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This paper addresses the problem of feature enhancement in noisy images, when
the feature is known to be constrained to a manifold. As an example, we approach the
orientation denoising problem via the geometric Beltrami framework for image pro-
cessing. The feature (orientation) field is represented accordingly as the embedding
of a two dimensional surface in the spatial-feature manifold. The resulted Beltrami
flow is a selective smoothing process that respects the feature constraint. Orientation
diffusion is treated as a canonical example where the feature (orientation in this case)
space is the unit circle S1. Applications to color analysis are discussed and numerical
experiments demonstrate again the power of the Beltrami framework for nontrivial
geometries in image processing. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

Feature enhancement is part of algorithms that play a major role in many applications.
We are witnessing the emergence of a variety of methods for feature denoising that include
and generalize the traditional image denoising. Here, we show how harmonic map methods,
defined via the Beltrami framework, can be used to perform adaptive feature denoising.

We concentrate on the example of direction diffusion which gives us information on
the preferred direction at every pixel. This example is useful in applications like texture
and color analysis, and incorporates all the problems and characteristics of more involved
feature spaces.

The input to the denoising process is a vector field on the image. The values of this vector
field are in the unit circle S1. The given vector field is noisy and we wish to denoise it
under the assumption that, for the class of images we are interested in, this vector field is
piecewise smooth.1

1 See [2] for higher dimensional spheres Sn .
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Two approaches for this problem are known: in a paper that first addresses directly this
issue, Perona [6] uses a single parameter θ as an internal coordinate in S1, the second by Tang
et al. [14, 15] embeds the unit circle S1 in R

2 (the sphere S2 in R
3) and work with the external

coordinates. See also [16] for a related effort. The first approach is problematic because of the
periodicity of S1. Averaging small angles around zero such as θ = ε and θ = 2π − ε leads
to the erroneous conclusion that the average angle is θ = π . Perona solved this problem
by exponentiating the angle such that V = eiθ . This is actually the embedding of S1 in
C which is isometric to R

2. This method is specific to two-dimensional embedding space
where complex numbers can be used. The problem in using only one internal coordinate
manifests itself in the numerical implementation of the PDE through the braking of rotation
invariance. In the second approach we must make sure that we stay always in S1 along the
flow. This problem is known as the projection problem. It is solved in the continuum by
adding a projection term. Chan and Shen [1] also use external coordinates with a projection
term but suggest to use a Total Variation (TV) measure [8] in order to better preserve
discontinuities in the vector field. This works well for the case where the codimension is
one, like a circle in R

2. Yet it is difficult to generalize to higher codimensions like the sphere
in R

5. Moreover, the flow of the external coordinates is difficult to control numerically since
numerical errors should be projected on S1 and no well-defined projection exist.

We propose a solution to these problems and introduce an adaptive smoothing process,
which preserves orientation discontinuities. The proposed solutions work for all dimensions
and codimensions, and overcome possible parameterization singularities by introducing
several internal coordinates on different patches (charts) such that the union of the patches
is Sn . Adaptive smoothness is achieved by the description of the vector field as a two-
dimensional surface embedded in three- and four-dimensional spatial-feature manifold for
the S1 and S2 cases, respectively. We treat here the S1 case only due to space limitations.

The problem is formulated, in the Beltrami framework [3, 12] in terms of the embedding
map

Y : (�, g) → (M, h),

where � is the two-dimensional image manifold, and M , in the case of interest, is R
n × S1

with n = 2 (n = 4) for gray-level (color) images. The key point is the choice of local
coordinate systems for both manifolds2: The image manifold � (with metric g), and the
embedding manifold M (with metric h). At the same time we should verify that the geometric
filter does not depend on the specific choice of coordinates we make.

Once a local coordinate system is chosen for the embedding space and the optimization is
done directly in these coordinates we can never leave M and avoid the problem of projection.
The difficulty represented in the problem of projection is transformed to the problem of the
choice of local coordinate system as we describe below. Other examples of enhancement
by the Beltrami framework of non-flat feature spaces, like the color perceptual space and
the derivatives vector field, can be found in [10, 13].

This paper is organized as follows: We review the Beltrami framework and point to the
relation with harmonic maps in Section 2. We analyze the case S1 in Section 3. Application
for the enhancement of color images using perceptual color model is presented in Section 4.
Section 5 presents experimental results and we offer our concluding remarks in Section 6.

2 Note the difference with [1, 14, 15], where the image metric is flat.
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2. THE BELTRAMI FRAMEWORK

Let us briefly review the Beltrami geometric framework for nonlinear diffusion in com-
puter vision [12].

2.1. Representation and Riemannian Structure

We represent an image and other local features as an embedding map of a Riemannian
manifold in a higher dimensional space. The simplest example is the image itself which is
represented as a 2D surface embedded in R

3. We denote the map by Y : � → R
3. Where �

is a two-dimensional surface, and we denote the local coordinates on it by (x1, x2). The map
Y is given in general by (Y 1(x1, x2), Y 2(x1, x2), Y 3(x1, x2)). We choose on this surface a
Riemannian structure, namely, a metric. The metric is a positive definite and a symmetric
2-tensor that may be defined through the local distance measurements

ds2 = g11(dx1)2 + 2g12 dx1 dx2 + g22 (dx2)2. (1)

We use below the Einstein summation convention in which the above equation reads ds2 =
gµν dxµ dxν where repeated indices are summed over. We denote the inverse of the metric
by gµν .

2.2. Image Metric Selection: The Induced Metric

A reasonable assumption is that distances we measure in the embedding spatial-feature
space, such as distances between pixels and difference between gray-levels, correspond
directly to distances measured on the image manifold. This is the assumption of isometric
embedding under which we can calculate the image metric in terms of the embedding
maps Y i and the embedding space metric hi j . This follows directly from the fact that the
length of infinitesimal distances on the manifold can be calculated in the manifold and in
the embedding space with the same result. Formally, ds2 = gµν dxµ dxν = hi j dY i dY j .
By the chain rule, dY i = ∂µY i dxµ, we get ds2 = gµν dxµ dxν = hi j∂µY i∂νY i dxµ dxν .
From which we have

gµν = hi j∂µY i∂νY j . (2)

As an example we take the gray-level image as a two-dimensional image manifold em-
bedded in the three dimensional Euclidean space R

3. The embedding maps are

(Y 1(x1, x2) = x1, Y 2(x1, x2) = x2, Y 3(x1, x2) = I (x1, x2)). (3)

We choose to parameterize the image manifold by the canonical coordinate system x1 = x
and x2 = y. The embedding, by abuse of notation, is (x, y, I (x, y)). The induced metric
g11 element is calculated as follows

g11 = hi j∂x1 Y i∂x1 Y j = δi j∂x Y i∂x Y j = ∂x x∂x x + ∂x y∂x y + ∂x I∂x I = 1 + I 2
x . (4)
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Other elements are calculated in the same manner. The result is

(gµν) =
(

1 + I 2
x Ix Iy

Ix Iy 1 + I 2
y

)
. (5)

2.3. Polyakov Action: A Measure on the Space of Embedding Maps

Denote by (�, g) the image manifold and its metric and by (M, h) the space-feature
manifold and its metric. Then the functional S[·, ·, ·] attaches a real number to a map
Y : � → M

S[Y i , gµν, hi j ] =
∫

dV 〈∇Y i , ∇Y j 〉ghi j , (6)

where dV = dx1dx2 · · · dxm√
g is a volume element and the scalar product 〈, 〉g is defined

with respect to the image metric, i.e., 〈∇Y 1, ∇Y 2〉g = gµν∂µY 1∂νY 2. This functional, for
m = 2 (two-dimensional image manifold) and hi j = δi j , was first proposed by Polyakov
[5] in the context of high energy physics, and the theory known as string theory. Note
that the image metric and the feature coordinates, i.e., intensity, color, orientation etc.,
are independent variables. The minimization of the functional with respect to the image
metric can be solved analytically in the two-dimensional case (see for example [11]). The
minimizer is the induced metric. If we choose, a-priory, the image metric induced from the
metric of the embedding spatial-feature space M then the Polyakov action is reduced to an
area (volume) of the image manifold:

S[Y i , hi j ] = 2
∫

dV =
∫

dx1dx2√g = 2
∫

dx1dx2
√

det(∂µY i∂νY j hi j ). (7)

This follows from the form of the induced metric:

〈∇Y i , ∇Y j 〉ghi j = gµν∂µY i∂νY j hi j = gµνgµν,

and the identity

gµνgµν = trace(G−1GT ) = trace(G−1G) = trace(I2) = 2. (8)

Using standard methods in the calculus of variations (see [11]), the Euler–Lagrange
equations with respect to the embedding are

− 1

2
√

g
hil δS

δY l
= 1√

g
∂µ(

√
ggµν∂νY i ) + �i

jk〈∇Y j , ∇Y k〉g. (9)

Since (gµν) is positive definite, g ≡ det(gµν) > 0 for all xµ. This factor is the simplest one
that does not change the minimization solution while giving a reparameterization invariant
expression. The operator that is acting on Y i in the first term is the natural generalization
of the Laplacian from flat spaces to manifolds and is called the second order differential
parameter of Beltrami [4], or for short Beltrami operator, and is denoted by �g . The second
term involves the Levi–Civita connection whose coefficients are given in terms of the metric
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of the embedding space

�i
jk = 1

2
hil(∂ j hlk + ∂kh jl − ∂l h jk). (10)

This is the term that takes into account the fact that the image surface flows in a non-
Euclidean manifold and not in R

n .
A map that satisfies the Euler–Lagrange equations

− 1

2
√

g
hil δS

δY l
= 0

is a harmonic map. The one- and two-dimensional examples are a geodesic curve on a
manifold and a minimal surface.

The nonlinear diffusion or scale-space equation emerges as the gradient descent mini-
mization flow

Y i
t = ∂

∂t
Y i = − 1

2
√

g
hil δS

δY l
= �gY i + �i

jk〈∇Y j , ∇Y k〉g. (11)

This flow evolves a given surface toward a minimal surface, and in general it changes
continuously a map towards a harmonic map.

Few major differences between this flow and those suggested in [1, 6, 14] are

• We use the induced metric while in other flows the image metric is flat.
• The coordinates Y i are the local coordinates of the feature space while in the above

mentioned flows they are coordinates of a THIRD manifold, i.e., R
n+1 in which the feature

space Sn is embedded.
• The projection term is given as Ai (�Y )(h jk〈∇Y j , ∇Y k〉g)

p
2 , with p = 1 in [1] and p = 2

in [14]. Comparison with Eq. (11) show that for this to hold in the general case imposes a
special form of the Levi–Civita connection, i.e., �i

jk = Ai hi j . This factorization is taking
place in special cases such as Sn (see below and in [2] for a direct calculation of �i

jk in this
case). For the general case it doesn’t hold and we have to use Eq. (10), as done for example
in [10, 13].

• The flow Eq. (11) has a clear geometric meaning. It is a mean curvature flow projected
on the feature space. This projection is an edge preserving operation [12].

3. BELTRAMI S1 DIRECTION DIFFUSION

We are interested in attaching a unit vector field to an image. More precisely we would
like to construct a nonlinear diffusion process that will enhance a given noisy vector field
of this form while preserving the unit magnitude of each vector.

3.1. The Embedding Space Geometry

Denote the vector field by two components (U, V )T such that U 2 + V 2 = 1. This de-
scription is actually an extrinsic description. The unit circle S1 is a one-dimensional curve
and one parameter should suffice as an internal description. Since S1 is a simply connected
and compact manifold without boundaries, we need at least two coordinate systems to cover
all the points of S1 such that the transition function between the two patches is infinitely
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differentiable at all points that belong to the intersection of the two patches. We define the
two patches as follows: The coordinate system on S1 − {(±1, 0)} is U , with the induced
metric

ds2
S1 = dU 2 + dV 2 = dU 2 + (d(

√
1 − U 2))2 = 1

1 − U 2
dU 2. (12)

The coordinate system on S1 − {(0, ±1)} is V with the induced metric

ds2
S1 = dU 2 + dV 2 = (d(

√
1 − V 2))2 + dV 2 = 1

1 − V 2
dV 2. (13)

It is clear the the transformations V (U ) = √
1 − U 2 and U (V ) are differentiable any-

where on the intersection S1 − {(±1, 0), (0, ±1)}.
The embedding is of the two-dimensional image manifold in the three-dimensional

space R
2 × S1. The canonical embedding for the first patch is (Y 1(x, y) = x, Y 2(x, y) =

y, Y 3(x, y) = U (x, y)), and for the second patch is (Y 1(x, y) = x, Y 2(x, y) = y, Y 3(x, y) =
V (x, y)).

3.2. The S1 Beltrami Operator

The line element on the image manifold is

ds2 = ds2
R

2 + ds2
S1 = dx2 + dy2 + 1

1 − U 2
dU 2, (14)

and by the chain rule

ds2 = (
1 + A(U )U 2

x

)
dx2 + 2A(U )UxUy dx dy + (

1 + A(U )U 2
y

)
dy2, (15)

where A(U ) = 1/(1 − U 2), and similarly for V .
The induced metric is therefore

(gµν) =
(

1 + A(U )U 2
x A(U )UxUy

A(U )UxUy 1 + A(U )U 2
y

)
, (16)

and the Beltrami operator acting on U is �gU = 1√
g ∂µ(

√
ggµν∂νU ), where g = 1 +

A(U )(U 2
x + U 2

y ) is the determinant of (gµν), and (gµν) is the inverse matrix of (gµν).

3.3. The Levi–Civita Connection

Since the embedding space is non-Euclidean we have to calculate the Levi–Civita con-
nection. Remember that the metric of the embedding space is

(hi j ) =

 1 0 0

0 1 0
0 0 A(U )


 . (17)
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The Levi–Civita connection coefficients are given by the fundamental theorem of
Riemannian geometry in the following formula �i

jk = 1
2 hil(∂ j hlk + ∂kh jl − ∂l h jk), where

the derivatives are taken with respect to Y i for i = 1, 2, 3.
The only nonvanishing term is �3

33 that reads �3
33 = 1

2A(U )∂U (A(U )) = U
1−U 2 = Uh33.

The second term in the EL equations in this case reads Uh33||∇U ||2g . We can rewrite this
expression using the following identities

h33‖∇U‖2
g = (h11g11 + h22g22 + h33∂µU∂νUgµν) − (h11g11 + h22g22)

= gµνgµν − (g11 + g22) = 2 − 1

g
(g11 + g22) = 2 − 1

g
(1 + g), (18)

where we used the induced metric identity Eq. (2), and the identity Eq. (8), in order to rewrite

2 = trace

(
1 0
0 1

)
= gµνgµν = h11g11 + h22g22 + h33∂µU∂νUgµν. (19)

3.4. The Flow and the Switches

The Beltrami flow is

Y i
t = �gY i + �i

jk(Y 1, Y 2, Y 3)〈∇Y j , ∇Y k〉g, (20)

for i = 3, and similarly for the other coordinate charts. Gathering together all the pieces we
finally get the Beltrami flow

Ut = �gU + U
g − 1

g
(21)

Vt = �gV + V
g − 1

g
.

In the implementation we compute the diffusion for U and V simultaneously and take the
values (U, sign(V )

√
1 − U 2) for the range U 2 ≤ V 2, and the values (sign (U )

√
1 − V 2, V )

for the range V 2 ≤ U 2.

4. COLOR DIFFUSION

There are many coordinate systems and models of color space which try to be closer to
human color perception. One of the popular coordinate systems is the HSV system [9]. In
this system, color is characterized by the Hue, Saturation, and Value. The Saturation and
Value take their value in R+, while the Hue is an angle that parameterizes S1.

In order to denoise and enhance color images by a nonlinear diffusion process which
is adapted to human perception we use here the HSV system. We need to have special
treatment of the Hue coordinate in the lines of Section 3.

Let us represent the image as a mapping Y : � → R
4 × S1 where � is the two-

dimensional image surface and R
4 × S1 is parameterized by the coordinates (x, y, H, S, V ).

As mentioned above, a diffusion process in this coordinate system is problematic. We define
therefore two coordinates

U = cos H ; W = sin H
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and continue in a similar way to Section 3. The metric of R
4 × S1 on the patch where U

parameterizes S1 and W (U ) is nonsingular is

hi j =




1 0 0 0 0

0 1 0 0 0

0 0 A(U ) 0 0

0 0 0 1 0

0 0 0 0 1


 , (22)

where A(U ) = 1/(1 − U 2).
The induced metric is therefore

ds2 = dx2 + dy2 + A(U ) dU 2 + d S2 + dV 2

= dx2 + dy2 + A(U )(Ux dx + Uy dy)2 + (Sx dx + Sy dy)2 + (Vx dx + Vy dy)2

= (
1 + A(U )U 2

x + S2
x + V 2

x

)
dx2 + 2(A(U )UxUy + Sx Sy + Vx Vy) dx dy

+ (
1 + A(U )U 2

y + S2
y + V 2

y

)
dy2. (23)

Similar expressions are obtained on the other dual patch.
The only nonvanishing Levi–Civita connection’s coefficient is �3

33 = Uh33. The resulting
flow is

Ut = �gU + 2U − U (g11 + g22)

Wt = �gW + 2W − W (g11 + g22)
(24)

St = �g S

Vt = �gV .

Note that the switch between U and W should be applied not only to the U and W equations
but also to the S and V evolution equations where, at each point, one needs to work with
the metric that is defined on one of the patches.

FIG. 1. Two vector fields (left) before and (right) after the flow on S1.
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FIG. 2. The HSV color model captures human color perception better than the RGB model which is the
common way our machines represent colors. The original image (left), the noisy image (middle) and the filtered
image (right) demonstrate the effect of the flow as a denoising filter in the HSV color space. For further examples
follow the links at http://www.cs.technion.ac.il/∼ron/pub.html.

5. EXPERIMENTAL RESULTS

Our first example deals with the gradient direction flow via the Beltrami framework.
Figure 1 shows a vector field before and after the application of the flow for a given
evolution time. The normalized gradient vector field extracted from an image is presented
before and after the flow and show the way the field flows into a new smooth orientation
transactions field.

Next, we explore a popular model that captures some of our color perception. The HSV
(hue, saturation, value) model proposed in [9] is often used as a “user oriented” color model,
rather than the RGB “machine-oriented” model.

Figure 2 shows the classical representation of the HSV color space, in which the hue is
measured as an angle, while the value (sometimes referred to as brightness) and the color
saturation are mapped onto finite non-periodic intervals. This model lands itself into a filter
that operates on the spatial x, y coordinates, the value and saturation coordinates, and the
hue periodic variable. Our image is now embedded in R

4 × S1.

6. CONCLUDING REMARKS

There are two important issues in the process of denoising a constrained feature field.
The first is to make the process compatible with the constraint in such a way that the latter
is never violated along the flow. The second is the type of regularization which is applied
in order to preserve significant discontinuities of the feature field while removing noise.

These two issues are treated in this paper via the Beltrami framework. First a Rieman-
nian structure, i.e., a metric, is introduced on the feature manifold and a several local
coordinate systems are chosen to describe intrinsically the constrained feature manifold.
The diffusion process acts on these coordinates and the compatibility with the constraint is
achieved through the intrinsic nature of the coordinate system. The difficulty in working on a
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non-Euclidean space transforms itself to the need to locally choose the best coordinate sys-
tem to work with.

A preservation of significant discontinuities is dealt with by using the induced metric
and the corresponding Laplace–Beltrami operator acting on feature coordinates only. This
operation is in fact a projection of the mean curvature, in the normal(s) direction(s) to
the surface, to the feature direction(s). This projection slows the diffusion process along
significant (supported) discontinuities while letting the process in the homogeneous regions
proceed in a normal speed.

The result of this algorithm is an adaptive smoothing process for a constrained feature
space in every dimension and codimension. As examples we showed how our geometric
model coupled with a proper choice of charts handles the orientation diffusion problem.
This is a new application of the Beltrami framework proposed in [11]. We tested the new
model on vector fields restricted to the unit circle S1, and hybrid spaces like the HSV color
space. The integration of the spatial coordinates with the color coordinates yield a selective
smoothing filter for images in which some of the coordinates are restricted to a circle.
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