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Abstract. The fields of image processing, computer vision and com-
puter graphics have concentrated traditionally on regular 2D images.
Recently, images painted on 2D manifolds are becoming more popular
and are used in face recognition, volumetric medical image processing,
3D computer graphics, and many other applications. The need has risen
to regularize this type of images.

Various manifold representations are the input for these applications.
Among the main representations are triangulated manifolds and para-
metric manifolds. We extend the short time image enhancing Beltrami
kernel from 2D images to these manifold representations. This approach
suits also other manifold representations that can be easily converted to
triangulated manifolds, such as implicit manifolds and point clouds.
The arbitrary time step enabled by the use of the kernel filtering ap-
proach offers a tradeoff between the accuracy of the flow and its exe-
cution time. The numerical scheme used to construct the kernel makes
the method applicable to all types of manifolds, including open mani-
folds and self intersecting manifolds. The calculations are done on the
2D manifold itself and are not affected by the complexity of the manifold
or the dimension of the space in which it is embedded. The method is
demonstrated on images painted on synthetic manifolds and is used to
selectively smooth face images. Incorporating the geometrical informa-
tion of the face manifolds in the regularization process yields improved
results.

1 Introduction

The Beltrami framework [5,17] enables state of the art image regularization.
It produces a spectrum of image enhancing algorithms ranging from the Lo
linear diffusion to the L; non-linear flows. Apart from regular 2D images, the
framework was used for textures, video, and volumetric data [6], non-Euclidean
color spaces [18], and orientation diffusion [8]. A detailed review can be found
in [23].

The recent increase in applications using images painted on 2D manifolds,
requires the development of computational tools for regularizing such images.
An approach based on harmonic maps was developed to enhance images painted
on implicit manifolds [2, 3,9]. In this approach the manifold is the zero set of a
level set function [10] defined in the space in which the manifold is embedded. As
noted before [19], this approach has three main drawbacks: the need to extend the
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manifold to the embedding space, performing the calculations there (which might
be computationally prohibitive for spaces with more than three dimensions) and
the method’s applicability only to manifolds represented by a level set and thus
excluding more general manifolds, such as open manifolds and self intersecting
ones.

Sochen et. al. [15,14] extended the Beltrami flow for images painted on ex-
plicit and implicit manifolds. They have also shown the Beltrami flow to be a
generalization of the approach discussed in the previous paragraph. Still, the ex-
plicit numerical schemes used to implement the Beltrami flow require an upper
bound on the time step used and might result in many iterations. Furthermore,
the method was not extended to triangulated manifolds, which are common in
many applications.

Recently, Bajaj et. al. [1] and Clarenz et. al. [4] presented combined regu-
larizations of triangulated manifolds and the images painted on them. Both the
manifolds and the images undergo anisotropic diffusions. The numerical scheme
in [1] consists of Loop’s subdivision while [4] uses a finite element discretization
in space. Both use semi-implicit finite difference discretizations in time.

A short time kernel for the Beltrami flow on regular 2D images was presented
in [22]. It followed the introduction of a short time kernel for 1D non-linear
diffusion [16] and an approximation for the 2D Beltrami operator [13]. These
kernels implement the flows by ‘convolving’ the signals with the kernels, similar
to the implementation of the heat equation by a convolution with a gaussian
kernel. The numerical implementation of the kernels enables an arbitrary time
step that gives a tradeoff between the accuracy of the flow and its execution
time.

We present here an extension of the short time Beltrami kernel to images
painted on manifolds. This kernel enjoys several important advantages,

Efficiency achieved by performing the calculations on the 2D manifold itself.
Flexibility through the tradeoff enabled by the selection of an arbitrary time
step.

— Robustness by the applicability of the kernel to all possible 2D manifolds,
including open manifolds and self intersecting ones.

Simplicity due to the applicability of the method to all popular manifold
representations including triangulated manifolds, parametric manifolds, im-
plicit manifolds and point clouds. The difference in the implementation of
the method to the various manifold representations lies only in the pre-
processing stage.

In order to compute the short time kernel we need to calculate geodesic dis-
tances between pixels in the image. For images painted on parametric manifolds
we use fast marching [11,12,24] on parametric manifolds [20,21]. For images
painted on triangulated manifolds we use fast marching on triangulated mani-
folds [7].

This paper is organized as follows. The first section describes the Beltrami
flow for images painted on manifolds. In Section 2 it is implemented by the short
time kernel. Section 3 describes the calculation of geodesic distance maps on
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images. In Section 4 the kernel is demonstrated on images painted on synthetic
manifolds and is used to regularize face images. The conclusions are in Section
5.

2 The Beltrami Flow

According to the Beltrami framework [5, 17] the image is represented by { X!, X2
o, XML IV, with X7 the spatial coordinates and I/ the intensity
components. The following derivation will assume color images painted on para-
metric manifolds embedded in R?, where we have M = 3, N = 3 and the image
is {z(ul,u?), y(ut,u?), z(ut,u?), I*(ut, u?), I?(ut, u?), I3 (ul,u?)}. For other val-
ues of M and N the derivation is virtually identical.

If we choose the embedding space to be Euclidean, its metric h;; is repre-
sented by the diagonal matrix H, with ones in the first M rows and 32 in the
next N. 3 is the relative scale between the spatial coordinates and the intensity
components. The metric elements g;; of the image are derived from the metric
elements h;; and the embedding by the pullback procedure

G = () = [ SED+ET,A? R XX Y REY
IS R T I T X))

with X} the derivative of X with respect to u/.
The Beltrami flow is obtained by minimizing the area of the image

S = / / Jodudus, 2)

with respect to the embedding, where g = det(G) = g11922 — g3. The corre-
sponding Euler-Lagrange equations as a gradient descent process are

I = A,I', 3)

where A, is the Laplace-Beltrami operator which is the extension of the Lapla-
cian to manifolds.
For gray level images we have

I, = A, = H(I,N),
i.e., the image surface moves according to the intensity component of the mean

curvature flow, see Fig. 1.

3 A Short Time Kernel for the Beltrami Flow

As shown in [22], a kernel exists for the Beltrami flow on 2D regular images.
This is similar to the simpler case of linear diffusion, where applying the PDE

I, = AI (4)
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Fig. 1. In the Beltrami flow for 2D regular gray level images the image surface moves
according to the intensity component of the mean curvature flow. Geometrically, only
the projection of this movement on the normal to the surface matters.

to the 2D regular image I (u',u?,to) for the duration ¢ is equivalent to convolving
the image with a Gaussian kernel

(ul,u2 by + 1) = // (@, @, to) K (|u! — @], [u? — @2 ¢)dii' di? =
= I(u',u? to) * K(u',u?t) (5)

where the kernel is given by
1 132 212
K(ul,u?t) = — exp GM) _ (6)
7r

Because of the non-linearity of the Beltrami flow (the Beltrami operator
depends on the data I), the Beltrami kernel is a short time kernel, that if used
iteratively, has an equivalent effect to that of the Beltrami flow.

The main idea behind the kernel is presented in Fig 2. For the Gaussian
kernel the amplitude of the filtered image at a specific pixel is the sum of the
neighboring pixels’ amplitudes weighted according to their distance along the
coordinate axis. For the nonlinear Beltrami kernel the weighting is according to
the geodesic distance on the image itself. The Beltrami kernel ‘resides’ on the
image while for the linear kernel the Gaussian ‘resides’ on the coordinate axis.
This is the reason why linear diffusion blurs the image while the Beltrami flow
removes the noise but keeps the edges intact.

In each iteration of the Beltrami kernel we use

T'(u'u? tg + 1) = // I'(at, a2 to) K (u',u?, ', a2 t)da' di® | (7)
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Fig. 2. Filtering an image with a linear Gaussian kernel (top) and a nonlinear Beltrami
kernel (bottom).

with the kernel

@ha?) 5 \°
H, ful u2 ds
K(u',v? ot 4% t) = Toe P ( ’4; )
H, @ ((u',u?), (@', a?

where ds is an arc-length element on the image, and d,(p1,p2) is the geodesic

distance between two pixels p; and ps. For the full derivation of the kernel

see [22]. The derivation of the short time kernel for the Beltrami flow on images

painted on manifolds is the same. The difference lies in the calculation of geodesic

distances on this kind of images, which will be detailed in the next section.
The resulting update step for the Beltrami kernel is

@i 50\
, H. , Jour o2y ds
I’(ul,uz,t0+t):70// I'(a',a?, to) exp —7(( ) )
(

datda?,
al,a2)eN (ul u?) 4t

(9)
with N (u!,u?) the neighborhood of the pixel (u!,u?), where the value of the ker-
nel is above a certain threshold. Due to the monotone nature of the fast marching
algorithm used in the next section for the solution of the eikonal equation, once
a pixel is reached, where the value of the kernel is smaller than the threshold, the
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algorithm can stop and thereby naturally bound the numerical support of the
kernel. The value of the kernel for the remaining pixels is negligible. Therefore,
the eikonal equation is solved only in a small neighborhood of each pixel. Hy is
taken such that integration over the kernel in the neighborhood N (u!,u?) of the
pixel equals one.

4 Solving the Eikonal Equation on Images Painted on
Manifolds

As shown in the previous section, the construction of the kernel for a pixel re-
quires the calculation of the geodesic distances between the pixel and its neigh-
bors. We place the origin of the coordinate system of the image (u! = u? = 0)
at the pixel. The viscosity solution ¢(u',u?) of the eikonal equation

IVeoll =1, (10)

is the required geodesic distance map from the pixel to its neighbors, where V ¢
is the gradient of ¢ on the image. To solve the eikonal equation on the image we
use the fast marching method.

Regular 2D images are parametric manifolds, where the metric g;; is given
for every point. Therefore, calculating the geodesic distances needed for imple-
menting the kernel to these images [22] was done by an extension of the fast
marching method [11, 12, 24] to parametric manifolds [20,21]. The same method
is used here for images painted on parametric manifolds. For images painted on
triangulated manifolds we use fast marching on triangulated manifolds [7]. Since
the embedding space in our case has at least four dimensions (gray scale images
painted on manifolds), calculating the distances explicitly on the 2D image is
advantageous.

The original fast marching method solves the eikonal equation in an orthog-
onal coordinate system. In this case, the numerical support for the update of a
grid point consists of one or two points out of its four neighbors. For images,
where g12 # 0, we get a non-orthogonal coordinate system on the image. The
numerical support should include non-neighboring grid points (pixels). For para-
metric manifolds the method uses the metric of the image at each pixel in order
to find the pixels used for the numerical scheme. In the case of triangulated
manifolds, the triangulation is given in advance and it determines the numerical
support for each pixel.

The updated pixel together with the two other pixels in its numerical support
constitute the vertices of a triangle. This triangle is the numerical stencil for
updating the pixel. If the triangle is obtuse, it should be split and replaced by
two acute triangles. For parametric manifolds the splitting is done according
to the metric at the updated pixel, see [20,21]. For triangulated manifolds an
“unfolding” scheme is used, see [7].

After this pre-processing stage, all the triangles in the numerical grid are
acute, as in Fig. 3. The figure shows the method by which the vertex (pixel) C
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is updated according to the vertices A and B. The objective is to find ¢ such
that =% =1 and use it to calculate ¢(C) based on ¢(A) and ¢(B).

Fig. 3. The numerical stencil used to update ¢(C) according to ¢(A) and ¢(B).

The numerical scheme according to [7] is

—u=¢(B) = ¢(A).

— Solve the quadratic equation

(a® + b* — 2abcos0)t> + 2bu(acosd — b)t + b*(u® — a® sin? §) = 0.

— Ifu <tandacosf < b(tTﬂl) < 2= then ¢(C) = min{¢(C),t+ ¢(A)}. Else,

cos 6

¢(C) = min{p(C),b+ ¢(A),a + ¢(B)}.

The numerical scheme described in the previous paragraph enables the up-
date of a pixel according to two of its neighbors. In order to use this scheme to
generate the entire distance map the following algorithm [12] is used.

Initialization:

1. The pixel at the origin (for which the kernel is constructed) is defined as
Accepted and given an initial value of zero.
2. All the other pixels are defined as Far and given the value infinity.

Iterations:

1. Far ‘neighbors’ of Accepted pixels are defined as Close.

2. The values of the Close pixels are updated according to the numerical
scheme.

3. The Close pixel with the minimal value becomes an Accepted pixel.
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4. If there remain any Far pixels, return to step 1.

We use the term ‘neighbors’ to describe pixels that belong to the same nu-
merical stencil. These pixels are not necessarily neighboring pixels in the image.
We find these ‘neighbors’ during the pre-processing stage described previously.

The complexity of the algorithm is upper bounded by O(nlogn), where n
is the number of pixels in the image. The logn results from using a min-heap
data structure for sorting the Close pixels [12]. Since There is no need to use all
the pixels in the image in order to update one pixel (the value of the kernel for
most of these pixels is negligible), we can bound in advance the neighborhood
in which the eikonal equation is solved. Thus, we decrease substantially the size
of the heap used for the fast marching and enhance its efficiency.

5 Simulations and Results

We first demonstrate the effect of the manifold on the resulting enhanced image.
In Fig. 4 a texture image is painted on a flat plane (a regular 2D image) as well
as on the manifold {z,y,sin(27z)sin(27y)}. Both images are enhanced using
the short time Beltrami kernel. While the texture in the regular 2D image is
smoothed evenly, the degree of smoothing in the image painted on the manifold
differs according to the geometry of the manifold. In planar areas of the manifold
(its peaks and troughs) the smoothing is the same as in the regular image, but on
the slopes the spatial extent of the kernel is smaller and there is less smoothing,
as can be expected from Fig. 2.

Figure 5 shows the difference between enhancing a color face image as a
regular 2D image and enhancing it as an image painted on the face manifold. In
both cases one iteration of the kernel with a time step of t = 0.5 was applied, only
grid points with a kernel value above 0.01 were used for the filtering and the fast
marching was restricted to a neighborhood of 7 x 7 around each updated pixel.
An average of 20 pixels were used in the kernel as a result of these parameters.
A comparison between the output images shows that a kernel that takes into
account the geometry of the manifold smoothes more in flat regions such as the
forehead and smoothes less in edges of the manifold such as the lips. The overall
effect is a more selective smoothing and a better looking output image.

6 Conclusions

We have presented a short time kernel for the Beltrami flow for images painted
on manifolds. Incorporating the metric of the manifold in the flow produces
better results in applications such as face image regularization. The numerical
implementation of the kernel handles every possible manifold represented by
virtually every common manifold representation. It enjoys low computational
complexity further enhanced by an arbitrary time step that enables trading
accuracy for a shorter execution time. All these attributes make the Beltrami
kernel a highly practical tool for real life graphics and 3D image processing
applications.
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Fig. 4. The effect of the manifold on the enhanced images. The regular 2D image is on
the left and the texture painted on the manifold is on the right. The original textures
are on the top and the enhanced textures on the bottom.
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