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Abstract. Retinex theory addresses the problem of separating the illumination from the reflectance in a given
image and thereby compensating for non-uniform lighting. This is in general an ill-posed problem. In this paper we
propose a variational model for the Retinex problem that unifies previous methods. Similar to previous algorithms,
it assumes spatial smoothness of the illumination field. In addition, knowledge of the limited dynamic range of
the reflectance is used as a constraint in the recovery process. A penalty term is also included, exploiting a-priori
knowledge of the nature of the reflectance image. The proposed formulation adopts a Bayesian view point of the
estimation problem, which leads to an algebraic regularization term, that contributes to better conditioning of the
reconstruction problem.

Based on the proposed variational model, we show that the illumination estimation problem can be formulated
as a Quadratic Programming optimization problem. An efficient multi-resolution algorithm is proposed. It exploits
the spatial correlation in the reflectance and illumination images. Applications of the algorithm to various color
images yield promising results.

Keywords: variational models, multi-resolution, quadratic programming, illumination removal, image
enhancement, dynamic range compression, reflectance

1. Introduction

Retinex theory deals with compensation for illumina-
tion effects in images. The primary goal is to decom-

pose a given image S into two different images, the
reflectance image R, and the illumination image L ,
such that, at each point (x, y) in the image domain,
S(x, y) = R(x, y) · L(x, y). The benefits of such a
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decomposition include the possibility of removing
illumination effects of back/front lighting, and en-
hancing shots that include spatially varying illumina-
tion such as images that contain indoor and outdoor
zones.

Recovering the illumination from a given image
is known to be a mathematically ill-posed problem,
and algorithms proposed in the literature for its so-
lution vary in their way of overcoming this limi-
tation. The Retinex methodology was motivated by
Land’s landmark research of the human visual system
(Land, 1977). Through his experiments it was shown
that our visual system is able to practically recog-
nize and match colors under a wide range of differ-
ent illuminations, a property that is commonly referred
to as the Color Constancy Phenomenon. As a mat-
ter of fact, Land’s findings indicated that even when
retinal sensory signals coming from different color
patches under different illuminations are identical, sub-
jects were able to name the surface reflectance color
(Land, 1977). The ability to extract the illumination
image is sufficient but not necessary to achieve this
property.

In this paper we define the Retinex reconstruction
problem for gray-level images through physically mo-
tivated considerations. The proposed formulation is
shown to be a mathematically well-posed problem. A
variational expression is obtained by defining the op-
timal illumination as the solution of a Quadratic Pro-
gramming (QP) optimization problem. It is shown that
different previous algorithms are essentially solutions
to similar variational problems. We introduce an effi-
cient algorithm based on QP solvers and the fact that
the unknown illumination is spatially smooth. Our al-
gorithm uses a multi-resolution reconstruction of the
illumination with few relaxation iterations at each res-
olution layer.

We apply and compare the proposed algorithm in
two color spaces. The first operates in the RGB space,
in which each spectral channel is processed separately.
The second is the HSV color space in which only
the Value (V) channel is processed. Both methods
produce pleasing results in terms of dynamic range
compression. In addition color corrections can be ob-
tained as a by-product of the Retinex algorithm in
the RGB space. The resulting reflectance image usu-
ally appears to be over-enhanced. A relaxation algo-
rithm for this effect is proposed. Tests on images from
various sources produce pleasing images, and sup-
port the assumption that the results of the proposed

formulation are similar to those of the human visual
system.

This paper is organized as follows: In the next sec-
tion we review several different Retinex algorithms.
Some of those were motivated by assumptions based
on the color constancy process in the human visual sys-
tem. Section 3 presents the proposed formulation along
with an efficient numerical algorithm for the illumi-
nation reconstruction. Uniqueness and convergence of
the solution are also discussed in Section 3. Section 4
extends the proposed formulation to color images. In
Section 5 we show a possible application that corrects
the illumination component and then adds it back to the
image. In Section 6 we apply the method to different
images and demonstrate the algorithm’s performances
and the effects of its free parameters. Section 7 gives
concluding remarks.

2. Previous Work

The first Retinex algorithms proposed by Land et al.
were of random walk type (Land, 1983; Land and
McCann, 1971). Subsequent algorithms (Jobson et al.,
1997a, 1997b; Land, 1986) use Homomorphic Filters
(Faugeras, 1979; Stockham Jr., 1972). Yet another
group of Retinex algorithms is based on solving a
Poisson equation (Blake, 1985; Funt et al., 1992;
Horn, 1974; Terzopoulos, 1986). Retinex algorithms by
McCann et al. (Frankle and McCann, 1983; Funt et al.,
2000; McCann, 1999), are an iterative multi-resolution
type of non-linear filter.

A first step taken by most algorithms is the con-
version to the logarithmic domain by s = log S, l =
log L , r = log R, and thereby s = l + r . This step is
motivated both numerically, preferring additions over
multiplications, and physiologically, referring to the
sensitivity of our visual system (Land, 1977). The dif-
ferent Retinex algorithms usually have the same flow
chart as shown in Fig. 1, and the difference between
them concentrates on the actual estimation of the illu-
mination image.

The main motivation of the subsequent overview of
the above-mentioned Retinex algorithm families is to
find similarities in the apparently different approaches,
and thereby to motivate the proposed approach. Thus,
the description of algorithm families should not be
interpreted as a detailed description of any spe-
cific Retinex algorithm but rather as a generalized
description of the family.
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Figure 1. The general flow chart of Retinex algorithms.

2.1. Random Walk Algorithms

A random walk is a discrete time random-process in
which the ‘next pixel position’ is chosen randomly from
the neighbors of the current pixel position. Random
walk type Retinex algorithms are nonlinear variants of
the following basic formulation (Brainard and Wandell,
1986): A large number of walkers are initiated at ran-
dom locations of an input image s, adopting the gray-
value of their initial position. An accumulator image A
that has the same size as s is initialized to zero. As the
walkers walk around, they update A by adding their val-
ues to each position they visit. Finally, the reflectance
image is obtained by normalizing the accumulator im-
age, i.e., its value at each location divided by the num-
ber of walkers visited it. By using many walkers with
long paths, it is easily verified (Papoulis, 1991) that
each accumulator value assimptotically converges to a
Gaussian average of its neighbors. The non-linearities
added to this basic version are:

• As random walks cross strong gradients (larger than
a predetermined threshold) the corresponding walker
updates its value by adding it to the gradient value.
Note that if the threshold is very large the output r is
practically a low pass version of the input image, and
correspondingly the difference l between the input
and the output images contains all the image details.
Conversely, if the threshold is very small, the details
remain in the output image, and the difference l is a
smooth version of the input. In practice, the threshold
is very small—so as to include ‘illumination gradi-
ents’ only.

• walker values can not exceed 255 (or whatever other
value for White), thus making sure no illumination
is whiter than White.

2.2. Homomorphic Filtering

Homomorphic Filtering type Retinex algorithms
(Faugeras, 1979; Jobson et al., 1997a, 1997b; Land,

1986; Stockham Jr., 1972) share the following basic
motivation: The reflectance image corresponds to the
sharp details in the image (i.e. edges), whereas the il-
lumination image is expected to be spatially smooth, a
reasonable guess for l is a low-pass version of s, where
the low pass is usually obtained as a convolution with
a wide Gaussian kernel.

2.3. Poisson Equation Solution

Following the above reasoning, since the illumination
is expected to be spatially smooth, its derivative should
be close to zero everywhere. On the other hand, by the
assumption that the reflectance is piece-wise constant,
its derivative is expected to vanish almost everywhere,
and get high values along the edges. Thus, if we take
the derivative of the sum s = l + r and clip out the
high derivative peaks, we can assume that the clipped
derivative signal corresponds only to the illumination.

Poisson Equation type Retinex algorithms (Blake,
1985; Horn, 1974; Terzopoulos, 1986) rely on Land’s
Mondrian world model. The Mondrian model boils
down to the above assumption on the reflectance as
a piece-wise constant image. Applying the Laplacian,
and the following clipping operation

τ (�s) =
{

�s where |�s| < T

0 otherwise,

we get the following Poison equation

�l̂ = τ (�s).

As to the solution of the resulting Poisson equation,
Horn (1974) suggested an iterative procedure which
effectively inverts the Laplacian operator. Similar to
the previous methods, a low-pass filter is applied in
order to solve the above equation. Blake (1985) intro-
duced an improvement to Horn’s method. He proposed
to extract the discontinuities from the image gradient
magnitude instead of the Laplacian and thereby came
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up with better boundary conditions that deal with less
trivial scenarios along the image boundary. An addi-
tional algorithmic improvement by Funt et al. (1992)
uses the curl to assure integrability.

2.4. McCann’s Algorithm

McCann et al. (Frankle and McCann, 1983; Funt et al.,
2000; McCann, 1999) proposed variants of an algo-
rithm that can be equivalently written as follows: The
illumination image l̂0 is initialized to be s, the original
image. The algorithm performs the following iterative
procedure,

l̂n+1 = max

{
l̂n + s

2
,

l̂n + Dn[l̂n]

2

}

where Dn is a translation operator, shifting the image
by the nth element of a sequence of spirally decaying
translation vectors {dn}, as shown in Fig. 2. The size
of the first displacement is set to be half the minimum
between the image width and height.

Let us link this procedure to the previous methods.
If we remove the max operation we get the simplified
version

l̂n+1 = l̂n + Dn[l̂n]

2
.
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Figure 2. The sequence of displacement vectors for the Dn operator
in McCann algorithm.

This is a simple averaging operation that smoothes the
image. Actually, it is possible to show that with the
displacements shown in Fig. 2, the effective smoothing
kernel approaches a Gaussian.

The non-linear (max) operation inside the loop
forces the illumination image to satisfy the constraint
l̂ ≥ s. Incorporating the physical nature of reflect-
ing objects which reflect only part of the incident
light. Thus, the reflectance is restricted to the range
R ∈ [0, 1], and L ≥ S, which implies l ≥ s.

A multi-resolution version is also proposed in Funt
et al. (2000) and McCann (1999). A Gaussian pyramid
is constructed for the given image s. The algorithm
starts at the coarsest level, and the size of the displace-
ments for Dn are one pixel in each direction for each
resolution. The multi-resolution version is significantly
faster, yet produces lower quality results compared to
the original version.

2.5. Summary of Previous Work

The discussion in this section suggests that the pre-
vious seemingly different algorithms are actually very
similar. They are all based on the spatial smoothness as-
sumption of the illumination l. All the above algorithms
apply various, potentially nonlinear, smoothing opera-
tors to s in order to extract l̂. Some methods add more
assumptions about the reflectance, such as its limited
range, or its Mondrian form. Eventually, ‘skinning’ the
illumination from the given image yields the reflectance
image, which is expected to be free of non-uniform il-
lumination, have a reduced dynamic range, and be a
more pleasing image.

3. The Variational Framework

3.1. Functional Definition

We start by listing the known information about the
illumination image.

1. The first important assumption about the illumina-
tion is its spatial smoothness.

2. We also know that, since R is restricted to the unit
interval, we can add the constraint L ≥ S. Since the
log function is monotone, we also have l ≥ s.

3. By setting l = Const, where Const is any constant
above the maximal value of s, we get a trivial solu-
tion that satisfies the two previous assumptions. We
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therefore add the assumption that the illumination
image is close to the intensity image s, i.e., it mini-
mizes a penalty term of the form dist(l, s), e.g., the
L2 norm (l − s)2.

4. The reflectance image r = s − l can be assumed to
have a high prior probability (Blake and Zisserman,
1987; Geman and Geman, 1984; Lagendijk and
Biemond, 1991; Marroquin et al., 1987). One of
the simplest prior functions used for natural im-
ages assigns high probability to spatially smooth
images (Lagendijk and Biemond, 1991). Note that
since r + l = s, spatially smooth r contradicts spa-
tially smooth l. In practice adding this penalty term
kicks in mainly on sharp edges and handles situa-
tions where the illumination is not smooth (as well
as cases of direct light sources and specularities).

5. We can assume that the illumination continues
smoothly as a constant beyond the image bound-
aries. This is an artificial assumption required for
boundary conditions that would have minor effect
on the final results.

Collecting all the above assumptions into one ex-
pression we get the following penalty functional

Minimize: F[l] =
∫

�

(|∇l|2 + α(l − s)2

+ β|∇(l − s)|2) dx dy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂�, (1)

where � is the support of the image, ∂� its bound-
ary, and �n is the normal to the boundary. α and β

are free non-negative real parameters. In the func-
tional F[l], the first penalty term (|∇l|2) forces spatial
smoothness on the illumination image. This choice of
smoothness penalty is natural, if we keep in mind that
minimizing

∫
(|∇l|2) dx dy translates into the Euler-

Lagrange (EL) equation �l = 0. Its steepest descent
solution is a Gaussian smoothing operation with in-
creasing variance of the initial condition. As men-
tioned in the previous section, several authors proposed
Gaussian related smoothing of s for the illumination
reconstruction.

The second penalty term (l − s)2 forces a proximity
between l and s. The difference between these images
is exactly r , which means that the norm of r should be
small (i.e., R tends to White). This term is weighted by
the free parameter α. The main objective of this term is
a regularization of the problem that makes it better con-
ditioned. Notice that, in addition, we force the solution

l to be l ≥ s. In practice this penalty term should be
weak in order not to pull l down too much towards s.
Note that in contrast to gradient penalty terms which
apply mainly on edges, this term applies potentially
anywhere, and α should therefore be very small.

The third term represents a Bayesian penalty expres-
sion. It forces r to be a ‘visually pleasing’ image. This
term weighted by the free parameter β penalizes gra-
dients in r and forces it to be spatially smooth. Note
that more complicated Bayesian expressions may be
used allowing sharp edges, textures, 1/ f behavior, etc.
(Blake and Zisserman, 1987; Geman and Geman, 1984;
Lagendijk and Biemond, 1991; Marroquin et al., 1987).
As long as this expression is purely quadratic, the above
minimization problem remains fairly simple.

The problem we have just defined has a Quad-
ratic Programming (QP) form (Bertsekas, 1995;
Luenberger, 1987). The necessary and sufficient con-
ditions for its minimization are obtained via the
Euler-Lagrange equations

∀(x, y) ∈ �

×




∂ F[l]
∂l = 0 = −�l + α(l − s) − β�(l − s)

and l > s

or

l = s



(2)

Note that the differential equation does not have to hold
when l = s.

An interesting side-effect of the proposed formula-
tion is an invariance property to a specific yet popu-
lar transformation of the input image, known as the
gamma-correction. In most imaging systems the lin-
ear sensory data is passed through a Look-Up-Table
in order to brighten the values. Such typical transfor-
mation is the Gamma-correction, where Sout = S1/γ

in
(assuming 0 ≤ Sin, Sout ≤ 1).

In general, if indeed such transformation takes place,
it has to be removed prior to any Retinex algorithm and
redone prior to viewing of the results. However, as we
step into the log-domain, the Gamma-correction be-
comes a multiplication of s = log S by the constant
1/γ . Based on the conditions in Eq. (2), if lopt is the
optimal solution for a specific image s, then lopt/γ sat-
isfies these conditions for an input image s/γ with
r/γ = (s − lopt)/γ . This means that instead of in-
verting the Gamma-correction, applying Retinex and
re-applying Gamma correction, one may simply apply
Retinex to Gamma-corrected images.
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3.2. Numerical Solution

The minimization problem is QP with respect to the
unknown image l. Many algorithms for solving such
problems are known in the literature (Bertsekas, 1995;
Luenberger, 1987). In this paper we chose to focus
on the Projected Normalized Steepest Descent (PNSD)
algorithm, accelerated by a multi-resolution technique.

3.2.1. Projected Normalized Steepest Descent. The
PNSD algorithm requires the application of a Normal-
ized Steepest Descent (NSD) iteration that minimizes
the functional F[l], followed by a projection onto the
constraints. A NSD iteration has the format

l j = l j−1 − µNSD · G,

where l j and l j−1 are the illumination images at step j
and j − 1, respectively, G is the gradient of F[l], and
µNSD is the optimal line-search step size. In our case,
Eq. (2), the gradient of F[l] is given by:

G = −�l j−1 + (α − β�)(l j−1 − s),

and µNSD is given by

µNSD =
∫
�

|G|2∫
�

(α|G|2 + (1 + β)|∇G|2)

Observe that, by integration by parts,
∫ |∇G|2 =

− ∫
G�G up to boundary conditions.

An alternative approach is the Steepest Descent (SD)
algorithm, where µNSD is replaced by a constant value
µSD, such that

µSD ∈
(

0,
2

λmax{−(1 + β)� + α I }
)

,

where λmax{A} refers to the greatest eigenvalue of
the linear operator A. This alternative method saves
computations at the expense of a slightly slower
convergence.

Finally, projecting onto the constraint l ≥ s is done
by l j = max(l j , s).

Notice that G can be calculated by

G = −G A + α(l j−1 − s) − β(G A − G B),

where

G A
�= �l j−1,

G B
�= �s.

Similarly, µNSD is given by

µNSD = µA

αµA + (1 + β)µB
,

where

µA
�=

∫
�

|G|2,

µB
�=

∫
�

|∇G|2.

We approximate the Laplacian by a linear convolu-
tion with the kernel κLAP

κLAP =




0 1 0

1 −4 1

0 1 0


 ,

and the integrations are approximated by summations

∫
�

|G|2 ≈
∑

n

∑
m

G[n, m]2

∫
�

|∇G|2 = −
∫

�

G�G

≈ −
∑

n

∑
m

G[n, m](G∗κLAP)[n, m],

where G[m, n] = G(m�x, n�y). In order to handle
the boundary conditions, defined in Eq. (1), the above
convolution is applied on an expanded version of the
image G. The extension is done by replicating the first
and last columns and rows. After the convolution, the
additional rows and columns are removed.

3.2.2. Multi-Resolution. The PNSD algorithm usu-
ally converges slowly (Bertsekas, 1995; Luenberger,
1987). Instead of general acceleration schemes, we use
the fact that the unknown image l is assumed to be
smooth. Specifically, we apply a multi-resolution al-
gorithm that starts by estimating a coarse resolution
image l, expands it by interpolation and uses the result
as an initialization for the next resolution layer. This
way, few iterations at each resolution are enough for
convergence.

Summarizing the above, a proposed algorithm for
the solution of Eq. (1) involves the following steps,

1. Input: The input to the algorithm is an image s of
size [N , M], and two parameters α and β.
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2. Initialization: Compute a Gaussian pyramid of the
image s. This pyramid is constructed by smoothing
the image with the kernel κPYR,

κPYR =




1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16


 ,

and decimating by 2:1 ratio. The process is repeated
p times and produces a sequence of images {sk}p

k=1.
The image s1 is the original image s, and sp is the one
with the coarsest resolution in this pyramid. Define
the numerical inner product

〈G, F〉 =
N∑

n=1

M∑
m=1

G[n, m]F[n, m],

and the numerical Laplacian at the kth resolution as

�k G = G ∗ kLAP2−2(k−1).

Set k = p, i.e., start at the coarsest resolution layer,
and set the initial condition l0 = max{sp}.

3. Main Loop: For the kth resolution layer,

• Calculate G B
�= �ksk .

• For j = 1, . . . , Tk Do:

(a) Calculate gradient:

G A
�= �kl j−1,

G ← G A + α(l j−1 − sk) − β(G A − G B).

(b) Calculate µNSD

µA
�= 〈G, G〉,

µB
�= −〈G, �k G〉,

µNSD ← µA/(αµA + (1 + β)µB).

(c) Complete NSD iteration

l j ← l j−1 − µNSD · G,

(d) Project onto the constraints

l j = max{l j , sk}.

• End j Loop;

The above loop solves the intermediate problem

Minimize: Fk[l] =
∫

�k

(|∇l|2 + α(l − sk)2

+ β|∇(l − sk)|2) dx dy

Subject to: l ≥ sk and 〈∇l, �n〉 = 0 on ∂�,

4. Update the next resolution layer: If k > 1, the
result lTk is up scaled (2:1 ratio) by pixel replication
into the new l0, the initialization for the next resolu-
tion layer. The resolution layer is updated k = k−1,
and the algorithm proceeds by going again to Step
3. If k = 1, the result lT1 is the final output of the
algorithm.

3.3. Relation to Previous Methods

Let us revisit the algorithms described in Section 2 and
analyze them in light of the proposed formulation. First,
by setting α = β = 0, and removing the constraint
l ≥ s we get Homomorphic filtering. Adding back
l ≥ s we become similar to random walk algorithms
and the McCann algorithm.

The Poisson Equation approach seems to be unre-
lated directly to our formulation. However, if we let
α(x, y) = τ (�s) and set the second distance term to∫

α(x, y)(l − s), keeping the constraint l ≥ s, we
get that the optimal illumination should satisfy the
equation

�l = τ (�s), (3)

subject to l ≥ s, which is identical (up to the constraint)
to Horn’s formulation.

3.4. Uniqueness and Convergence

In this section we prove the uniqueness of the solution
to Eq. (1), and the convergence of the proposed nu-
merical algorithm. The following theorem shows that
the convexity of the problem guarantees existence and
uniqueness of the solution.

Theorem. The variational optimization problem P,

given by

Minimize: F[l] =
∫

�

(|∇l|2 + α(l − s)2

+ β|∇(l − s)|2) dx dy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂�,

with α > 0 and β ≥ 0, has a unique solution.
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The proof is given in the Appendix.
Regarding the convergence of the numerical scheme,

the core of the proposed algorithm is the Projected Nor-
malized Steepest Descent (PNSD) algorithm, which is
known to converge for convex optimization problems,
such as our case (Bertsekas, 1995; Luenberger, 1987).
The pyramidal shell of the algorithm can be considered
as an efficient method for creating a good initialization
for the highest resolution layer stage. We found that
few iterations at the finer resolution layer are sufficient
for effective convergence.

4. Color Images

Thus far we dealt with a single channel. In this section,
we apply our method to color images. When we process
color images the traditional approach is to deal with
each color channel separately. We refer to channel-by-
channel processing as ‘RGB Retinex’. Treating the R,
G, and B channels separately usually yields a color cor-
rection effect. For example, RGB Retinex on a reddish
image is expected to modify the illumination in such
a way that the red hue is removed so that the result-
ing image is brightened and corrected. Therefore, for
some images, RGB Retinex actually improves the col-
ors. Nevertheless, in other cases, such color correction
can cause color artifacts that exaggerate color shifts, or
reduce color saturation.

Another approach is to map the colors into a dif-
ferent color space, such as HSV, apply the Retinex
correction only to the intensity layer, and then map
back to the RGB domain. We refer to this method as
the ‘HSV Retinex’. Color shifts in such cases are less-
likely. A major advantage is that we have to process a
single channel. We refer to Barnard and Funt (1998) for

S’
Image
Input 

S

Correction

Gamma

L

S

S

L

R

Retinex

reconstruction)
(Illumination

L’

Figure 3. Returning part of the illumination to the reflectance image.

further analysis of color constancy issues in a Retinex
algorithm.

5. Alternative Illumination Correction

The reflectance image obtained by the Retinex process
is sometimes an over-enhanced image. It might be ar-
gued that (i) the human visual system merely reduces
the dynamic range of scenes rather than removing the
illumination altogether, namely, shaded areas are defi-
nitely perceived as such. (ii) removal of all the illumi-
nation exposes noise that might exist in darker regions
of the original image.

We propose adding a corrected version of the re-
constructed illumination back to the reconstructed re-
flectance image. Figure 3 describes this operation.
The proposed scheme computes the illumination im-
age L = exp(l) from the intensity image S = exp(s),
and the reflectance image R = S/L , as discussed in
previous sections. Then, we ‘tune up’ the illumination
image L by a Gamma Correction operation with a free
parameter γ , obtain a new illumination image L ′, and
multiply it by R, that gives the output image S′ = L ′ ·R.
The Gamma correction is performed by

L ′ = W ·
[

L

W

] 1
γ

, (4)

where W is the White value (equal to 255 in 8-bit
images).

The final result S′ is given, therefore, by

S′ = L ′ · R = L ′

L
S

= W
(L/W )1/γ

L
S = S

(L/W )1−1/γ
. (5)
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For γ = 1, the whole illumination is added back,
and therefore S′ = S. For γ = ∞, no illumination is
returned, and we get S′ = R · W , which is the same re-
flectance image, R, as obtained by the original retinex,
stretched to the interval [0, W ]. The later case can also
be considered as tuning up the illumination to a maxi-
mal valued uniform illumination W .

Adding part of the illumination to the final image
can also be found in the homomorphic filtering ap-
proach. In Oppenheim and Schafer (1975, ch. 10), the
proposed linear filter for the illumination calculation
in the log domain, removes high-pass spatial compo-
nents of s, yet also attenuates the low-pass components
by a factor of γi (where i stands for illumination).
This is analog to a gamma correction of the illu-
mination with γ = γi , since Eq. (5) can be written
as

S′

W
=

(
L

W

)1/γ

· R, (6)

and therefore

s ′ − w = 1

γ
(l − w) + r

= 1

γ
(low-pass components)

+ (high-pass components). (7)

Figure 4. The original images used in the experiments.

6. Results

In our experiments we applied the numerical algorithm
of Section 3 to several test images, two of which are
shown in Fig. 4, other examples may be viewed at
Kimmel et al. (1999). All results correspond to α =
0.0001 and β = 0.1, unless indicated differently. Four
resolution layers were used with Tk = 1, 2, 3, and 4 iter-
ations at each layer, 1 iteration at the finest (k = 1) and
4 at the coarsest resolution (k = 4). This idea of using
more iterations at coarser scales is known by the name
‘Cascadic Multigrid’ (Bornemann and Deuflhard,
1996) and is used in order to gain convergence at
coarser scales where complexity is much lower. All
images appear in color in the electronic version.

Note that since we do not know the origin of the
images we work with, we assume them to be linear up
to Gamma-correction, and as explained earlier, we do
not need to invert this transformation as our algorithm
is in fact invariant to it.

Figure 5 demonstrates the invariance to gamma-
correction. It shows the results of the RGB-retinex
process in two different paths: (i) Apply RGB retinex
directly on the input image; and (ii) Apply inverse-
gamma-correction to the input image (γ = 2.2), then
apply RGB-retinex as usual, and finally apply gamma-
correction (again −γ = 2.2) to better view the results.
As can be seen, the results are very similar. Differ-
ences are due to the discretization effects and the small
number of iterations used.
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Figure 5. Invariance to gamma-correction: (i) Top row—direct application of the Retinex procedure, with illumination in (a) output with γ = 3
illumination return in (b), and output with γ = ∞ illumination return in (c); (ii) Bottom row—inverse gamma correction before and gamma
correction after the Retinex procedure using γ = 2.2, with illumination in (d), output with γ = 3 illumination return in (e), and output with
γ = ∞ illumination return in (f).

In the next test, we apply the RGB and the HSV
Retinex algorithms to two input images. The results
are shown in Figs. 6 and 7.

The second test (Fig. 8) presents the influence of
the β and T values on the reconstructed reflectance
image. Our goal is to show that the algorithm is stable

in the choice of these parameters which can change
in a wide range with minor effects on the outcome.
We apply the HSV retinex process, with fixed γ = 3.
The β values change from 1e-5 to 1 with relatively
minor effect on the output quality. As for the number
of iterations, the number of iterations per resolution
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Figure 6. RGB retinex results: Illumination in (a) output with γ = 3 in (b), and γ = ∞ (i.e. reflectance image) in (c); HSV retinex results:
Illumination in (d) output with γ = 3 in (e), and γ = ∞ (i.e. reflectance image) in (f).

level is T · k, where k = 1 is the finest resolution level.
We vary the value of T between T = 2 and 32 with
slight apparent differences.

In Fig. 9, we restore the illumination through Gamma
correction and add it back to the reflectance image. We
compare illumination correction with γ = {2, 6, 24}
to standard Gamma correction on the image. Cor-
responding γ values were tuned to approximate the
overall mean brightness of the illumination corrected
images. Again, HSV retinex process was used.

Finally, we demonstrate the convergence of the pro-
posed numerical algorithm. Figure 10 shows the values
of F[l], the functional in Eq. (1), as a function of the
number of iterations, and the influence of using the
multi-resolution methodology. For this simulation we
use the RGB-retinex that applies the optimization pro-
cess to each of the three layers separately. In the first
part of the experiment we use the non-pyramidal ap-
proach and plot the value of F[l] as a function of the
number of iterations. We refer to each iteration as a
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Figure 7. RGB retinex results: Illumination in (a) output with γ = 3 in (b), and γ = ∞ (i.e. reflectance image) in (c); HSV retinex results:
Illumination in (d) output with γ = 3 in (e), and γ = ∞ (i.e. reflectance image) in (f).

single unit of operation. We see convergence after 10
such operations (iterations). When applying the same
algorithm with N layer pyramidal approach, each sin-
gle iteration becomes one iteration in the original res-
olution, 2 iterations on the next resolution later, and
generally, k iterations on the kth layer. However, the
kth layer is 0.52(k−1) smaller in size, thus reducing by
the same factor the computational complexity. To sum-
marize, for N -layer pyramid we have that one iteration

is equivalent to

N∑
k=1

k · 0.25k−1 = 1

0.752

(
1 − (1 + 0.25 · N )0.25N

)

≤ 1.78 Operations.

For 2-layer pyramid the above factor becomes 1.5
while 4-layer pyramid gives 1.75 operations/iteration.
Plotting F[l] results as a function of the number of
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Figure 8. The influence of β and T : Constant T = 2 and β = 0.00001 in (a), β = 0.1 in (b), and β = 10 in (c); Constant β = 0.1 and T = 2
in (d), T = 8 in (e), and T = 32 in (f).

operations, we see that the convergence with the pyra-
midal method is much faster, getting to near-steady-
state after 2 operations only. We also see that in-
creasing the number of resolution layers improves
the overall convergence. Note that in this analysis
we do not take into account the construction of the
pyramids, as we have found this to be redundant.
We also do not take into account the initialization,

which tends to be much simpler in the pyramidal
approach.

We conclude that

1. As we see in Figs. 6 and 7, both the RGB
and the HSV Retinex algorithms provided the
desired dynamic range compression. The output
images are indeed enhanced versions of the original
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Figure 9. The influence of γ (illumination return) compared to standard Gamma correction; The proposed algorithm with γ = 2 in (a), γ = 6
in (b), and γ = 24 in (c). Standard Gamma-correction with γ values tuned to fit corresponding output of the proposed algorithm: γ = 1.4 in
(d), γ = 2.1 in (e), and γ = 2.4 in (f).

one, although in some versions they are over-
enhanced.

2. The illumination feedback through Gamma correc-
tion seems to improve both the RGB and the HSV
Retinex results. However, they have different ef-
fects: In the RGB Retinex this process restores some
of the colors, whereas in the HSV Retinex, the result
is merely darker.

3. When we compare the RGB and the HSV Retinex al-
gorithms our preference depends on the input image.
Generally speaking, for images with colored illumi-
nation, the RGB usually performs better, whereas
for images with a milder illumination hue, the HSV
is better.

4. The Retinex approach obviously performs better
than a simple Gamma correction. The latter indeed
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Figure 10. The functional value F[l] as a function of the number of operations, and the influence of the multi-resolution method.

improves the overall illumination of the image, but
also decreases details contrast and flattens the ob-
jects. Retinex, on the other hand, usually increases
both detail contrast and depth sense of the image,
as well as improving the overall illumination.

5. The proposed algorithm is robust to the choice of
its parameters.

6. The proposed numerical method converges very
fast to its steady-state solution which is also the
minimizer of the defined functional in Eq. (1).
Also, the pyramidal method is found to speed-up
convergence.

7. Concluding Remarks

In this paper we surveyed several algorithms for image
illumination correction and dynamic range compen-
sation, based on a common motivation known as the
Retinex theory. We have shown that in spite of their
different formulations, these algorithms can be derived
from the same variational principle.

We introduced a comprehensive Retinex analy-
sis, motivated by the different Retinex algorithms.

Our variational approach provides solid mathematical
foundation, that yields efficient and robust numerical
solutions.

We introduced a fast multi-resolution solution to the
corresponding variational problem, resulting in an al-
gorithm whose computational complexity amounts to
less than 11 convolutions of the full size image with a
3 × 3 kernel plus a few addition algebraic operations
per pixel. The advantages of the proposed algorithm
are:

1. Computational efficiency.
2. Good image quality.
3. Parameter robustness. It was shown that for a wide

range of the involved parameters, the output quality
is practically the same.

As part of the proposed Retinex enhancement al-
gorithm, we proposed a new method to control the
overall brightness of the image. Traditionally, after re-
moving a non-uniform illumination via the Retinex,
standard point operations like the γ -correction are
required. According to the proposed method, the
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overall illumination correction is coupled with par-
tial illumination removal. Instead of removing the il-
lumination from the original image, the illumination
is corrected via a standard point operation like the
γ -correction, and returned to the reflectance image.
Thus, dark regions in the image which have been poorly
illuminated are better illuminated, as if the actual illu-
mination conditions in the image were improved.

Appendix: Uniqueness of the Solution

Theorem. The variational optimization problem P,

given by

Minimize: F[l] =
∫

�

(|∇l|2 + α(l − s)2

+ β | ∇(l − s)|2) dx dy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂�,

with α > 0 and β ≥ 0, has a unique solution.

Proof: First, we show that the functional F[l] is
purely convex. The Hessian of the quadratic functional
F[l] is given by

∂2 F[l]

∂l2
= −(1 + β)� + α I,

where I is the identity operator. The multiplica-
tion of the Laplacian operator by the negative value
−(1 + β) < −1 yields a positive semi-definite op-
erator −(1 + β)� ≥ 0. Since α > 0, α I > 0, i.e., it
is positive definite. Therefore, the Hessian is also
a positive definite operator. Thereby, the functional
F[l] is a strictly convex functional (Bertsekas, 1995;
Luenberger, 1987). If α = 0, the Hessian is semi-
positive definite, and the convexity of F[l] is not strict.

Define the set C = {l | l ≥ s and 〈∇l, �n〉 = 0 on
∂�} such that the constraints of P are equivalent to
requiring l ∈ C . For every l1, l2 ∈ C , ∀θ ∈ [0, 1], we
have θl1 + (1 − θ )l2 ∈ C , or in other words, C is a
convex set. This is true since C is the intersection of
two convex sets (one per each original constraint).

Let us denote the minimum of the functional F[l] as
l̂opt . This solution is unique since F[l] is strictly con-
vex. If l̂opt ∈ C than l̂opt is the solution of P , and there-
fore we get a unique solution as the theorem claims.

On the other hand, if l̂opt /∈ C , the solution to P
is obtained on the boundary of the constraint set

C = {l | l ≥ s}. We prove this property by contradic-
tion. Assume that the solution is given as l0 ∈ Inte-
rior {C}. Define l1 = (1 − θ ) l0 + θ l̂opt for θ ∈ (0, 1).
Due to the convexity of F[l], it is clear that F[l1] <

(1 − θ )F[l0] + θ F[l̂opt ] < F[l0]. Since l0 ∈ C , for θ

sufficiently close to zero it can be guaranteed that
l1 ∈ C as well. This way we get l1 as a better solution,
which contradicts our assumption. Thus, the solution
for P is obtained on the boundary of C .

Let us now assume that two solutions are possible,
and prove that this assumption leads to a contradiction.
The two optimal solutions l1 and l2 must satisfy the
following set of conditions

1. The solutions should be feasible: l1, l2 ∈ C .
2. Based on the previous results, the solutions should

be on the boundary of C : l1, l2 /∈ Interior{C}.
3. The functional value of the two solutions should be

the same: F[l1] = F[l2].
4. The solutions are optimal: ∀l ∈ C, F[l] > F[l1].
5. The solutions should not be equal to l̂opt , i.e., F[l]:

l1, l2 �= l̂opt .

Since C is convex, ∀ θ ∈ (0, 1), l0 = (1 − θ )l1 + θl2

∈ C . Moreover, by the strict convexity of F[l], we
have that F[l0] = F[(1 − θ )l1 + θl2] < (1 − θ )F[l1] +
θ F[l2] = F[l1] and again, we got a better solution l0.
This contradicts the previous assumptions, and there-
fore, there is a unique solution to P .
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