
From High Energy Physics to Low Level VisionRon Kimmel1 and Nir Sochen2 and Ravi Malladi11 Lawrence Berkeley National Laboratory, and Dept. of MathematicsUniversity of California, Berkeley, CA 94720.2 Raymond and Beverly Sackler Faculty of Exact Sciences Tel-Aviv University, Israel.Abstract. A geometric framework for image scale space, enhancement,and segmentation is presented. We consider intensity images as surfacesin the (x; I) space. The image is thereby a 2D surface in 3D space for graylevel images, and a 2D surface in 5D for color images. The new formula-tion uni�es many classical schemes and algorithms via a simple scalingof the intensity contrast, and results in new and e�cient schemes. Exten-sions to multi dimensional signals become natural and lead to powerfuldenoising and scale space algorithms. Here, we demonstrate the pro-posed framework by applying it to denoise and improve gray level andcolor images.1 Introduction: A philosophical point of viewIn this paper we adopt an action potential that was recently introduced in physicsand use it to produce a natural scale space for images as surfaces. It will lead usto the construction of image enhancement procedures for gray and color images.This model also integrates many existing segmentation and scale space proce-dures by a change of a single parameter that switches between the L1 and L2Euclidean norms.Let the input to the low level vision process be a map X : � ! M where� is a one, two, or three dimensional manifold and X is the embedding of thismanifold in a space which is a hybrid space of spatial coordinates and featurecoordinates, the \space-feature". For example, the most common map is froma two dimensional surface to IR3 where we have at each point of the plane anintensity I(x; y). The IR3 space-feature has Cartesian coordinates (x; y; I) wherex and y are the spatial coordinates and I is the feature coordinate 3. Higherdimensions of the embedding space are encountered for example in color images.Three dimensional manifolds � occur in movie analysis and in volumetric medi-cal images [13]. The output of the low level process in most models consists of a`simpli�ed', `denoised', `deblurred', `segmented', or `cleaned' image, for furtheranalysis and processing.The importance of the dynamics of the image geometry in the perception andunderstanding of images is by now well established in computer vision. Thereare many de�nitions for scale space of images aiming to arrive at a coherent3 While in this paper the feature coordinate is simply the zeroth jet space j0I, we usethe term feature space to leave room for a more general cases like texture [12] etc.



framework that uni�es many requirements. One such requirement is that \onlyisophotes matter", or equivalently assume the importance of the morphologi-cal assumption of the scale space to be contrast invariant. We argue that thisassumption, though leading to many interesting results, seems to fail in manyother natural cases. Let us demonstrate it with a very simple example: Considerthe intensity image of a dark object in a white background. At this point theboundary of the object is closely related to one of the isophotes of the graylevel image. Consider the intensity image as a function, and add to this functiona new smooth function (e.g. a tilted plane). This additional smooth functionmight be the result of non-uniform lighting conditions [26]. It is clear that in thenew intensity image the isophotes play only a minor role in the understandingprocess.The importance of edges in scale space construction is obvious: Boundariesbetween objects should survive as long as possible along the scale space, whilehomogeneous regions should be simpli�ed and 
attened in a more rapid way.We also want to preserve the geometrical beauty that results in some interestingnon-linear `scale spaces' as a result of the morphological assumption. Amongthese are the Euclidean and a�ne invariant 
ows [1, 2, 22]. Moreover, we wantour framework to handle multi channel images. A color image is a good examplesince we actually talk about 3 images (Red, Green, Blue) that are composed intoone.We propose to view images as embedding maps, that 
ow towards minimalsurfaces. We go two dimensions higher than most of the classical schemes [8],and instead of dealing with isophotes as planar curves we deal with the wholeimage as a surface. For example, we consider a color image as a 2D surface in5D (x,y,R,G,B).Section 2 introduces the arclength and the de�nition of a metric on a sur-face. Next, Section 3 presents the \action" that we borrowed from high energyphysics and the way it produces a general framework for non-linear di�usion incomputer vision. In Section 4 we introduce a new 
ow that we have chosen toname Beltrami 
ow, and present a geometric interpretation in the simplest 3Dcase. Next, in Section 5 we present the resulting 
ow for multi channel (color)images and its advantages over previous models, and show some experimentswith color images with and without constraints. We refer the interested readerto [24] for further details and more examples.2 Measuring Distances on Surfaces: The Induced MetricThe basic concept of Riemannian di�erential geometry is distance. The naturalquestion is how should we measure distances? We will �rst take the importantexample X : � ! IR3. We denote the local coordinates on the two dimen-sional manifold � by (�1; �2), see Fig. 1. The map X is explicitly given by(X1(�1; �2); X2(�1; �2); X3(�1; �2)). Since the local coordinates �i are curvilin-ear, and not orthogonal in general, the distance square between two close pointson �, p = (�1; �2) and p+(d�1; d�2) is not ds2 = d�21+d�22. In fact, the squared



distance is given by a positive de�nite symmetric bilinear form called the metricwhose components we denote by g��(�1; �2):ds2 = g��d��d�� � g11(d�1)2 + 2g12d�1d�2 + g22(d�2)2; (1)where we used Einstein summation convention in the second equality; identicalindices that appear one up and one down are summed over. We will denote theinverse of the metric by g�� , so that g��g�
 = ��
 , where ��
 is the Kroneckerdelta.
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Fig. 1. Length element of a surface curve ds, may be de�ned either as a function of alocal metric de�ned on the surface (�1; �2; (gij)), or as a function of the coordinates ofthe space in which the surface is embedded (x;y; I).Let X : � ! M be an embedding of (�; g) in (M;h), where � and M areRiemannian manifold and g and h are their metrics respectively. We can use theknowledge of the metric on M and the map X to construct the metric on �.This procedure, which is denoted formally as (g��)� = X�(hij)M , is called thepullback and is given explicitly as:g��(�1; �2) = hij(X)@�Xi@�Xj ; (2)where i; j = 1; :::; dimM are being summed over, and in short we use @�Xi �@Xi(�1; �2)=@��:An example, often used in computer vision, is the embedding of a surfacedescribed as a graph in IR3: X : (�1; �2) ! (�1; �2; I(�1; �2)):Using Eq. (2) weget (g��) = � 1 + I2x IxIyIxIy 1 + I2y � (3)where we used the identi�cation x � �1 and y � �2 in the map X = (x; y; I).Actually we can understand this result in an intuitive way: Eq. (2) meansthat the distance measured on the surface by the local coordinates is equal to the



distance measured in the embedding coordinates, see Fig. 1. Under the aboveidenti�cation, we can write ds2 = dx2+dy2+dI2 = dx2+dy2+(Ixdx+Iydy)2 =(1 + I2x)dx2 + 2IxIydxdy + (1 + I2y )dy2:Next we provide a measure on the space of these maps.3 Polyakov Action and Harmonic MapsIn this section, we present a general framework for non-linear di�usion in com-puter vision. We have shown in [24] that many of the known methods fall natu-rally into this framework. Here we show how to derive new ones. The equationswill be derived by a minimization problem from an action functional. The func-tional in question depends on both the image manifold and the embedding space.Denote by (�; g) the image manifold and its metric and by (M;h) the space-feature manifold and its metric, then the map X : � ! M has the followingweight S[Xi; g�� ; hij] = Z dm�pgg��@�Xi@�Xjhij(X); (4)where m is the dimension of �, g is the determinant of the image metric, g�� isthe inverse of the image metric, the range of indices is �; � = 1; : : : ; dim�, andi; j = 1; : : : ; dimM , and hij is the metric of the embedding space.This functional, for m = 2, was �rst proposed by Polyakov [18] in the contextof high energy physics. Given the above functional, we have to choose the mini-mization.We may choose for example to minimize with respect to the embeddingalone. In this case the metric g�� is treated as a parameter of the theory andmay be �xed by hand. Another choice is to vary only with respect to the featurecoordinates of the embedding space, or we may choose to vary with respect tothe image metric as well. We have shown that di�erent choices yield di�erent
ows. Some 
ows are recognized as existing methods, other choices are new andsome will be described below.Using standard methods in variational calculus, the Euler-Lagrange equa-tions with respect to the embedding are (see [24] for a derivation):� 12pghil �S�Xl = 1pg@�(pgg��@�Xi) + � ijk@�Xj@�Xkg�� = 0: (5)where � ijk are the Levi-Civita connection coe�cients with respect to the met-ric hij that describes the geometry of the embedding space (see [24, 25] for ade�nition of the Levi-Civita connection).Our proposal is to view scale-space as the gradient descent 
ow:Xit � @Xi@t = � 12pghil �S�X l (6)Few remarks are in order. First notice that we used our freedom to multiply theEuler-Lagrange equations by a strictly positive function and a positive de�nitematrix. This factor is the simplest one that does not change the minimization



solution while giving a reparametrization invariant expression i.e. invariant under�� ! ~��(�1; �2). The operator that is acting on Xi in the �rst term is thenatural generalization of the Laplacian from 
at spaces to manifolds and is calledthe second order di�erential parameter of Beltrami [14], or for short Beltramioperator, and we will denote it by �g.When the embedding is in an Euclidean space with Cartesian coordinatesystem the connection elements are zero. In this case �gX, for grey-level image,is the usual mean curvature vector. This simple de�nition for the general meancurvature vector provides a straightforward calculation procedure, extends tohigher dimensions, to cases with co-dimension greater than one, and to non-trivial geometries and coordinate systems; e.g. we consider a color image as a2D surface in 5D, in which case the co-dimension is 3.The Beltrami operator with a metric that corresponds to the plane with non-Cartesian coordinate system was discussed in Florac et al. [10]. Our approachis a generalization in two ways, one is the choice of a metric with non-trivialRiemann tensor (or equivalently for surfaces, the Gaussian curvature of the im-age manifold is di�erent from zero), the other is the possibility to deal withnon-trivial embedding. We also have here a framework that can treat curves,surfaces, and higher dimensional image data embedded in gray, color and higherdimensional and geometrically non-trivial embedding spaces.Evolving a surface according to its curvature vector HN = �gX is thesteepest descent 
ow towards a minimal surface, and may be written asXt = HN ; (7)where H is the mean curvature, N is the normal to the surface:4 For co-dimension 1: N = 1pg (�rI; 1)T (8)where g = 1+ jrIj2. This is mean curvature 
ow! This should not be a surprise,since if we check the action functional, we notice that, for the choice of theinduced metric Eq. (3) as the image metric g�� , we are left with S = R d2�pg =R d2�pdet(@�Xi@�Xi);which is the Euler functional that describes the area ofthe surface (also known in high energy physics as the Nambu action).In [24] we survey di�erent choices for the dynamic and parametric degreesof freedom in the action functional that lead to known methods. These includethe reparameterization invariant linear scale-space by Florac et al. [10], Perona-Malik anisotropic di�usion [17], geodesic active contour models for segmentation,Mumford-Shah segmentation models that are based on the L2 (R jrIj2) norm[19, 16], Rudin-Osher-Fatemi total variation (TV) method [20] for image en-hancement based on the L1 (R jrIj) norm, and the di�erent Blake-Zissermanmembrane models [3]. We actually show that by varying the aspect ratio be-tween the I axis and the xy axes, we can switch between the L1 and the L24 In what follows, we denote by g the determinant of the metric, g � det(g), the metricitself will be denoted as (gij). Note also that some de�nitions of the mean curvatureinclude a factor of 2 that we omit in our de�nition.



norms for image processing. In fact, we can approach the L1 norm, which ispractically regularized in most application to avoid zero denominator. The reg-ularized functional R p�2 + jrIj2 may be viewed as an area minimization, thatapproaches the L1 total variation norm as � ! 0. For gray level images it is justa mathematical exercise, however, when we deal with more complicated caseslike multi channel images or color images, we have a very natural extension ofthe total variation method. We will show why this extension is better and morenatural than previous multi channel norms.For images which are maps from an m dimensional manifold to n dimen-sional embedding space with n�m > 1, the normals to the image span an n�mnormal space. The way the mean curvature is generalized to these maps (forEuclidean embedding spaces with Cartesian Coordinate system) is via the Bel-trami operator. This operator is built from the metric only, and there is no needfor any extrinsic information to express it. It acts on the embedding coordinatesand coincides with the usual de�nition of the mean curvature for hypersurfaces.When the metric of the embedding space is not trivial the (generalized) meancurvature 
ow is obtained by the more general Eq. (6).Note that this 
ow is the (generalized) mean curvature 
ow only if we move allthe coordinates Xi simultaneously. Below we concentrate on another possibility.We 
ow only the feature coordinate(s). We call this generalized 
ow the Beltrami
ow and discuss its characteristics in the next section.4 The Beltrami 
owLet the image be an embedding mapX : � ! IR3, where � is a two dimensionalmanifold, and the 
ow is natural in the sense that it minimizes the action func-tional with respect to I and (gij), while being reparametrization invariant. Thecoordinates x and y are parameters from this view point and are identi�ed asabove with �1 and �2 respectively. The result of the minimization is the Beltramioperator acting on I:It = �gI � 1pg@�(pgg��@�I) = HN Î (9)where the metric is the induced one given in Eq. (2), and Î is the unit vector inthe I direction.55 The mean curvature 
ow can be written as @@t �xI � = �g �xI � : Fixing the xy co-ordinates amounts to moving the surface via its mean curvature feature componentsI, thereby preserving the edges at which these component are small: Along the edges(cli�s), the surface normal is almost parallel to the x-y plane. Thus, I(x;y) hardlyevolves along the edges while the 
ow drives other regions of the image towards aminimal surface at a more rapid rate.



4.1 Geometric Flows Towards Minimal SurfacesA minimal surface is the surface with least area that satis�es given boundaryconditions. It has nice geometrical properties, and is often used as a naturalmodel of various physical phenomena, e.g. soap bubbles \Plateau's problem", incomputer aided design, in architecture (structural design), and recently even formedical imaging [5]. It was realized by J. L. Lagrange in 1762, that the meancurvature equal to zero is the Euler Lagrange equation for area minimization.Hence, the mean curvature 
ow is the most e�cient 
ow towards a minimalsurface; see Fig. 2 (left).We refer to [7] for the derivation of H for a graph surface S = (x; y; I(x; y))(as D.L. Chopp summarizes the original derivation by J.L. Lagrange from 1762)H = div rIp1 + jrIj2! = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy(1 + I2x + I2y )3=2 : (10)
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ow. Consider the surface mean curvature 
ow St = HN .A geometrically equivalent 
ow is the graph 
ow It = H(1 + jrIj2)1=2 which yieldsthe mean curvature 
ow when projected onto the normal. Right: Beltrami 
ow. Now,consider the mean curvature vector HN . It can also be expressed as HN = �gS.Beltrami operator that operates on I: �gI, is the third component of this vector:Projection onto the I direction.The mean curvature for a graph (the image) is given by the following evolu-tion equation It = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy1 + I2x + I2y ; (11)with the image itself as initial condition I(x; y; 0) = I(x; y). Using Beltramisecond order operator �g, Eq. (11) may be read as It = g�gI: The Beltrami
ow (selective mean curvature 
ow) on the other hand, It = �gI, is givenexplicitly for the gray level case asIt = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy(1 + I2x + I2y )2 ; (12)



see Fig. 2 (right). In other words, the Beltrami 
ow can be viewed as St =1gHN , where g = p1 + jrIj2 is basically an edge indicator. Other methodsthat consider gray level images as surfaces are Yanowitz and Bruckstein [26],El-Fallah et al. [9], and Malladi and Sethian [15].Fig. 3 compares the results of the Beltrami 
ow and the mean curvature 
owboth applied to a digital subtraction angiogram (DSA). It demonstrates the edgepreserving property of the Beltrami 
ow.
Fig. 3. On the left is the original medical image. In the middle is the result of smoothingvia the mean curvature 
ow, and on the right is the result of the Beltrami 
ow.5 ColorWe generalize the Beltrami 
ow to the 5 dimensional space-feature needed incolor images. The embedding space-feature space is taken to be Euclidean withCartesian coordinate system. The image, thus, is the map f : � ! IR5 where �is a two dimensional manifold.Explicitly the map is f = �x(�1; �2); y(�1; �2); Ir(�1; �2); Ig(�1; �2); Ib(�1; �2)� :We minimize our action (4) with respect to the metric and with respect to(Ir ; Ig ; Ib). For convenience we denote (r; g; b) by (1; 2; 3), or in general notationi. Minimizing the action with respect to the metric gives, as usual, the inducedmetric which is now given by:g�� = ��� +Xi �(@�Ii)(@�Ii)� ;where ��� is the Kronecker delta. The determinant is g = det(gij) = g11g22�g212.Note that this metric di�ers from the Di Zenzo metric [8] by the addition of 1to g11 and g22. The source of the di�erence lies is the map used to describe theimage; Di Zenzo used f : � ! IR3 while we use f : � ! IR5.The action functional under this choice of the metric is the Euler functionalS = R d2�pg;where the generalized surface area element pg is de�ned byg = 1 +Xi jrIij2 + 12Xij (rIi;rIj)2; (13)



where (rIi;rIj) stand for the magnitude of the vector product of the vectorsrIi and rIj .The action is simply the area of the image surface. Minimization with respectto Ii gives the Beltrami 
ow Iit = �gIi; (14)where �gIi = 1pg @�(pgg��@�Ii): Again, this is a 
ow towards a minimal sur-face.5.1 Relation to other color di�usion methodsChambolle [6], and Sapiro and Ringach [21], generalized the idea of smoothinga single valued function via a second directional derivative in the direction ofminimal change, i.e. isophotes curvature 
ow, into a multi valued function. Theseare non-variational 
ows.As pointed out in [4], for image segmentation, edge preserving and selectivesmoothing purposes, this is a result of a weakly coupled de�nition in color space.Blomgren and Chan [4] try to improve these results and de�ned the color TVnorm as qPi=1 �R jrIij�2; with a constraint. Observe that in this case thecoupling between the channels is only by the constraint. Actually, without theconstraint the minimization yields a channel by channel curvature 
ow.A di�erent norm was used by Shah in [23]: R pPi=1 jrIij2. As in all theprevious norms this norm is simpli�ed to the L1 (TV) norm for the single channelcase.We notice that the proposed area R pg norm, Eq. (13), includes a new termthat does not appear in previous norms. The term Pij(rIi;rIj)2 measuresthe directional di�erence of the gradient between di�erent channels. The min-imization of a norm that includes this term, directs di�erent channels to aligntogether as they become smoother and simpler in scale. One should recognizethis cross correlation of orientation between the channels as a very importantfeature, e.g. overcoming the color 
uctuations along edges as a result of a lossyJPEG compression.If we now tune the regularization ratio � to small values, we approach anextension of the TV norm that still includes the alignment term and serves as anatural coupling between the channels, see [11] for further details.5.2 Experimental ResultsWe now present some results of denoising color images using our model. Spatialderivatives are approximated using central di�erences and an explicit Euler stepis employed to reach the solution. We have tested the Beltrami 
ow with andwithout constraints6 on color images. See Fig. 4.6 It is possible to impose a meaningful convergence on the Beltrami 
ow through theright constraints on the action functional. As a simple example we derive a varianceconstraint similar to the TV method [20] for image denoising with convergence.



Fig. 4. Upper row: The Beltrami 
ow as an edge preserving scale space in color. Sec-ond row: Reconstructing a color image with noise artifacts introduced by wavelet lossycompression. The noisy image is on the left, the next image is the result of applyingthe Beltrami 
ow without constraints. Next is a reconstruction with noise artifactsintroduced by JPEG compression. Again the noisy image is on the left and the re-construction on the right Third row: Reconstruction of a color image corrupted withGaussian noise; the second image is the result of 
ow with constraints (convergentscheme), while the third image is the result of the 
ow without constraints after thesame number of numerical iterations. [This is a color image].Note that since we have a powerful selective smoothing operator, good re-sults may be obtained even without invoking these constraints. Without theGiven the variance for every channel, i.e. R (Ii � Ii0)2dxdy = �2iwhere �i is thegiven noise variance for channel i. The Euler Lagrange isP�=x;y 12@� � 1pg @g@Ii����i(Ii�Ii0) = 0:Again, using the freedom of parametrization(multiplying by g�1=2), yields the 
ow Iit = �gIi� 1pg�i(Ii�Ii0);where �i is computedvia �i = � 12�2i R P�=x;y 1pg @g@Ii� (Ii� � Ii0�)dxdy:We used the notation @g=@Ii�, that for the multi channel (color) case simpli�es to@g@Iix = 2Iixg22 � 2Iiyg12; and @g@Iiy = 2Iiyg11 � 2Iixg12:
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