From High Energy Physics to Low Level Vision

Ron Kimmel! and Nir Sochen? and Ravi Malladi'

! Lawrence Berkeley National Laboratory, and Dept. of Mathematics
University of California, Berkeley, CA 94720.
2 Raymond and Beverly Sackler Faculty of Exact Sciences Tel-Aviv University, Israel.

Abstract. A geometric framework for image scale space, enhancement,
and segmentation is presented. We consider intensity images as surfaces
in the (x, I) space. The image is thereby a 2D surface in 3D space for gray
level images, and a 2D surface in 5D for color images. The new formula-
tion unifies many classical schemes and algorithms via a simple scaling
of the intensity contrast, and results in new and efficient schemes. Exten-
sions to multi dimensional signals become natural and lead to powerful
denoising and scale space algorithms. Here, we demonstrate the pro-
posed framework by applying it to denoise and improve gray level and
color images.

1 Introduction: A philosophical point of view

In this paper we adopt an action potential that was recently introduced in physics
and use 1t to produce a natural scale space for images as surfaces. It will lead us
to the construction of image enhancement procedures for gray and color images.
This model also integrates many existing segmentation and scale space proce-
dures by a change of a single parameter that switches between the Ly and L,
Euclidean norms.

Let the input to the low level vision process be a map X : X — M where
Y is a one, two, or three dimensional manifold and X 1s the embedding of this
manifold in a space which is a hybrid space of spatial coordinates and feature
coordinates, the “space-feature”. For example, the most common map is from
a two dimensional surface to IR® where we have at each point of the plane an
intensity I(z,y). The IR space-feature has Cartesian coordinates (x,y, I) where
z and y are the spatial coordinates and I is the feature coordinate . Higher
dimensions of the embedding space are encountered for example in color images.
Three dimensional manifolds 2 occur in movie analysis and in volumetric medi-
cal images [13]. The output of the low level process in most models consists of a
‘simplified’, ‘denocised’, ‘deblurred’; ‘segmented’; or ‘cleaned’ image, for further
analysis and processing.

The importance of the dynamics of the image geometry in the perception and
understanding of images is by now well established in computer vision. There
are many definitions for scale space of images aiming to arrive at a coherent

® While in this paper the feature coordinate is simply the zeroth jet space j°I, we use
the term feature space to leave room for a more general cases like texture [12] etc.



framework that unifies many requirements. One such requirement is that “only
1sophotes matter”, or equivalently assume the importance of the morphologi-
cal assumption of the scale space to be contrast invariant. We argue that this
assumption, though leading to many interesting results, seems to fail in many
other natural cases. Let us demonstrate it with a very simple example: Consider
the intensity image of a dark object in a white background. At this point the
boundary of the object is closely related to one of the isophotes of the gray
level image. Consider the intensity image as a function, and add to this function
a new smooth function (e.g. a tilted plane). This additional smooth function
might be the result of non-uniform lighting conditions [26]. It is clear that in the
new intensity image the isophotes play only a minor role in the understanding
process.

The importance of edges in scale space construction is obvious: Boundaries
between objects should survive as long as possible along the scale space, while
homogeneous regions should be simplified and flattened in a more rapid way.
We also want to preserve the geometrical beauty that results in some interesting
non-linear ‘scale spaces’ as a result of the morphological assumption. Among
these are the Euclidean and affine invariant flows [1, 2, 22]. Moreover, we want
our framework to handle multi channel images. A color image is a good example
since we actually talk about 3 images (Red, Green, Blue) that are composed into
one.

We propose to view images as embedding maps, that flow towards minimal
surfaces. We go two dimensions higher than most of the classical schemes [8],
and instead of dealing with isophotes as planar curves we deal with the whole
image as a surface. For example, we consider a color image as a 2D surface in
5D (x,y,R,G,B).

Section 2 introduces the arclength and the definition of a metric on a sur-
face. Next, Section 3 presents the “action” that we borrowed from high energy
physics and the way it produces a general framework for non-linear diffusion in
computer vision. In Section 4 we introduce a new flow that we have chosen to
name Beltrami flow, and present a geometric interpretation in the simplest 3D
case. Next, in Section 5 we present the resulting flow for multi channel (color)
images and its advantages over previous models, and show some experiments
with color images with and without constraints. We refer the interested reader
to [24] for further details and more examples.

2 Measuring Distances on Surfaces: The Induced Metric

The basic concept of Riemannian differential geometry is distance. The natural
question is how should we measure distances? We will first take the important
example X : ¥ — IR®. We denote the local coordinates on the two dimen-
sional manifold ¥ by (o', 0?%), see Fig. 1. The map X is explicitly given by
(X1(ot, 0%), X%(o!,0?), X3(c!, 6?)). Since the local coordinates o are curvilin-
ear, and not orthogonal in general, the distance square between two close points
on X, p = (ct,0?)and p+(do!,do?) is not ds* = dof+do3. In fact, the squared



distance is given by a positive definite symmetric bilinear form called the metric
whose components we denote by g, (', 0?):

ds® = Judotdo” = gn(dal)2 + 2¢10dotdo? + gzz(daz)z, (1)

where we used Einstein summation convention in the second equality; identical
indices that appear one up and one down are summed over. We will denote the
mverse of the metric by g*”, so that g*"g,, = 6§, where 6/ is the Kronecker
delta.

dstg dO'UG dx +dy +dF

Fig.1. Length element of a surface curve ds, may be defined either as a function of a
local metric defined on the surface (61, 02;(g:5)), or as a function of the coordinates of
the space in which the surface is embedded (z,y, ).

Let X : ¥ — M be an embedding of (X, ¢) in (M, h), where ¥ and M are
Riemannian manifold and g and h are their metrics respectively. We can use the
knowledge of the metric on M and the map X to construct the metric on X
This procedure, which is denoted formally as (g, )x = X*(hs;)ar, is called the
pullback and is given explicitly as:

Juv(ot, %) = hij(X)0, X0, X7, (2)

where ¢,7 = 1,...,dimM are being summed over, and in short we use 6MXi =
OX (ot a?)/da*.

An example, often used in computer vision, is the embedding of a surface
described as a graph in IR®: X : (¢!, 0%) — (o', 0% I(0",¢%)).Using Eq. (2) we
get

(1412 Ly,
(gl“/) - ( Iny 1+ I; (3)
where we used the identification z = ¢! and y = ¢ in the map X = (z,y, I).

Actually we can understand this result in an intuitive way: Eq. (2) means

that the distance measured on the surface by the local coordinates is equal to the



distance measured in the embedding coordinates, see Fig. 1. Under the above
identification, we can write ds* = de?+dy? +dI* = de*+dy* + (I, dz + I,dy)* =
(1 + I3)da? + 21, I, dedy + (1 + I;)dyz.

Next we provide a measure on the space of these maps.

3 Polyakov Action and Harmonic Maps

In this section, we present a general framework for non-linear diffusion in com-
puter vision. We have shown in [24] that many of the known methods fall natu-
rally into this framework. Here we show how to derive new ones. The equations
will be derived by a minimization problem from an action functional. The func-
tional in question depends on both the image manifold and the embedding space.
Denote by (X, g) the image manifold and its metric and by (M, h) the space-
feature manifold and its metric, then the map X : 2 — M has the following
weight

SIX?, g, hij] = /dmf’\/ﬁguyauXiﬁquhij(X), (4)

where m is the dimension of X' ¢ is the determinant of the image metric, g*” is
the inverse of the image metric, the range of indices is p, v =1,...,dim X, and
t,7=1,...,dimM, and h;; is the metric of the embedding space.

This functional, for m = 2, was first proposed by Polyakov [18] in the context
of high energy physics. Given the above functional, we have to choose the mini-
mization. We may choose for example to minimize with respect to the embedding
alone. In this case the metric g,, is treated as a parameter of the theory and
may be fixed by hand. Another choice is to vary only with respect to the feature
coordinates of the embedding space, or we may choose to vary with respect to
the image metric as well. We have shown that different choices yield different
flows. Some flows are recognized as existing methods, other choices are new and
some will be described below.

Using standard methods in variational calculus, the Euler-Lagrange equa-
tions with respect to the embedding are (see [24] for a derivation):

1 .65 1 : : »
—Qﬂh”W = ﬁau(ﬁgwaml) + 11,0, X709, X" g" = 0. (5)

where I'f; are the Levi-Civita connection coefficients with respect to the met-
ric hi; that describes the geometry of the embedding space (see [24, 25] for a
definition of the Levi-Civita connection).

Our proposal is to view scale-space as the gradient descent flow:

oX? 1,088
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Few remarks are in order. First notice that we used our freedom to multiply the
Euler-Lagrange equations by a strictly positive function and a positive definite
matrix. This factor is the simplest one that does not change the minimization



solution while giving a reparametrization invariant expression i.e. invariant under
o* — G#(o',0%). The operator that is acting on X% in the first term is the
natural generalization of the Laplacian from flat spaces to manifolds and is called
the second order differential parameter of Belirami [14], or for short Beltrami
operator, and we will denote it by A,.

When the embedding is in an FEuclidean space with Cartesian coordinate
system the connection elements are zero. In this case A,X, for grey-level image,
is the usual mean curvature vector. This simple definition for the general mean
curvature vector provides a straightforward calculation procedure, extends to
higher dimensions, to cases with co-dimension greater than one, and to non-
trivial geometries and coordinate systems; e.g. we consider a color image as a
2D surface in 5D, in which case the co-dimension is 3.

The Beltrami operator with a metric that corresponds to the plane with non-
Cartesian coordinate system was discussed in Florac et al. [10]. Our approach
is a generalization in two ways, one is the choice of a metric with non-trivial
Riemann tensor (or equivalently for surfaces, the Gaussian curvature of the im-
age manifold is different from zero), the other is the possibility to deal with
non-trivial embedding. We also have here a framework that can treat curves,
surfaces, and higher dimensional image data embedded in gray, color and higher
dimensional and geometrically non-trivial embedding spaces.

Evolving a surface according to its curvature vector HN = A,X is the
steepest descent flow towards a minimal surface, and may be written as

XtIH./\/‘, (7)

where H is the mean curvature, A" is the normal to the surface:* For co-
dimension 1:

1 T
N \/ﬁ( VI, 1) (8)
where ¢ = 14 |VI|?. This is mean curvature flow! This should not be a surprise,
since 1f we check the action functional, we notice that, for the choice of the
induced metric Eq. (3) as the image metric g, , we are left with S = [ dza\/ﬁ =
fdzm/det(@uXiﬁ,,Xi),Which is the Euler functional that describes the area of
the surface (also known in high energy physics as the Nambu action).

In [24] we survey different choices for the dynamic and parametric degrees
of freedom in the action functional that lead to known methods. These include
the reparameterization invariant linear scale-space by Florac et al. [10], Perona-
Malik anisotropic diffusion [17], geodesic active contour models for segmentation,
Mumford-Shah segmentation models that are based on the Ly ([ |VI|?) norm
[19, 16], Rudin-Osher-Fatemi total variation (TV) method [20] for image en-
hancement based on the Ly ([ |VI|) norm, and the different Blake-Zisserman
membrane models [3]. We actually show that by varying the aspect ratio be-
tween the [ axis and the xy axes, we can switch between the L; and the L-

* In what follows, we denote by g the determinant of the metric, g = det(g), the metric
itself will be denoted as (gi]). Note also that some definitions of the mean curvature
include a factor of 2 that we omit in our definition.



norms for image processing. In fact, we can approach the L; norm, which is
practically regularized in most application to avoid zero denominator. The reg-
ularized functional [ /3% 4+ |VI|? may be viewed as an area minimization, that
approaches the L total variation norm as § — 0. For gray level images it is just
a mathematical exercise, however, when we deal with more complicated cases
like multi channel images or color images, we have a very natural extension of
the total variation method. We will show why this extension is better and more
natural than previous multi channel norms.

For images which are maps from an m dimensional manifold to n dimen-
sional embedding space with n —m > 1, the normals to the image span an n—m
normal space. The way the mean curvature is generalized to these maps (for
Fuclidean embedding spaces with Cartesian Coordinate system) is via the Bel-
trami operator. This operator is built from the metric only, and there 1s no need
for any extrinsic information to express it. It acts on the embedding coordinates
and coincides with the usual definition of the mean curvature for hypersurfaces.
When the metric of the embedding space is not trivial the (generalized) mean
curvature flow is obtained by the more general Eq. (6).

Note that this flow is the (generalized) mean curvature flow only if we move all
the coordinates X? simultaneously. Below we concentrate on another possibility.
We flow only the feature coordinate(s). We call this generalized flow the Beltrami
flow and discuss its characteristics in the next section.

4 The Beltrami flow

Let the image be an embedding map X : ¥ — IR?, where ¥ is a two dimensional
manifold, and the flow is natural in the sense that 1t minimizes the action func-
tional with respect to I and (g;;), while being reparametrization invariant. The
coordinates x and y are parameters from this view point and are identified as
above with ¢! and ¢? respectively. The result of the minimization is the Beltrami
operator acting on [I:

1
2 0u(Vag" 0,1) = HN'; (9)

ItIAgIE\/_

where the metric is the induced one given in Eq. (2), and I is the unit vector in
the I direction.’

® The mean curvature flow can be written as % (}() =4 (}() . Fixing the zy co-

ordinates amounts to moving the surface via its mean curvature feature components
I, thereby preserving the edges at which these component are small: Along the edges
(cliffs), the surface normal is almost parallel to the z-y plane. Thus, I(z,y) hardly
evolves along the edges while the flow drives other regions of the image towards a
minimal surface at a more rapid rate.



4.1 Geometric Flows Towards Minimal Surfaces

A minimal surface 1s the surface with least area that satisfies given boundary
conditions. It has nice geometrical properties, and is often used as a natural
model of various physical phenomena, e.g. soap bubbles “Plateau’s problem”, in
computer aided design, in architecture (structural design), and recently even for
medical imaging [5]. It was realized by J. L. Lagrange in 1762, that the mean
curvature equal to zero i1s the Euler Lagrange equation for area minimization.

Hence, the mean curvature flow is the most efficient flow towards a minimal
surface; see Fig. 2 (left).

We refer to [7] for the derivation of H for a graph surface § = (z,y, I(x,y))
(as D.L. Chopp summarizes the original derivation by J.L. Lagrange from 1762)

7 div vI U+ I e = 2Ly Loy + (14 1) 1y
B B (14124 12)3/2 '

V14 |VI? (10)

Fig. 2. Left: Mean curvature flow. Consider the surface mean curvature flow §; = HN.
A geometrically equivalent flow is the graph flow I, = H(1 + |VI|2)1/2 which yields
the mean curvature flow when projected onto the normal. Right: Beltrami flow. Now,
consider the mean curvature vector HA. It can also be expressed as HN = A,S.
Beltrami operator that operates on I: Ayl is the third component of this vector:
Projection onto the I direction.

The mean curvature for a graph (the image) is given by the following evolu-
tion equation
(1+ I;)Ixx — 2 Iy Ly + (1 + I2)1yy
t 1412+ 12 ’

(11)

with the image itself as initial condition I(z,y,0) = I(z,y). Using Beltrami
second order operator Ay, Eq. (11) may be read as I; = gA,I. The Beltrami
flow (selective mean curvature flow) on the other hand, I; = A,I, is given
explicitly for the gray level case as

(L4 I oo = 20 ly Loy + (14 1) Ly
(L+12+12)> ’

(12)

t:



see Fig. 2 (right). In other words, the Beltrami flow can be viewed as & =
éHN‘, where ¢ = /1 + |VI|? is basically an edge indicator. Other methods
that consider gray level images as surfaces are Yanowitz and Bruckstein [26],
El-Fallah et al. [9], and Malladi and Sethian [15].

Fig. 3 compares the results of the Beltrami flow and the mean curvature flow
both applied to a digital subtraction angiogram (DSA). It demonstrates the edge
preserving property of the Beltrami flow.

Fig. 3. On the left is the original medical image. In the middle is the result of smoothing
via the mean curvature flow, and on the right is the result of the Beltrami flow.

5 Color

We generalize the Beltrami flow to the 5 dimensional space-feature needed in
color images. The embedding space-feature space is taken to be Euclidean with
Cartesian coordinate system. The image, thus, is the map f : ¥ — IR’ where ¥
is a two dimensional manifold.
Explicitly the mapis f = (l‘(o’l, o), y(at,0?), I"(ct, 6%), I/ (o, 0%), I*(o?, 02)) :
We minimize our action (4) with respect to the metric and with respect to
(I", 19, I%). For convenience we denote (7, g, b) by (1,2,3), or in general notation
¢. Minimizing the action with respect to the metric gives, as usual, the induced
metric which is now given by:

Juv = 6;“/ + Z [(aujl)(al/[l)] ’

where §,, is the Kronecker delta. The determinant is ¢ = det(g;;) = gllgzz—gfz.
Note that this metric differs from the Di Zenzo metric [8] by the addition of 1
to g11 and go2. The source of the difference lies is the map used to describe the
image; Di Zenzo used f : X — IR® while we use f: % — IR,

The action functional under this choice of the metric is the Euler functional
S = fdza g,where the generalized surface area element /g is defined by

. 1 . .
g=1+>_|VI'["+ §Z(VIZ,VI])2, (13)

iJ



where (VI!,VI7) stand for the magnitude of the vector product of the vectors
VI'and VI,

The action is simply the area of the image surface. Minimization with respect
to I' gives the Beltrami flow

I = aA,r, (14)

where Ain = ﬁ@u(\/ﬁg“"ﬁyﬂ). Again, this is a flow towards a minimal sur-
face.

5.1 Relation to other color diffusion methods

Chambolle [6], and Sapiro and Ringach [21], generalized the idea of smoothing
a single valued function via a second directional derivative in the direction of
minimal change, i.e. isophotes curvature flow, into a multi valued function. These
are non-variational flows.

As pointed out in [4], for image segmentation, edge preserving and selective
smoothing purposes, this is a result of a weakly coupled definition in color space.
Blomgren and Chan [4] try to improve these results and defined the color TV

norm as /> ;_; (f |VIi|)2, with a constraint. Observe that in this case the
coupling between the channels is only by the constraint. Actually, without the
constraint the minimization yields a channel by channel curvature flow.

A different norm was used by Shah in [23]: [\/>_._, [VI?|>. As in all the
previous norms this norm is simplified to the L; (TV) norm for the single channel
case.

We notice that the proposed area f\/ﬁ norm, Eq. (13), includes a new term
that does not appear in previous norms. The term ZZ»]»(VIi,VIj)Z measures
the directional difference of the gradient between different channels. The min-
imization of a norm that includes this term, directs different channels to align
together as they become smoother and simpler in scale. One should recognize
this cross correlation of orientation between the channels as a very important
feature, e.g. overcoming the color fluctuations along edges as a result of a lossy
JPEG compression.

If we now tune the regularization ratio 8 to small values, we approach an
extension of the TV norm that still includes the alignment term and serves as a
natural coupling between the channels, see [11] for further details.

5.2 Experimental Results

We now present some results of denoising color images using our model. Spatial
derivatives are approximated using central differences and an explicit Euler step
is employed to reach the solution. We have tested the Beltrami flow with and
without constraints® on color images. See Fig. 4.

6 Tt is possible to impose a meaningful convergence on the Beltrami flow through the
right constraints on the action functional. As a simple example we derive a variance
constraint similar to the TV method [20] for image denoising with convergence.



Fig.4. Upper row: The Beltrami flow as an edge preserving scale space in color. Sec-
ond row: Reconstructing a color image with noise artifacts introduced by wavelet lossy
compression. The noisy image is on the left, the next image is the result of applying
the Beltrami flow without constraints. Next is a reconstruction with noise artifacts
introduced by JPEG compression. Again the noisy image is on the left and the re-
construction on the right Third row: Reconstruction of a color image corrupted with
Gaussian noise; the second image is the result of flow with constraints (convergent
scheme), while the third image is the result of the flow without constraints after the
same number of numerical iterations. [This is a color image].

Note that since we have a powerful selective smoothing operator, good re-
sults may be obtained even without invoking these constraints. Without the

Given the variance for every channel, i.e. f(]’ - Ié)2dxdy = o?where o; is the
given noise variance for channel ¢. The Euler Lagrange is

Za:m,y %aa (\/Lg g]g&) —)\i(Ii —Ié) = 0.Again, using the freedom of parametrization

(multiplying by g_1/2), yields the flow I} = Agfi—%gki(fi—fé),where A is computed
via A' = —% fZazm,y \/LE(?IZ (Lo — 154)dady.
We used the notation d¢/d1, that for the multi channel (color) case simplifies to

J i i J i i
819;: = 215922 — 21,912, and (?Ig; =21,911 — 21, 912.




constraints, the time we run the evolution is related to the noise variance.

6 Concluding Remarks

Inventing a perceptually good segmentation process, and formulating a mean-
ingful scale space for images is not an easy task. Here we tried to address these
questions and to come up with a new framework that unifies many previous
results and introduces new procedures. There are still many open questions to
be asked, like what 1s the right aspect ratio between the intensity and the image
plane? An even deeper question to answer is what is the ‘right’ embedding space
hi;?

The question of what is the ‘right norm’ when dealing with images is indeed
not trivial, and the right answer probably depends on the application. For ex-
ample, the answer for the ‘Tight’ color metric h;; is the consequence of empirical
results, experimental data, and the application. Here we covered some of the gaps
between the two classical norms in a geometrical way and proposed a new ap-
proach to deal with multi dimensional images. We used recent results from high
energy physics that yield promising algorithms for enhancement, segmentation
and scale space.

Acknowledgments

We thank David Adalsteinsson for his comments on embedding spaces, Korkut Bar-
dakgi for discussions on extrinsic properties of surface embedding, and David Marimont
for supplying the color images. This work is supported in part by the Applied Math.
Subprogram of the OER under DE-AC03-76SFO0O098, ONR grant under NOOO14-
96-1-0381, and NSF under grant PHY-90-21139. All calculations were performed at the

Lawrence Berkeley National Laboratory, University of California, Berkeley.

References

1. L Alvarez, F Guichard, P L Lions, and J M Morel. Axioms and fundamental equa-
tions of image processing. Arch. Rational Mechanics, 123, 1993.

2. L Alvarez, P L Lions, and J M Morel. Image selective smoothing and edge detec-
tion by nonlinear diffusion. STAM J. Numer. Anal, 29:845-866, 1992.

3. A Blake and A Zisserman. Visual Reconstruction. MIT Press, Cambridge, Mas-
sachusetts, 1987.

4. P Blomgren and T F Chan. Color TV: Total variation methods for restoration of
vector valued images. cam TR, UCLA, 1996.

5. V Caselles, R Kimmel, G Sapiro, and C Sbert. Minimal surfaces: A geometric
three dimensional segmentation approach. Numerische Mathematik, to appear,
1996.

6. A Chambolle. Partial differential equations and image processing. In Proceedings
IFEEE ICIP, Austin, Texas, November 1994.

7. D L Chopp. Computing minimal surfaces via level set curvature flow. J. of Com-
putational Physics, 106(1):77-91, May 1993.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. S Di Zenzo. A note on the gradient of a multi image. Computer Vision, Graphics,

and Image Processing, 33:116-125, 1986.

A I El-Fallah, G E Ford, V R Algazi, and R R Estes. The invariance of edges and
corners under mean curvature diffusions of images. In Processing [T SPIE, volume
2421, pages 2—-14, 1994.

L M J Florack, A H Salden, , B M ter Haar Romeny, J J Koendrink, and M A
Viergever. Nonlinear scale-space. In B M ter Haar Romeny, editor, Geometric—
Driven Diffusion in Computer Vision. Kluwer Academic Publishers, The Nether-
lands, 1994.

R Kimmel. What is a natural norm for multi channel image processing. LBNL
report, Berkeley Labs. UC, CA 94720, March 1997.

R Kimmel, N Sochen, and R Malladi. On the geometry of texture. Report LBNL-
39640, UC-405, Berkeley Labs. UC, CA 94720, November 1996.

R Kimmel, N Sochen, and R Malladi. Images as embedding maps and minimal sur-
faces: Movies, color, and volumetric medical images. In Proc. of IEFE CVPR’97,
Puerto Rico, June 1997.

E Kreyszing. Differential Geometry. Dover Publications, Inc., New York, 1991.

R Malladi and J A Sethian. Image processing: Flows under min/max curvature
and mean curvature. Graphical Models and Image Processing, 58(2):127-141,
March 1996.

D Mumford and J Shah. Boundary detection by minimizing functionals. In Pro-
ceedings of CVPR, Computer Vision and Pattern Recognition, San Francisco, 1985.
P Perona and J Malik. Scale-space and edge detection using anisotropic diffusion.
IEEE-PAMI, 12:629-639, 1990.

A M Polyakov. Physics Letters, 103B:207, 1981.

T Richardson and S Mitter. Approximation, computation, and distoration in the
variational formulation. In B M ter Haar Romeny, editor, Geometric—Driven Dif-
fusion in Computer Vision. Kluwer Academic Publishers, The Netherlands, 1994.
L Rudin, S Osher, and E Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259-268, 1992.

G Sapiro and D L Ringach. Anisotropic diffusion in color space. IEFE Trans.
Image Proc., to appear, 1996.

G Sapiro and A Tannenbaum. Affine invariant scale—space. International Journal
of Computer Vision, 11(1):25-44, 1993.

J Shah. Curve evolution and segmentation functionals: Application to color im-
ages. In Proceedings IEEF ICIP 96, pages 461-464, 1996.

N Sochen, R Kimmel, and R Malladi. From high energy physics to low level
vision. Report LBNL 39243, LBNL, UC Berkeley, CA 94720, August 1996.
hitp : [ Jwww.lbl.gov/ ~ ron/belt — html.himl.

M Spivak. A Comprehensive Introduction to Differential Geometry. Publish or
Perish, Inc., Berkeley, 1979.

S D Yanowitz and A M Bruckstein. A new method for image segmentation. Com-
puter Vision, Graphics, and Image Processing, 46:82-95, 1989.

This article was processed using the ETEX macro package with LLNCS style



