points are the boundary points
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FiG. 1.

Mustration of the four points of view on the skeleten (white) of an object (gray). (a) The black curves are offsets of the boundary

obtained by censtant velocity propagation. The set of shocks (self-intersection points) of the propagating curves generate the skeleton. The arrows
from the boundary to skeleton points represent ignition lines. (b) The skeleton is the planar projection of the ridges of the distance map from the
boundary. The ridges are shown as black curves in 3-D, where the third dimension represents distance. (¢) The skeleton is the set of centers of
maximal disks. {d) The skeleton is considered as the set of points that do not belong to any straight line connecting other interior points to their

respective closest boundary points.

with Hiiygens wavefronts that met at the skeleton point,
or alternatively, the boundary points touching the maximal
disk centered on the skeleton point. The skeleton point is
located at the intersection of the normals to the two bound-
ary points, and the distances between the skeleton point
and both boundary points are equal. Therefore, if we seg-
ment the boundary into small segments and find a distance
map from each of those segments, the skeleton will be
located at places where at least two distance maps share
the same value. Those locations could be equivalently de-
fined as zero sets of distance map differences.

The above description is based on the implicit assump-
tion that we know how to segment the boundary so that
no pair of boundary points corresponding to the same
skeleton point belong to the same segment. This would be
trivially accomplished by a very fine boundary segmenta-
tion which would lead to high computational complexity.
Indeed, if we segment the boundary at each boundary

pixel, we arrive at Voronoi-diagram-based skeletonization
(18, 5, 23].

In order to solve the boundary segmentation problem,
we study the relation between positive curvature maxima
along the boundary and the skeleton. In particular, we
show that a skeleton point is never generated by a single
curve segment defined between successive positive curva-
ture maxima. The symmetry—curvature duality was pre-
viously explored by Leyton in [17). In [25] that duality was
used in constructing the ‘“curvature skeleton” of binary
images.

The structure of this paper is as follows: In Section 2 we
present the skeletonization algorithm for the continuous
{preimage) case. A discrete approximation of the proposed
algorithm is introduced in Section 3, employing gray-level
information along the boundary to find the curvature along
an implicit subpixel representation of the object boundary.
Examples of applying the algorithm to image data are
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presented in Section 4. In the Appendix we state and prove
a version of the Four Vertex Theorem [10]. It is used in
Section 2 to prove the correctness of the skeletonization
algorithm construction.

2. THE SKELETON AND CURVATURE MAXIMA

Let the boundary of an object be given by a simple
closed planar curve (s) € R?, where s is the arclength
parameterization along the curve. The curvature (s} is
defined [10, 31] as the magnitude of the second derivative
of the curve with respect to its arclength, a positive sign
being assigned at convex points and a negative sign at
concave points.

As explained in the introduction, a skeleton point gener-
ally corresponds to at least two boundary points that touch
the maximal disk. We refer to those points as the boundary
points “generating’ the skeleton point. In order to justify
our new skeletonization approach we prove the following
property of the skeleton-baoundary relation.

THEOREM 1. A boundary segment connecting two
points that generate a skeleton point contains at least one
internal point having a positive curvature maximum,

Proof. Given a boundary segment connecting two
points that generate a skeleton point, the maximal disk
corresponding to the skeleton point is tangent to the
boundary at the end points of the boundary segment. Those
two points segment the disk boundary into two circular
segments, Consider a new shape defined by the boundary
segment and the “outer” or opposite circle segment of the
maximal disk. We now apply a version of the well-known
Four Vertex Theorem [10], which is stated and proven in
the Appendix. According to the Four Vertex Theorem,
the boundary of the new shape has at least two distinct
points at which the curvature is both positive and locally
maximal. The circle segment on the boundary may account
for only one such point. The other has to be found within
the segment of the original boundary. ®

This theorem provides the basis for the required bound-
ary segmentation

CoroLLarY 1. If we segment the shape boundary at
points of positive maximal curvature, points generating its
skeleton always belong to different boundary segments.

An algorithm for skeletonization follows from this result.
Its outline is:

1. Find the curvature along the boundary curve and split
the boundary into segments at points of maximal positive
curvature. The arclength parameters of the segmentation
points, are referred to by s;, where i € {0,1, ..., N — 1},
(sy = ). N being the number of local positive curva-
ture maxima.

KIMMEL ET AL.

FIG. 2. The white hole in the black objeet has a boundary segment
along which the total curvature is less than -2,

2. For each segment calculate the Euclidean distance
map over the whole image domain {} C R2 For the ith
segment of the boundary curve, €(s) : s € [5;, 5], the
distance map @; : (x, y) € ) — R*, is defined as

9 (r.y) = _inf {d(6(s), (5 y)

where d(p, ¢q) is the Euclidean distance between the two
points p and gq.

3. Find a preliminary skeleton as the location of the
zero-level sets of all distance map differences.

&S ={(x,y): Vi, j i # ], (@ — D; = 0) N (N D < D),
(1

wherei,j, k€ {0,1,...,N - 1}. & is clearly the Voronoi
diagram of the curve segments.

4, Eliminate all exterior points (background points), and
all points located on branches starting at points ‘€(s;) with
a distance from “€(s;) less than 1/k(s). The elimination
process is performed sequentially starting with the branch
corresponding to the largest curvature maximum and end-
ing with the smallest positive curvature maximum. False
branches corresponding to larger curvature maxima are
deleted first so that they will not interfere with the deletion
process of false branches corresponding to smaller curva-
ture maxima that are connected to them.

Note that for the segmentation of a closed curve, we
need to assign at least two partition points. Assigning a
partition point at points of positive maximal curvature
results in a Jegal segmentation of the boundary, due to the
Four Vertex Theorem, which ensures the existence of at
least two such peints.

The skeletonization algorithm described above operates
well on all shapes unless they have a specifically shaped
hole in them,; see Fig. 2. The reason for this problem is that
the Four Vertex Theorem does not apply to boundaries of
holes in shapes, or in other words, a shape (the shape of
the hole) does not necessarily have two boundary points
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with negative curvature minima. However, if a shape has
a single negative curvature minimum, the boundary neces-
sarily contains a convex segment with a tangent turn angle
that is larger than 2m; see Fig. 2. Therefore, to make this
algorithm general, we add an arbitrary segmentation point
to every hole boundary with a turn angle less than —27.

In the next section a discrete version of the algorithm
is devised. Gray-level information along the object bound-
ary is used to achieve subpixel accuracy in the numerical
implementation.

3. DISCRETE APPROXIMATION

The numerical approximation used for implementing
the proposed skeletonization algorithm considers the gray-
level information at the pixels along the object boundary
for interpolating the boundary curve and its corresponding
curvature. One possible model of the relation between the
image pixels and the continuous preimage describes the
object boundary between the grid points by first thresh-
olding the object from the background and then interpolat-
ing the boundary between the pixels. We shall consider
the boundary to be a level set of the image gray-level
function, or alternatively, without loss of generality, we
may consider the boundary to be the zero-level set of the
gray level minus a given threshold, as in [13]. We also
assume a local linear behavior of the gray-level function
near that zero set. The planar curvature of any level
set f~Yc), where ¢ stands for a constant, of the function
f:R? - Ris given by [10]

« :f-‘rXff: - Zﬂﬁfxy + f:v,vf,zr
(f+1r=

2)

First, the location of the boundary is obtained by linear
interpolation (see [29] for a useful method for finding the
boundary at a cell between four neighboring pixels). The
curvature of the boundary at its intersections with the grid
lines is then obtained by linear interpolation of the radius
of curvature of level sets that pass through the two nearest
grid points. Consider for example a grid line parallel to
the x axis. Let the gray level at pixel i be f; = f(iAx) < 0
and the gray level at the next pixel be fi.; > 0. Then the
zero set is interpolated to be at Ax(i + |£|/(fir — D),
where Ax is the distance between the pixels. It is possible
to calculate k;, the curvature of the f; level set at pixel
using the simple central difference approximation for the
partial derivatives in (2). The curvature at the zero crossing
is interpolated as follows. For kix;.q > 0, linear relation of
the radius of curvature between successive level sets can
be assumed and « at the zero crossing is interpolated by

= | £ + 1 fisal _
| fisalrit + | fil iy

(3a)
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If x;x:1 < O interpolation of the curvature itself at the zero
crossing is more appropriate,

K= MEM (3b)
| fiva] + £

The above scheme provides the curvature values at the

intersection points of the boundary and the grid lines.

Now the local positive maxima of the curvature can be
detected and used for boundary segmentation. For each
boundary segment the distance map is calculated. Two
alternative techniques for computing subpixel distance
maps in a way that is consistent with the continzous case
are presented in [13] and in [14, 33]. Both methods use
the gray-level information near the boundary as initial
conditions. Since the image is not binarized, the subpixel
boundary information that is implicitly contained in the
gray levels is preserved. Having computed the N distance
maps, the zero-level sets of the distance map differences
yield the preliminary skeleton points (Eq. (1)).

The examples in the next section show synthetic objects
created by first generating a binary image and then per-
forming geometric smoothing to simulate the integration
effect of a CCD. Some smoothing is usually necessary even
with real gray-level images in order to reduce the effects
of noise in the boundary on the skeleton. The geometric
smoothing we used considers each gray-level set as a curve
and propagates all the level sets simultaneously using a
geometric heat flow [27]. The Osher-Sethian algorithm
[24] for curvature-based flows is the basis for the numerical
implementation of

of _
L= |9fIx, @

where « is the curvature defined at each level set of the
gray-level image f as in Eq. (2). The above differential
equation was numerically implemented using central dif-
ference approximation in space and forward difference
approximation in time.

Consider a certain level set to be given as a parameter-
ized curve 6(s) : [0, L] — RZ, where s is the arclength
parameterization of €. If f evolves under {(4), then €, em-
bedded as a level set in f, propagates in time according to

C@{ = (6555
or equivalently
@, = kn,

where 7 i1s the unit normal to the curve %€.
We smooth the boundary by propagating the image f
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according to Eq. (4) with Ar = Ax. Next, the curvature is
interpolated between the grid points along the linearly
interpolated boundary, via Eq. (3). If there is more than
one connected component like in the case of holes in the
object or several objects, several curvature lists are gener-
ated. For each of the curvature lists, the curvature function
is first smoothed using a moving average rectangular win-
dow. Then, local positive maxima are detected using a
finite window on the curvature function. Both the moving
average window and the local-maxima-detection window
are used to eliminate noise effects.

In step 2 of the algorithm the boundary was segmented
at points of local positive curvature maxima. Gray-level
values in a 4-pixel-width envelope around each segment
are then used as initial conditions for the distance map
calculation procedure. For computing the distance from
each segment, we used the iterative procedure of [12, 14,
33]. That procedure is a special case of the shape from
shading algorithm of Rouy and Tourin [26]. In the continu-
ous domain, let 9y : Q(C R?) — R* be equal to the gray-
level values in an envelope N C {2 along the given segment
and + o elsewhere, Q\N. The distance map of the segment
is calculated by

@, =1 — |va,

for @ € Q\N. The following differential approximation of
the above equation was proven in [26] to converge to the
proper solution {in our case the distance map). Using the
discrete notation Bf; = D(NA¢, iAx, jAy), first define

a= D{@u = (@i,j - QD,-,LJ,-)/AX

b= Di@‘u‘ = (@H],}' - ED,-“,-)J'Ax

cC= D{gbu- = (@j’}' e %t'!j_])l"Ay

d= DJ.';E’D” = (@i’ﬁl - E’D[I)JIA_))

Then, the following numerical scheme is used to update 9.

N+l
@f.j'

= 9, - At(Vmax[(a*)?, (b7)] + max[(c*V, (d7)F] - 1),

where, a* = max(w, 0) and o~ = min{e, 0). The L' norm
of the change between two successive iterations is used to
set the stopping condition; see [33, 26].

The distance map from each segment and the values of
the local positive curvature at the segments edges are used
to produce the final skeleton. Subpixel accuracy is achieved
by interpolating the skeleton between the grid points, mak-
ing use of the values of the distance maps at each grid
point. Tt is possible to handle junctions separately and to
cortect the “cutting” effect.

KIMMEL ET AL.

4. EXAMPLES

We have presented an algorithm for locating the skele-
ton of a given object in a picture with subpixel accuracy.
A geometric property relating the local positive curvature
maxima along the boundary and the skeleton points was
presented. It is the basis for boundary segmentation that
ensures that a skeleton point may not be generated by
two points on the same boundary segment. The boundary
segments were used to construct the skeleton via zero
sets of distance map differences. The suggested algorithm
readily iends itself to parallelization. The following exam-
ples demonstrate the operation of the algorithm.

Consider the object shown (after geometric smoothing)
at the upper left frame in Fig. 3. The interpolated smoothed
curvature along the outer and inner boundaries of the
object are shown in the upper right frame. The lower left
frame shows the pixels that correspond to the Voronoi
diagram (before pruning). The branches to be pruned are
the light gray pixel chains from the positive local curvature
maxima along the boundary. The skeleton, interpolated
to subpixel accuracy, is shown in the lower right frame.
Additional objects and their skeletons are presented in
Figs. 4, 5, and 6.

APPENDIX

In this appendix we state and prove a version of the
well-known Four Vertex Theorem [10] using ‘‘skeleton
terminology.”

A circle may touch a curve at a single point or at several
points. It may also coincide with the curve on an arc seg-
ment (or on several arc segments). We say that a disk
touches a curve at two separate points p and g, if p and g
do not belong to the same arc segment on which the disk
boundary and the curve coincide.

In the sequel we use a few basic facts about the relation
of a curve segment to disks touching it at a point p [8]. To
avoid repetitions, we refer only to disks with centers lo-
cated on the left side of the curve (the side to which the
normal of convex segments point).

1. The curve penetrates all disks, touching it at p, unless
they are tangent to the curve.

2. The centers of all tangent disks are located on the
normal to the curve.

3. If the curvature of the curve at p is negative, then
there exists a neighborhood of p in which the curve is
outside all the disks tangent to it.

4, If the radius of a tangent disk is smaller than the
radius of curvature of the curve at p, then there exists a
neighborhood of p in which the curve is outside the disk.
Note that the radius of curvature of a curve is 1/x, where
x 18 the curvature of the curve.

3. For convex curve segments, if the radius of a tangent
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FIG. 3.

(Upper 1eft) An object after geometric smoothing, (Upper right) Interpotated curvature function along the outer boundary {upper graph)

and inner boundary (lower graph). (Lower left) Voronoi diagram of the segments (preliminary skeleton) in which the branches to be pruned are
in light gray. (Lower right) The skeleton is the white curve, interpolated to subpixel accuracy, shown on the object.

disk is larger than the radius of curvature of the curve at
p, then there exists a neighborhood of p in which the curve
is inside the disk.

6. For convex curve segments, if the radius of a tangent
disk is equal to the radius of curvature of the curve at p,
i.e., the disk is osculating the curve, then

{a) if the curvature of the curve at p is locally minimal,
then there exists a neighborhood of p in which the curve
is inside the disk.

{b) if the curvature of the curve at p is locally maxi-
mal, then there exists a neighborhood of p in which the
curve is outside the disk.

(c) if the curvature of the curve at p is not extremal,
then the curve penetrates the disk at p.

We conclude that for convex curve segments, if we inspect
all disks tangent to the curve at a points p in order of
increasing radii, the location of curve points in the neigh-
borhood of p is initially outside of the disk and finally
inside the disk. The change occurs when the radius of the
disk is equal to the radius of curvature of the curve at p.

At the change, the relation between the disk and the curve
points in the neighborhood of p depends on the third-
order behavior of the curve according to Fact 6 above.

Lemma 1. A maximal disk in a shape touches the shape
in one of the following:

1. two or more separate points.
2. a single point or segment with a curvature that is posi-
tive and locally maximal.

Proof. A maximal disk in a shape has to touch its
boundary in at least one point, let us denote it by p. From
Fact 1, it is clear that it has to be tangent to the boundary.
Let us inspect the set of disks tangent to the boundary at
p in order of increasing radii. Note that every tangent disk
contains all the former tangent disks. Therefore, there may
be only one maximal disk tangent to the boundary at p.
The maximal disk is the first tangent disk for which either:

1. there is a boundary point, different from p, for which
all larger disks contain external points in its neighbor-
hood, or
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FIG. 4. {(Upper left} A tilted “*box"-object after geometric smoothing. (Upper right} Interpolated curvature function along the boundary. (Lower
left) Voronoi diagram of the segments (preliminary skeleton) in which the branches to be pruned are in light gray, (Lower right) The skeleton is

the white curve, interpolated to subpixel accuracy, shown on the object.

2. all larger disks contain external points in the neigh-
borhood of p.

Case 1 above is clearly Case 1 of the lemma. From Fact 6
itis apparent that Case 2 may occur only at boundary points
in which the curvature is positive and locally maximal. Case
2 is therefore Case 2 of the lemma. Note also that in those
cases the radius of the maximal disk is equal to the radius
of curvature of the boundary. ®

LEMMA 2. Let AB and CD be two line segments in the
plane, intersecting at a point E, Then, either B € C2 or
D & C8, where CZ denotes the circle centered at A and
passing through B and C2 denotes the circle centered at C
and passing through D.

Proof. We have to show (see Fig. 7), that either
BC = CD or DA = AB. Suppose the contrary is true, i.e.,
BC > CD and DA > AB. Adding the two inequalities we
get BC + DA > CD + AB=CE + ED + AE + EB =
(CE + EB} + (DE + EA) in contradiction to the triangle
mequality BC = CE+ EBand DA =DE + FA. =

CoROLLARY 2. Line segmenis connecting centers of
maximal disks in a shape with their respective generating
points on the boundary cannot intersect.

If two such line segments intersect, at least one of the
generating points is inside the other circle. Since the gener-
ating points are boundary points this other circle cannot
be a maximal disk.

Given a shape and a maximal disk that touches it in two
separate points p and g, we define two new shapes as
follows: p and g define two arc segments on the maximal
disk, and two respective boundary segments. The two new
shapes are defined each by a boundary segment and the
opposite arc segment, see Fig. 8.

LemmA 3. Both skeletons of the two new shapes include
the center of the maximal disk, and their union is the skeleton
of the full shape.

Proof. We refer to the definition of the skeleton as the
set of shocks of the propagating boundary, or the Prairie
Fire Model. In the Prairie Fire Model a boundary point
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FIG. 5.
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(Upper left) An object after geometric smoothing. {Upper right) Interpolated curvature function along the outer boundary (upper graph}

and inner boundary {lower graph). (Lower left) Voronoi diagram of the segments {preliminary skeleton) in which the branches to be pruned are
in light gray. {Lower right) The skeleton is the white curve, interpolated to subpixel accuracy, shown on the object.

gets quenched at some skeleton point, as it meets another
propagating boundary point. We will show that all skeleton
points of the full shape belong to one of the new shapes
and that no new skeleton point is due to the union. The
essential statements are:

1. The propagation of all the points of the maximal disk
segments in the new shapes meet at the center of the
maximal disk.

2. All quenching pairs from the full shape quench each
other in the new shapes (on points of the original skeleton).

Let us prove the first statement: All points propagating
from the arc segments quench each other at the center of
the original maximal disk. Assume by contradiction that
a propagating arc segment point p; meets another propa-
gating boundary point before it meets any other propagat-
ing arc segment point. This implies that the maximal disk
touching point p, in the new shape has a smaller radius
than the maximal disk. This cannot happen, since any such

disk is contained in the maximal disk, which is contained
in both new shapes.

We now show that pairs of generating points on the
boundary of the full shape cannot be separated into differ-
ent new shapes. Assume by contradiction that two points
that generated a skeleton point of the full shape are each
located on the boundary of a different new shape. In that
case the radius connecting one of those points with the
skeleton point corresponding to it must intersect one of
the radii connecting the center of the maximal disk to
either p or g, contradicting Corollary 2. Points p and g are
the points generating the original maximal disk, see Fig. 8.

To prove the second statement we must show that in
the new shapes, each boundary point is quenched by its
original twin from the full shape. This is 5o since otherwise
it must be quenched by another point from the boundary
of the new shape. But this is impossible, it will not be
quenched by another point that belongs to the full shape
since it did not happen in the full shape in the first place; it
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{Upper left) An object after geometric smoothing. (Upper right) Interpolated curvature function along the outer boundary (upper graph)

and inner boundary (lower graph). (Lower left) Voronoi diagram of the segments (preliminary skeleton) in which the branches to be pruned are
in light gray. (Lower right) The skeleton is the white curve, interpolated to subpixel accuracy, shown on the object.

will not be quenched by a point from the newly introduced
circular segments, since we have shown that all the arc
segment points are quenched together. =

The following corollary is a direct consequence of
Lemma 3.

FIG. 7. Proof of Lemma 2.

CoroLLarY 3. The center of a maximal disk that
touches the boundary in two separate poinis connects two
different paris of the skeleton.

The two parts are the skeletons of the two new shapes.
Note that none of those parts is degenerate (i.e., a single
point), since a single-point skeleton corresponds only to a
circle. If one of the new shapes is a circle, the two boundary
points are not separate points.

LEMMA 4. An end point of the skeleton corresponds to
a single boundary point with a curvature that is positive and
locally maximal.

Proof. From Lemma 1, it is sufficient to show that if
a maximal disk is tangent to the boundary at two or more
separate points, its center is not on an end point of the
skeleton. This in turn is shown by Corollary 3. =

THEOREM 2 (A VERSION OF THE FOUR VERTEX THEOREM
[10]). Every simply connected shape that is not a circle,
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a b c

FIG. 8. Using the maximal disk it is possible to split the full shape
into two new shapes.

has at least two boundary points in which the curvature is
both positive and locally maximal.

Proof. Every simply connected shape has a simply con-
nected skeleton [20]. Only circles have skeletons that are
single poiats. Therefore, the skeletons of all other simply
connected shapes have at least two end points. The proof
follows immediately from Lemma 4. ®

ACKNOWLEDGMENTS

We thank Dr. Guillermo Sapiro for many helpful discussions on skele-
tons and distance transforms. This research was supported in part by the
Ollendorf Center of the Department of Electrical Engineering, by the
Technion VPR Funds, and by the Fund for the Promotion of Research
at Technion.

REFERENCES

1. C. Arceli, Pattern thinming by contour tracing, CGIP 17, 1981,
130-144.

2. C. Arcelli and G. Sanniti di Baja, A width independent fast thinning
algorithm, JEEE Trans. PAMI 7, 1985, 463-474.

3. F. L. Bookstein, The line skeleton, CGIF 11, 1979, 123-137.

4. J.W. Brandt, Convergence and continuity criteria for discrete approx-
imations of the continuous planar skeleton, CVGIP: fimage Under-
standing 59, 1994, 116-124.

5. J. W. Brandt and V. R. Algazi, Continuous skeleton computation by
Voronoi diagram, CVGIFP: Image Understanding 55, 1992, 329-338,

6. H. Blum, A transformation for extracting new descriptors of shape,
in Models for the Perception of Speech and Visual Form (Walthen
Dunn, Ed.), pp. 362-380, MIT Press, Cambridge, MA, 1967,

7. H. Blum, Biological shape and visual science (part I), J. Theor. Biol.
38, 1973, 205-287.

- 8. J. W. Bruce and P. J. Giblin, Curves and Singularities, 2nd ed., Cam-
bridge Univ. Press, Cambridge, UK 1992,

9. P. Danielson, Euclidean distance mapping, CVGIP: Graphic Models

Image Process. 14, 1980, 227-248.

10. M. P. Do Carmo, Differential Geometry of Curves and Surfaces,
Prentice Hall, NJ, 1976.

391

11. P.J. Giblin and S. A. Brassett, Local symmetry of plane curves, Am.
Math. Monthiy 92, 1985, 639-707.

12. R. Kimmel and A. M. Bruckstein, Distance maps and weighted dis-
tance transforms, in Proceedings, SPIE Geometric Methods in Com-
puter Vision I, San Diego, California, July 1993, Vol. 2031, pp.
259-208.

13. R. Kimmel and A. M. Bruckstein, Shape offsets via level sets, CAD
25(5), March 1993, 154-162.

14. R. Kimmel, N, Kiryati, and A. M. Bruckstein, Distance maps and
weighted distance transforms, J. Math. faging Vision (Special Issue
on Topology and Geometry in Computer Vision), in press.

15. D.T. Lee, Medial axis transformation of a planar shape, IEEE Trans.
PAMI 4, 1982, 363-369.

16. F. Leymarie and M. D. Levine, Simulating the grassfire transform
using an active contour model, IEEE Trans. Pattern Anal. Machine
Intell. 14(1), 1992, 56-75.

17. M. Leyton, Symmetry-curvature duality, CVGIP: Graphic Models
Image Process. 38, 1987, 327-341.

18. D.T. Lee, Medial axis transformation of a planar shape, IEEFE Trans.
PAMI 4, 1982, 363-369.

19. F. Meyer, Skeletons in digital spaces, in Image Analysis and Mathe-
matical Morphelogy, (1. Serra, Ed.), Vol. 2, Theoretical Advances,
Academic Press, San Diego, 1988.

20. G. Matheron, Examples of topological properties of skeletons, in
Image Analysis and Mathematical Morphology, Vol. 2, Theoretical
Advances, (J. Serra, Ed.), Academic Press, San Diego, 1988.

21. U.Montanari, A method for obtaining skeletons using a quasi-Euclid-
ean distance, J. Assoc. Comput. Mach. 15(4), 1968, 600-624.

22. 1. Montanari, Continuous skeletons from digitized images, J. Assoc.
Comput. Mach. 16(4), 1969, 534-549.

23. R. L. Ogniewicz, Discrete Voronoi Skeletrons, Hartung-Gorre Verlag,
Konstanz, 1993,

24. 8. I Qsher and J. A. Sethian, Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton—Jacobi fermula-
tions. J. Comput. Phys. 79, 1988, 12-49.

25, 8. Riazanoff, B. Cervelle, and J, Chorowicz, Parametrisable skeletoni-
zation of binary and multi-level images, Pattern Recognit. Len. 11,
January 1990, 25-33,

26. E. Rouy and A. Tourin, A viscosity solutions approach to shape-
from-shading, SIAM J. Numer. Anal. 29(3), June 1992, 867-884.

27. G. Sapiro and A. Tannenbaum, Affine invariant scale-space, Int. J.
Comp. Vision 11(1), 1993, 25-44.

28. 1. A. Sethian, Curvature and the evolution of frants, Commun. Math.
Phys, 101, 1985, 487-499,

29. 1. A Sethian and J. Strain, Crystal growth and dendritic solidification,
J. Comput. Phys. 98, 1992, 231-253.

30. D. Shaked and A. M. Bruckstein, On Symmetry Axes and Boundary
Curves, CIS Report No. 9325, Computer Science Department, Tech-
nion, LL.T., Haifa 32000, Israel, 1993.

31. M. Spivak, A Comprehensive Introduction to Differential Geometry.
Publish or Perish, Berkeley, 1979.

32. K. Sugihara, Approximation of generalized Voronoi diagrams by
ordinary Voronoi diagrams, CVGIP: Graphical Models Image Pro-
cess. 55(6), 1993, 522-531.

33. M. Sussman, P. Smereka, and S. J. Osher, 4 Level Set Approach for
Computing Solutions to Incompressible Two-Phase Flow, Department
of Math, UCLA, Los Angeles, CA 90024-1555, June 1993,

34. B. J. H. Verwer, L. J. Van Vliet, and P. W. Verbeek, Binary and

gray-value skeletons: Metrics and algorithms, Int. J. Pattern Recognit.
Artif. Intell. 7(5), 1993, 1287-1308.



