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Cortex Segmentation: A Fast Variational
Geometric Approach

Roman Goldenberg*, Ron Kimmel, Ehud Rivlin, and Michael Rudzsky

Abstract—An automatic cortical gray matter segmentation
from a three-dimensional (3-D) brain images [magnetic resonance
(MR) or computed tomography] is a well known problem in
medical image processing. In this paper, we first formulate it as
a geometric variational problem for propagation of two coupled
bounding surfaces. An efficient numerical scheme is then used
to implement the geodesic active surface model. Experimental
results of cortex segmentation on real 3-D MR data are provided.

Index Terms—Cortical surface segmentation, deformable cou-
pled surfaces, geodesic active contours, level-sets.

I. INTRODUCTION

T HE CEREBRAL cortex is the outermost layer of the brain
bounded by the outer cortical surface [cerebral spinal

fluid (CSF)—gray matter interface] and the inner cortical
surface (gray matter—white matter interface). Determining the
location of the cortical surface of the human brain is often a first
step in brain visualization and analysis. Due to the complicated
and convoluted nature of the cortex, the manual slice by slice
segmentation is generally a difficult, inefficient and inaccurate
process, which makes an automatic three-dimensional (3-D)
cortex segmentation an important task.

A significant number of techniques have been proposed
to deal with the problem. The whole set of approaches can
be roughly divided into two groups: region-based methods
and boundary detection methods. Here, we concentrate on
one promising direction that is based on deformable surfaces.
Deformable surface is a 3-D analog of the active contour model
that was introduced in [19], [39] as the “snake model” and is
based on minimizing an energy along a curve. Caselleset al.[5]
and Malladiet al.[28] introduced a geometric flow that includes
internal and external geometric measures. Later, the geodesic
active contour model derived from a reparameterization in-
variant functional was proposed as a geometric alternative for
the snakes [6], [7], [20], [36]. Efficient numerical methods were
developed for accelerating of deformable surfaces propagation
and some of them were applied for brain segmentation, e.g.,
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see [27]. A combination of fuzzy segmentation and deformable
surface model for cortex reconstruction was reported in [42].

The idea to use several interacting deformable contours
or surfaces for segmentation was exploited by several re-
search teams. Samsonet al. [33] proposed a supervised
classification model to find an image partition composed
of homogeneous regions, assuming the number of classes
and their intensity properties are known. The classification
problem was formulated using a variational framework aimed
to propagate mutually exclusive regular curves toward class
region boundaries. Paragios and Deriche [31] presented an
image segmentation approach that incorporates boundary and
region information sources under a curve-based minimization
framework (see, also, [8] for a related effort). The propagating
interfaces are coupled by demanding a nonoverlapping set of
curves that restricts each pixel to belong to only one region.
Bertalmioet al. [2] used two implicit surfaces to track regions
of interest on surfaces that are being deformed using the
level-set methods.

More recently, there has been an effort to apply constraints
imposed by the cortex structure properties for better segmenta-
tion. Davatzikoset al.[14], [13] used the homogeneity of inten-
sity levels within the gray matter region to introduce a force that
would drive a deformable surface toward the center of the gray
matter layer. Teoet al. [38] used the connectivity of the gray
matter as a constraint in building the cortex representation by
growing out from the white matter boundary. MacDonaldet al.
[24]–[26] proposed to use an intersurface proximity constraint
in a two surface model of the inner and outer cortex boundaries
in order to guarantee that surfaces do not intersect themselves
or each other. Finally, Zenget al. [43] used the fact that the cor-
tical layer has a nearly constant thickness to design a coupled
surfaces model in such a way that a special propagation speed
term forces the intersurface distance to remain within a prede-
fined range. Later, Gomes and Faugeras implemented the cou-
pled surfaces model for cortex segmentation suggested by Zeng
et al. [43] using a scheme that preserves the level-set surface
representation function as a distance map, so that it is not re-
quired to reinitialize it every iteration [16].

In this paper, we adopt the coupled surfaces principle and de-
velop a new model using a variational geometric framework.
Unlike the model in [43], the surface propagation equations are
not empirically formulated, but derived from a minimization
problem. As a result, additional terms are introduced to the sur-
face propagation equations. Our implementation is based on ad-
vanced numerical schemes for surface evolution that yield a ge-
ometrically consistent and computationally efficient technique.
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II. THE GEOMETRIC-VARIATIONAL APPROACH

A. Coupled Surfaces Segmentation as a Minimization Problem

Let : be
a parameterized two-dimensional (2-D) surface in 3-D space.
Using the active contour approach, a boundary segmentation can
be seen as a weighted area minimization problem

where is an area element and : is a
positive boundary indicator function that depends on the image.
It gets small, close to zero values along the boundary and higher
values elsewhere.

In order to extract the cortical layer, we have to find its two
bounding surfaces: The outer CSF—gray matter interface, and
the inner gray matter— white matter interface.

Theoretically, if one could provide perfect boundary indi-
cator functions both for the inner and outer interfaces—
and —it would have been sufficient to use a single sur-
face approach, i.e., to find the inner and outer bounding surfaces

and by separate minimization of the two uncoupled
functionals

(1)

In practice, the limitations imposed by the imaging devices often
result in noisy and inaccurate image data, which reduce the re-
liability of boundary detectors that use only local information,
e.g., voxel intensity, gradient, etc.

That is the main reason for incorporating additional con-
straints imposed by the nature of the problem. In the case of
cortex segmentation it was suggested to use the fact that the
cortical layer has a nearly constant thickness (about 3 mm)
[3]. Zenget al. [43] designed a coupled surfaces model where
two deformable surfaces are kept within a predefined normal
range from each other by specially designing the interface
propagation speed in such a way that it decreases whenever
surfaces are getting too far or too close.

Let us adopt a similar coupled surfaces approach, but,
rather than heuristically building an expression for the surface
propagation speed [43], we shall derive it from a minimization
problem. This time, unlike in (1), we want a simultaneous
minimization of both interfaces and , so that the
minimum is reached when captures the CSF—gray matter
boundary and locks on to the white matter—gray matter
boundary. We start with

(2)

Motivated by [43], we link between the two surfaces, and intro-
duce an additional component that penalizes the deviations of

Fig. 1. The “h” function gets low constant value in the normal range.

the intersurface distance from the normal range, which yields
the functional

(3)

where is the Euclidean distance of the point
from the surface , i.e.,

, and is a penalty function that gets a constant low
value when the distances are within the “normal” range and
grows fast otherwise, see Fig. 1.

It is clear that the minimum of the functional (3) is reached
when both surfaces are located at their corresponding cortex
boundaries and the intersurface distance is preferably kept
within the normal range.

B. Level-Set Formulation

The Osher–Sethian [30] level-set method is a numerical tech-
nique for analyzing evolving interface motion that works on a
fixed coordinate system and considers an evolving front in an
implicit form

The basic idea is to evolve the 3-D embedding function
: so that its zero level set would always track

the current position of the evolving surface. Let us denote
the set of 2-D surfaces defined by different level sets of

by . Then, the original surface is defined as
.

One can prove (see Appendix A) that close to the interface
( ), for any function
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Then, the functional can be expressed as

(4)

Essentially, (4) enables us to implement surface evolution on
the fixed coordinate system. Besides its important prop-
erty of automatic handling topological changes of the evolving
surface, the level-set approach gives us a very simple and stable
way to compute the distance used as an argument of thefunc-
tion. Since the implicit representation of the evolving surface
does not imply any restrictions on the form of the embedding
function, we are free to define thefunction as a distance map.
Then, the distance from a point to the surface , de-
fined by the zero level set of the embedding function, is simply

. Therefore, the expression in (4) can be rewritten as

(5)

subject to and are distance extensions from their zero
sets, and we are looking for

Taking the variation with respect to and and writing it
as a gradient descent flow yields the system

(6)

There exists one limitation to the model developed so far. As
the system uses only local information, it can be trapped by a
meaningless local minimum, unless initialized close to the de-
sired boundary. In order to overcome this difficulty we apply an

additional force that comes from volume maximization and mo-
tivated by the balloon force [12]. We add the following weighted
volume maximization terms to the functional:

(7)

where is a volume element, and are the interiors of
the regions enclosed by the surfacesand , respectively,
and is a negative constant. It is equivalent to applying a pres-
sure force outward. The volume element is modulated by the
edge indicator function in order to stop the surface expansion
near the desired boundary. The Euler–Lagrange for the terms in
(7) is of the form , where is a normal to the surface (see
proof in Appendix B and [44] for similar development in 2-D),
and in level-set formulation this yields

(8)

C. Numerical Scheme

An explicit Euler scheme with forward time derivative intro-
duces a numerical limitation on the time step needed for sta-
bility. Moreover, the whole domain needs to be updated each
step, which is a time consuming operation. In order to cope with
these limitations, we use the fast geodesic active contours ap-
proach [15] which is based on the Weickert–Romeny–Viergever
[41] semi-implicit additive operator splitting (AOS) scheme and
uses the narrow-band approach to limit the computation to a
tight region of few grid points around the zero level set [9], [1].

We rely on the fact that the embedding functionis a distance
map. Gomes and Faugeras [16] proposed an approach, where
the Hamilton–Jacobi equation used to evolve the distance func-
tion is replaced by a partial differential equation that preserves
the function as a distance map (see also [37]), which was ap-
plied for cortex segmentation using the coupled surfaces model
suggested in [43]. Here, we reinitialize thefunction every it-
eration using the fast marching method [35], [34], [40], which is
a computationally optimal numerical method for distance com-
putation on rectangular grids. The method has a computational
complexity bound of , where is the number of points
in the narrowband as shown by Tsitsiklis [40], and requires a
set of grid points with a known exact distance to the zero level
set for initialization. Those seed points are detected with sub-
pixel accuracy using an algorithm motivated by the “marching
cubes” algorithm [23], [10]. For every grid cube within the nar-
rowband where the function changes its sign we find the dis-
tance to the zero level set for each one of the eight cube vertices.
The cube is split into five pyramids [Fig. 2(a)] and within each
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(a) (b)

Fig. 2. (a) Grid cube split into five pyramids. (b) Finding distance to the zero
level curve (2-D case).

pyramid the function is approximated by a four-dimensional
(4-D) hyperplane.

In order to clarify this idea let us first explore the low-dimen-
sional case where a 2-D curve is implicitly given by the zero
level of a function : [Fig. 2(b)]. A grid cell is split
into two triangles and there exists one and only one plane,,
going through the points , , and , where , ,
and are the triangle vertices. The values of thefunction at
the vertices are then updated to the distance between the vertex
and the zero level line of . Each vertex adopts the minimal of
all its updates.

Going back to the 3-D case, let be a vector defining a
hyperplane in 4-D going through the four points , ,

, and [Fig. 2(a)], so that the hyperplane equation is
given by , where is a 3-D point written in homo-
geneous coordinates. The planecan be found by solving the
system of four linear equations .
Then, the zero level set of hyperplaneis a plane in 3-D given
by . The distances we are looking for are the distances
from vertices to the zero level plane. One should verify that
the normal vector from the to the zero level plane is inside the
pyramid. Otherwise, the shortest distance on the intersection of
the plane with the pyramid boundary is taken instead.

The procedure above is repeated each iteration for both inner
and outer surfaces and the corresponding narrowbands automat-
ically modify their shapes as we reinitialize the distance maps.
As one can see from (6), when updating the values of
are needed to be defined within the area of numerical sup-
port, andvice a versa. Therefore, it is important to ensure that
the narrowband of one surface includes the other. This can be
done using asymmetric narrowbands as in [43], or using a single
narrowband for both surfaces.

III. EXPERIMENTAL RESULTS

In order to apply our method to cortex segmentation we have
yet to determine appropriate boundary indicator functions for
the inner and outer interfaces: and . Significant number
of techniques have been proposed to deal with the problem, e.g.,
adaptive fuzzy segmentation in [32], Bayesian approach in [17],
etc. Here, we adopt a simplified version of an operator used by
Zenget al.[43], measuring the likelihood of a voxel to be on the
boundary between two tissues. It is assumed that statistical dis-
tributions , and of the image intensities are known
for each one of the three tissues—CSF, gray matter, and white
matter respectively. The probability of a voxel to be on the

(a) (b) (c)

Fig. 3. Boundary indicator functions. (a) A slice from the original MR image.
(b) Result of the inner boundary detection operator. (c) Result of the outer
boundary detection operator.

boundary between tissue A and tissue B is estimated from the
difference between the probability measures integrated over a
neighborhood of . Namely, for the gray matter/white matter
and the CSF/gray matter interfaces these probabilities are given
by

(9)

and

(10)

and the inner and outer boundary indicator functions are then
defined as

(11)

and

(12)

respectively, where is a neighborhood of the voxel and
and are parameters. Fig. 3 shows the result of applying the

inner and outer boundary detectors on a single slice from the
original MR brain image.

It should be noted that the model for tissue intensity priors we
used here is an oversimplified one. In practice, in order to pro-
vide a fully automatic segmentation solution, one should be able
to cope with the problem of intensity nonuniformity in MR im-
ages due to the imaging equipment limitations, nonlinear gain
artifacts, and patient-induced electrodynamic interactions. Al-
though the issue is beyond the scope of this paper, we only
mention that very promising results have been achieved using
Bayesian methods (for example [21], [22], and recently [29])
combined with brain atlas-based registration and with active
contour segmentation as in [18]. In this sense, the algorithm pre-
sented here can be used as a building block in conjunction with
the methods reported elsewhere.

We still need to set initial conditions (the initial position of
the surfaces) in order to start the segmentation process. This
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(a) (b) (c)

Fig. 4. Coupled surfaces propagation. (top) Inner surface and (bottom) outer surface. (a) Initial position. (b) Intermediate state. (c) Final result.

(a) (b) (c)

Fig. 5. Different views of the reconstructed cortical surfaces. (top) Inner surface. (bottom) Outer surface. (a) Sagittal view. (b) Axial view. (c) Coronal view.

is done by manually choosing several seed points inside the
white matter region and building two small concentric surfaces

(e.g., spheres or cubes) at the normal distance from each other.
Fig. 4(a) shows an initial condition with seven “seeds.”
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Fig. 6. Extracted boundaries in a single-slice section and a zoom into a small
region. White contour: outer surface; black contour: inner surface.

The coupled surfaces then propagate outwards, driven by a
balloon force multiplied by the boundary indicator function,
while maintaining the intersurface distance, which is controlled
by the function (3). Finally, the interfaces converge to their
exact boundary position that minimize the weighted area and
maximal volume as determined by the functionals (4) and (7).
The process terminates when the surfaces do not change for two
time steps. Fig. 4(b) and (c) shows an intermediate state and the
final result. Both inner and outer surfaces are shown.

The three standard views (sagittal, axial, and coronal) of the
segmented outer and inner cortical surfaces are presented in
Fig. 5 and a zoom-in of the extracted boundaries for a single
slice is shown in Fig. 6.

For a 192 250 170 MR image of the whole brain, our
algorithm runs in about 2.5 min on a Pentium III PC.

We performed a validation test on the BrainWeb [11] data
available at [4]. The data set was generated from the normal
brain database using the modality, 1-mm slice thickness,
3% noise level and 20% intensity nonuniformity settings.
Fig. 7 presents the comparison results for six different slices.
The top row shows the ground truth data from the BrainWeb
database and the middle row presents the segmentation results
obtained using our algorithm. The bottom row is an overlap of
the two above, where the dark gray color shows the correctly
detected cortex regions. Regions not found by the algorithm
are shown in white, and black designates areas mistakenly
marked by the algorithm as cortex. The segmentation results
are nearly identical to the ground truth data, except a systematic
one-pixel-wide error on the boundary (white on the outer
surface and black on the inner surface). The error can be caused
by a number of reasons including a mismatch in the priors
used in building the ground truth data and by our algorithm in
estimating the CSF/gray matter/white matter image intensities,
and the technique used to extract the boundary from the zero
level set—taking positive instead of negative voxels may shift
the region boundary by one pixel.

IV. CONCLUDING REMARKS

In this paper, we presented a new approach for cortex seg-
mentation. The method is based on the coupled surfaces model
that was derived as a minimization problem in a variational
geometric framework. The surface evolution is performed
using the fast geodesic active contour approach—an efficient
numerical scheme combining semi-implicit AOS propagation

scheme, level-set representation, narrow-band approach and the
fast marching method. An efficient technique is proposed for
the zero level-set reconstruction in 3-D. Cortex segmentation
results from a real MR brain images and BrainWeb synthetic
data demonstrate the computational efficiency and accuracy of
the new method.

APPENDIX A

Let be a parameter-
ized surface and let be its im-
plicit representation. That is, we can consider a family of sur-
faces where . Then, close
to the zero level set

where is a function defined over the integration do-
main.

Proof: Recall that
, where the Jacobian is given by

. In our
case, for the general parameterized surface and its
implicit representation , the normal to the
surface is given by

Therefore

We also know that . Thus,
and the Jacobian is given by

We can now conclude with

APPENDIX B

Let us derive the Euler–Lagrange equation for the functional

(13)
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Fig. 7. Comparison with the “BrainWeb” data set. (top) Ground truth. (middle) Gray matter regions extracted by our algorithm (bottom) Overlap image.Gray
color designates regions both the ground truth and the algorithm agree upon. Regions not found by the algorithm are shown in white and regions mistakenly found
by the algorithm are shown in black.

where the is a 2-D
boundary surface of a 3-D volume parameterized by two
parameters and .

Let be a
vector field defined on in the following way:

Then, and, assuming , , and are in
on , by Gauss theorem

Changing the integration variables toand , yields

where is the unit normal to the surfaceand
is a geometric area element.

Let us denote

Then, the Euler–Lagrange equations for are

(14)

(15)

(16)

Explicitly, (14) is given by
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where is the component of the normal vector. Similarly,
for (15) and (16) we have

and

Thus
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