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An algorithm for shape offsetting & presented that & based 
on level-set propagation. This algorithm avoids the 
topological problems encountered in traditional offsetting 
algorithms, and it deals with curvature singularities 
by including an 'entropy condition' in its numerical 
implementation. 

shape offsets, prairie fires, numerical algorithms, Huyffens principle 

Algorithms for shape offsetting are of great importance 
in computer-aided design (CAD), computer-aided manu- 
facturing (CAM), the numerical control (NC) of machines, 
computer graphics and related fields. The need for offset 
shapes arises in applications such as the numerical 
control of sawing machines or milling machines in the 
car industry. 

The problem of shape offsetting can be formulated as 
follows: given a simple, closed planar curve 

Xo(s) = Ix(s), y(s)] T (1) 

where s is an arbitrary curve parameterization, find an 
offset curve which is simple and closed (or has simple 
and closed components) and is almost everywhere given 
by 

XL(s) = Xo(s) + N(s, 0)L (2) 

Equation 2 represents a curve running 'parallel' to Xo(s), 
where L is the displacement of the offset curve, and N(s, 0) 
is the unit normal at the point Xo(S ) given by 

1 
N(s, 0) = (x, (s) + y, (s)) 2 ~ 1/2 [ - Y s ( S ) , X s ( S ) ]  T (3) 

Consider X(s, t) to be a curve continuously changing in 
time, so that, for all t, X(s, t) = Xo(s) + tN(s, 0). This curve 
evolution can be described differentially by 

{ ~ t  't) = 1N(s'0) (4) 

X(S,0)--Xo(S) 
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In Appendix A, it is proved that the evolution equation 

{ ~  = IN(s, t) 
(5) 

X(s, 0) = Xo(s) 

postulating that each point on the curve moves in the 
direction of the instantaneous normal 

1 
N(s, t) = [ -  y~(s, t), x,(s, t)] T 

(x2 (s, t) + y2~(s, t)) 1/2 

with velocity 1 provides the same flow as Equations 4 
almost everywhere (where problems do not occur). 

This propagation rule is the so-called 'prairie-fire' 
model for shape evolution (see, for example, References 
1 and 2). If we could determine the solution of Equations 
4 or Equations 5 for all t > 0, we could generate not only 
the offset shape (at t=L),  but a whole class of offset 
shapes. Hence, it is important to analyze these equations 
closely and obtain good numerical algorithms for their 
solution. This was indeed done in the context of 
flame-propagation models and shape analysis in com- 
puter vision, with an emphasis on the analysis of the 
possible singularities arising on the propagated curves. 
The following singularities (or 'shocks') may occur3: 

• If there is a local maximum of the curvature such that 
1/k<L, a curvature-discontinuity 'shock' is formed 
after time t = 1/k (see Figure la), and propagating the 
curve beyond t = 1/k < L via Equation 4 forms a 'cusp' 
(see Figure lb). 

• At places where the original curve has breakpoints and 
the derivatives are not well defined, problems of 
determining the intersection of the propagated lines 
arise (see Figure lc). 

• Self intersections of the propagating curve may occur, 
giving rise to some difficult topological problems (see 
Figure ld). 

HISTORICAL REVIEW 

The issue of generating offset curves has often been dealt 
with in the CAD literature. Several approaches to the 
problem have been proposed. In the CAD/CAM appli- 
cations that we consider, there are often shape boundaries 

154 0010-4485/93/030154-09 © 1993 Butterworth-Heinemann Ltd com puter-aided design 



II b 

C 

Figure 1. Problems arise when singularities form in 
propagated curve 

that are defined by standard parameterized curves such 
as line segments, circular arcs or splines. In such cases, 
one could concentrate on determining evolution equa- 
tions for the control points defining such curves. 
However, the offset curves of splines are not necessary 
splines themselves, and straightforward translations of 
spline control points only rarely produce correct offset 
curves. Klass 4 approximates the offset of a B,spline 
segment by moving the endpoints of the curve, and 
calculating the new tangents based on replacing the 
curvature k with a ~that obeys 1/k = l / E -  L. He proposes 
an iterative procedure for calculating the tangents. A 
spline approximation of the offset curve is generated, and 
then the distance between the two curves is measured, 
and, if this distance deviates considerably from L, the 
spline is split into several spline segments and the process 
goes on. Tiller and Hanson s replace the B-spline 
parametric representation of the shape by a 'rational 
B-spline' representation with the control points located 
on the curve itself. The offset operation is then carried 
out by moving the control points a distance of L on the 
normal direction. These approaches require the develop- 
ment of some sophisticated procedures to deal with 
the problems of loops, shocks, cusps, self-intersection 
singularities etc. Hoschek 3 attacks the problem of finding 
self-intersection points on offset curves using an iterative 
geometrical algorithm. The algorithm is used to eliminate 
the tails and loops that arise in the offset curves. It 
requires as input two points that are close enough to 
each intersection point to guarantee convergence, and it 
does not solve the so-called island problem (see Figure 
ld). Coquillart 6 suggests a new way of translating the 
rational-B-spline control points to preserve circles. The 
translation is controlled by the local curvature k and the 
distance D from the B-spline control points to the given 
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curve. The translation of each control point in the normal 
direction is given by "f .=L(l+kD).  Pham 7 uses the 
uniform cubic B-spline to represent curves. She also uses 
a version of B-splines with control points on the curve, 
and the offset curves are improved by adding control 
points ('knots'). Elber and Cohen s measure the distance 
error to offset curves (and surfaces), and use it to place 
new control points. Farin a provides a recursive procedure 
to offset B6zier segments that is similar to the one 
proposed by Klass. Meek and Walton 1° observe that, 
for clothoidal splines, the offset curve remains 'in the 
family' (i.e. the offset is also a clothoidal spline). 

Wang and Jiang 11 use a vector representation of the 
shape comprising circular arcs and straight segments only. 
Clockwise directed vectors form the shape boundaries, 
and multiplication of consecutive vectors yields vectors 
indicating the offset direction. In his recent book x2, Held 
attacks the shape-offsetting problem using Voronoi 
diagrams. His aim is to design the course of a tool creating 
a hole 'pocket' in solid material. He restricts his methods 
to linear and circular segments whose representation can 
easily be fed into CNC machines. An alternative 
approach to the offset problem is provided by Saeed et 
al. in Reference 13. They propose the use of morpho- 
logical methods to formulate the offset operation. Indeed, 
offset shapes are closely related to dilated or eroded 
shapes, as defined in mathematical morphology. Related 
problems are skeleton .finders in computer vision and 
morphology 14, fat curves in computer graphics ~5, and 
the calculation of Euclidean distance maps from plane 
c u r v e s  16. 

The algorithms proposed so far for the offsetting 
problem deal with edge-intersection problems, shocks, 
cusps and self loops in complex, and rather unnatural, 
ways. In these algorithms, the curve-offsetting stage is 
followed by a procedure aimed at detecting the afore- 
mentioned problems and repairing the offset curve 
accordingly. In the sequel, we present a way to approxi- 
mate the offset shape using level-set propagation on a 
rectangular grid designed to produce results of the desired ~ 
accuracy. This is done by applying an algorithm devised 
by Osher and Sethian ~v for the stable and efficient 
propagation of wavefront curves in the plane. This 
numerical method generates offset curves according to 
Equation 5 and a physically motivated 'entropy con- 
dition', and it inherently avoids the topological problems 
that required special attention with previous algorithms. 

NEW ALGORITHM 

We propose to generate shape offsets via an ingenious 
algorithm invented in fluid dynamics for solving equa- 
tions of the type of Equations 5. This algorithm translates 
the problem of curve evolution into a problem of 
3D-surface evolution, so that the curves changing 
according to Equations 5 are zero (or level) sets of the 
time-varying surface. As the 3D surface evolves, it 
inherently avoids the generation of curve shocks by 
implementing a physically motivated entropy condition. 
The algorithm that produces the desired results works 
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on a square grid with a resolution determined by the 
desired accuracy of the results, and it is based on a 
recently discovered efficient numerical implementation of 
the surface-evolution equations 17 

Huygens principle and entropy condition 

According to the Huygens principle18, the solution of the 
curve propagation of Equations 5 at time t, X(s,t), 
corresponds to the envelope generated by the set of all 
the disks of radius t centred on the initial curve Xo(s). 
Problems occur in curve evolution when the normals to 
the initial curve collide or cross and hence the curvature 
becomes singular. To obtain the solution according to 
Huygens' principle after a singularity develops, an 
'entropy condition' should be enforced on the propa- 
gating curve. One can regard the curve as the wavefront 
of a propagating prairie fire separating two areas: the 
shape interior which is not burnt, and the already-burnt 
exterior. The flame propagates in the direction of the 
original curve normals (the so-called 'ignition curves'). 
If two ignition curves collide at some time t*, neither one 
should have any effect on the propagating curve at t > t*. 
The principle 'what was burnt until t cannot burn beyond 
t' 1 s is the natural 'entropy condition' of this type of curve 
evolution. See Figure 2. 

The direct approach to propagating the curve can 
be referred to as the 'Lagrangian' formulation, because 
the coordinates (s and t) are front-dependent 19. The 
Lagrangian formulation is the direct numerical approxi- 
mation of Equations 5: 

f 
Ox(s, t) = y~(s, t) 

Ot (x2(s, t) + y2(s, t)) u2 (6) 

~y(s,t)_ x,(s,t) 
~, Ot (x~(s , t )+ y~(s,t)) u2 

Taking the discrete approximation of x~ and y~ as central 
derivatives in place (s) and a forward-derivative approxi- 
mation in time (t) yields a numerical-propagation 
scheme. The direct numerical propagation of a curve 
according to Equations 6 is both numerically unstable 
and suffers from topological problems (see References 17 
and 19). To avoid the various problems that occur in 
this approach, such as the need for reparameterization 
in order to keep numerical stability and to solve 
topological problems of self intersections by an external 
control procedure, the 'Eulerian formulation', described 
below, was developed. 

Solution via Eulerlan formulation 

The Eulerian scheme is a recursive procedure which 
propagates the curve while inherently implementing the 
entropy condition. Introduce a smooth function ~b(x, y, t) 
that is arbitrarily initialized so that ~b(x,y,0)=0 yields 
the curve X(s, 0). Assume that X(s, 0) is a closed curve, 
and restrict 4) to be negative in the interior and positive 
in the exterior of the level set ~b(x, y, 0 )=  0. 

The basic idea is to determine an evolution of the 
surface ~b(x, y, t) so that the level sets qb(x, y, t) = 0 provide 

) 

a 

b 

Figure 2. The principle 'what was burn until t cannot burn 
beyond t' is the natural 'entropy condition' o f  our curve 
evolution 
[(a) According to Huygens' principle, the front of the evolving curve 
is constructed by the front of all the disks of radius t centered on the 
initial curve. (b) If two ignition curves collide at some time t*, neither 
one should have any effect on the propagating curve at t > t*. Observe 
that the dotted circle does not have any effect on the front.] 

the curves X(s, t) as if propagated by Equations 5, and 
also obey the entropy condition. If dp(x,y , t )=O along 
X(s, t), then, by the chain rule, we. have 

~t~(x, y,t)+ ~xdP(x(s,t), y(s,t),t)x, 

+ g~ ~b(x(s, t), y(s, t), t)yt = 0 

o r  

q~t + V~bXt(s, t) = 0 (7) 
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where 

is the gradient of the function 4~(x, y, t) at time t, at the 
point (x, y). The scalar velocity of each curve point in its 
normal direction is 

v = N(s, t)'X,(s, t) (8) 

In our case, we need to 'impose' v = 1. The gradient V¢ 
is always normal to the curve given by ~b(x, y, t) =0  so that 

v¢ 
N(s, t) = - 

IIV¢ll 

the minus sign indicating the inward direction of 
propagation, and hence 

v¢ 
v = N'X t = - - -  X t = 1 (9) 

IIV4,11 
Substituting this into Equation 7 yields the surface- 
evolution equation 

~,- I IV¢ l l  = 0  (10) 

Sethian called this approach Eulerian, since the coordi- 
nates here are the natural physical coordinates (x,y). 
Therefore, if we have a surface ~b propagating according 
to Equation 10 with the level set ¢(x, y, 0 )=0  coinciding 
with X(s, 0), then ~b(x, y, t) = 0 produces X(s, t) propagated 
according to Equations 5, while inherently solving the 
topological problems. To drive a numerical scheme for 
the surface-propagation equation, we follow Reference 
17, and show the connection with Hamilton-Jacobi 
methods, weak solutions and conservation laws. 

Consider the 1D equation of the type of Equation 10: 

¢ , -  live II = ¢(x, t ) , -  ( ¢ # ) 1 n  = 0 (11) 

If we define u - ¢ x  and H [ u ] = - ( u 2 )  1/2, the differenti- 
ation of the above with respect to x results in a so-called 
Hamilton-Jacobi equation, in a conservation-law form: 

u,+ [H[u]]==0 (12) 

The 'weak' solution of the above equation is defined as 
a function u(x, t) that satisfies 

dt u(x, t) dx = H[u(a, t)] -H[u (b ,  t)] (13) 

To devise a numerical scheme, define u~' = u(iAx, nat). A 
differential scheme of three points is said to be in 
conservation form if there is a 'flow' function g(u~, us) 
such that 

n + l  n n n n 
U i - - U  i g ( U i , U i + l ) - - ~ ( U i - l , U  n )  

- (14) 
At Ax 

where g(u ,u)=H(u)  is the consistency condition. A 
scheme is said to be monotone " "+ 1 - " " " ]f ui -F (u i - l , u i , u i+  l) 
is an increasing monotone function of its three variables. 
A basic result in numerical analysis is that a scheme which 
is monotone and can be represented in a conservation 
form automatically obeys the entropy condition 2°. 

Shape offsets via level sets 

Some schemes based on this idea, such as the 
Lax-Friedrichs and Godonov schemes, are presented in 
Reference 17. The simplest flow function from our 
implementation point of view is the so-called HJ flow, 
for which, for H(u)=f (u2) ,  the numerical flow can be 
given by using in Equation 14 the function 

g.j(uT, uT+ 1)=f((min(uT, 0)) 2 + ((max(uT+ 1,0)) 2) (15) 

and the appropriate (weak) entropy solution of ~b can be 
written as 

¢7 + ' = dP7 - At'g(O_ #PT, O + #PT) (16) 

where 

D_ ~7-  4'7 - ¢7- 
Ax 

and 

'/'7+ 1 - ~b7 
n + c r -  

Ax 

This is a so-called lst-order scheme. More sophisticated 
higher-order schemes are introduced in Reference 17. The 
above, scheme is readily extended to more than one 
dimension; for example, for H(u, v) = f ( u  2, V 2) (in our case 
U=¢x, v=e~,), 

~t)n..+ l _ _  n o x n x n . y n y n u - ~ b u - A t  g(D-~bu, D+¢u, D-~bu, D+~bu) (17) 

where 

g.J = f((min( D~- ¢7j, 0) z + (max(D~.~b~'~, 0)) z; 

(min(DL ¢~'j, 0))z + (max(D~ ~b~'i, 0)) 2 ) (18) 

The result is the following algorithm 

A l g o r i t h m  

(1) Choose a function ¢(x,y,0)  such that 

• ~b(x, y, 0) = 0 provides the initial curve X(s, 0), 
• ~b(x, y,0) < 0 in the interior of the initial 

curve, 
• ¢(x, y, 0) > 0 in the exterior of the initial 

curve, 
• ¢(x, y, 0) is Lipschitz-continuous. 

The next section discusses the possible ways of 
'choosing' the initialization ~b(x, y, 0). 

(2) Propagate ~b on an x - y  grid of desired spatial 
resolution according to 

4,,-IIV¢,ll =o  

discretized using any conservation-form numeri- 
cal scheme. 

(3) Stop after n = L / A t  time steps, and find the 
contour (level set) ~b(x, y, L )=  0 which is XL(s). 

See further below possible ways of implementing the 
level-set finder. The result is a weak solution of 
Equations 5 that obeys the entropy conditions. 
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,~(t2) 

z~/ y . . . . . .  "'::::::: ':::": '" " " :21"- " ' "  

{x(s,tl),y(s,tl)} 

X 

Figure 3. When q5 propagates in time, the function may 
stay continuous while the offset curves form two separate 
close curves which are no longer connected 

The algorithm automatically enforces the entropy 
condition, and frees us from the need to take care of 
possible topological changes (see Figure 3). The algorithm, 
by choosing forward derivatives, readily deals with shock 
formation and propagation within the numerical flow. 

Initialization 

It is obvious that an initialization of the type 

4~(x, y, O ) 

+ d((x, y), X(s, 0)) 
! 

(x, y) ~ exterior ofX(s, 0) 

(x, y) e interior ofX(s, 0) 

(x ,y)  ~ X(s,0) 
(19) 

where d is the (minimal) Euclidean distance of the point 
from the curve, would be a reasonable initialization, but, 
on the other hand, such an initialization is, in fact, 
equivalent to solving the problem of offsetting, since we 
could produce X(s, d) as the locus of all the points where 
(a(x, y, O)=d. 

However, to provide a proper solution, we can use the 
fact that ck(x,y,O) only needs to be continuous, and 
initialize dp(x,y,O) on the x -y  grid as follows: 

4,(x, y, 0) 

I 
min[+d((x,y),X(s,O)),C] (x,y) ~ exterior of 

X(s, 0) 
=,~max[-d((x ,  y),X(s, O)), - C ]  (x,y) ~interiorof 

X(s,O) 
(x, y) ~ X(s, 0) 

(20) 

where C is an arbitrary constant. If we choose 

h = A x = A y = C = l ,  then the values of the 0(x,y,0) 
function on the grid varies in the interval [ - 1, 1]. The 
values of the open interval ( - 1,1 ) are given only to grid 
points at a distance of less than the mesh size from the 
curve. This initialization problem is quite simple, and 
can be regarded as a problem of finding a very tight offset 
neighborhood to the initial curve before topological 
problems can even begin to affect the results. See Figure 4 
for the results of the offsetting process with such an 
initialization. 

Initializing qS(x,y,0) when the shape outline is a 
sequence of line segments and circular arcs (the common 
NC case (see Reference 12)) is quite simple, and it can 
be dealt with as follows: 

• Find all the intersection points of the shape outline 
with the given grid. 

• For each grid point (i,j), define a cell as ~' i j= [(oij, 
(oi+ l,jcki+ 1,j+ 1, (bl,j+ 1]. For each grid point (i,j), check 
whether the boundaries of the cell JVij are intersected 
by the shape boundaries. 

i 
l . tO~  

l e e ,  

° e ,  

6e,  

40 

I °  

e o ,  

"i i 
I, :. " ~o ,h ,h  

Figure 4. Offsetting of  simple shape on 128 × 128 grid 

158 computer-aided design 



i 

Shape offsets via level sets 

we can use the gray levels of the image in order to initialize 
~b(x, y, 0). For example, if the gray level of the shape is 
black (~-0), the background is white (---1), and the 
boundaries pass through the gray level gray ( --- 1/2), then 
we can take ~p(x,y,O)=l(x,y)-l/2, as the required 
initialization, making direct use of the continuity of the 
gray levels in the picture, without any extra calculations 
(see Figure 6 for the Postscript halftoned version of a 
gray-level test picture, and Figure 7 for the offsets of this 
shape). 

After initialization has been completed, the function ~b 
is propagated according to the above-described algorithm 
for n = L/At iteration steps. Finally, a contour finder must 
be invoked to produce the resulting contour X(s, L) from 
ck(x,y, L)=0. A description of the offsetting algorithm 
can be found in Appendix B. 

zoo 

| o  

60 

qo. 

Jo, 

I, I, '.. J, 11, do 

Contour finder 

Following Reference 21, a simple contour finder for 
X(s,L) can be generated in the following manner: for 
each grid point (i,j), use the same cell definition as in 
the previous section X o. Now, if max[Xu]  < 0 or 
min[Yu]  > 0, then the contour X(s,L) does not pass 
through the cell. Otherwise, find the entrance and exit 
points of ~b=0 by linear interpolation; this provides a 
line segment of X(s, L) belonging to the contour. The line 
segments need to be neither ordered nor directed in the 
same direction to display the desired contour (see Figure 
8); however, using additional information such as the 
knowledge of interior and exterior points, one can 
produce any desired representation of the curve, such as 
a planar polygon, or a curve comprising cubic or any 
other polynomial arcs. 

Figure 5. Offsetting polygons 

• If there is an intersection, attach a value to the two 
grid points on the two sides of the intersection point 
so that the interior grid point is given a value within 
the interval ( -  1, 01 and the exterior grid point a value 
within [0, + 1). These two values are samples of a linear 
approximation of the ~) function whose zero is the 
intersection point. 

• Set values for the rest of the grid points as follows: 
assign - 1 to the interior points and + 1 to the exterior 
points of the given shape. (Chains of 'dependent' points 
may occur. When this happens, attach values to the 
dependent points so that the intersection points are 
the zeros of the linear ~b approximation). Figure 5 
shows an example of polygon offsetting using this 
initialization process. 

Note that, if we must offset a shape that is provided as 
a dark region on a light background in a given picture, 

Figure 6. Miekey Mouse in gray-level picture (128 x 128 
pixels) 
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~, I0 " I, d, J, 

O 

. ,~, ,I, 

Figure 7. Offsetting Mickey Mouse (grid size 128) 

Cell {i, j } 

i~,j.1, ~i.1,#.~ 

Figure 8. Contour finder." find a line segment in .At u 

CONCLUDING REMARKS 

We have described a new method of generating shape 
offsets so that topological problems are inherently 
avoided, and shocks, cusps and other singularities are 
also readily dealt with in an efficient numerical scheme. 
The algorithm works on an image grid with a resolution 
chosen according to the desired accuracy. It is easy to 
implement the algorithm in parallel using each mesh 
point as a small calculating device which communicates 
with its four close neighbors. In each iteration, we need 
to calculate the values of c~(x,y,t) for those grid points 
close to the current contour, and the rest of the grid 
points serve as sign holders. This can be exploited to 
reduce calculation effort. 

In summary, we propose to introduce to the CAD/CAM 
field some recent advances in numerical methods for fluid 
dynamics. We have shown that wavefront-propagation 
methods in fluid dynamics also provide a new approach 
to the problem of shape offsetting. 
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APPENDIX A 

Normal evolution 

In this section, we show that, in a curve evolution 
described by 

--  X(s, t) = N(s, t) 
~t 

the direction of the normal does not change in time 
prior to shock formation (following References 17, 22 
and 23). 

Proof." Let us first define the metric along the curve and 
the arc-length parameter 5: 

~, X 2 2 1/2 g(s , t ) -  =(x, +Ys) 

fo 
Now we can define the tangent, curvature and the 
normal in a standard way: 

r_  a x=l__ax 
c~ g c~s 

- - T  
t~ _ 1 _ ~ T  N -  

f~s T kg & 

It is easily established that the curve evolution induces 

--  T = - kgN & 

--  N = kgT 
~s 

The evolution of g can be computed as follows: 

- g \ N  , x 

= / 

= 2(gT, kgT) 

=2g(kg) 
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Hence, 

dr 

Then, the evolution of the tangent is as follows: 

ot =ot  

- g' ex+-l£- x 
g 2 dS g ~t C3S 

= _ g ' T + ! ~ N  
g g c~s 

_ kgT+l_kgT 
g g 

= 0  

Thus, the normal (to the stationary tangent direction) is 
also stationary; in other words, there is no change in 
the normal direction while the curve evolves, and no 
shocks appear. Therefore, Equations ~1 are equivalent to 
Equations 5. []  

A P P E N D I X  B 

O f f s e t t i n g  a l g o r i t h m  

(1) Initialize O°=c~(ih,jh, O), where h = A x = A y ,  
according to the curve representation in hand. 
~b(x, y, 0) = 0 is the implicit representation of the 
initial curve. See above for ways in which to 
determine O(x,y,O). Note that, if shape is 
defined by a dark region on a white back- 
ground, set c~(x,y,O) equal to the gray-level 
image of the object at the camera resolution. 

(2) For n=  1 to L/At do 

~. + 1 = ~ . , j  + zxt . . . id ~ { (mm[(~bl,j - ~bi-, j), O] )2 

+ (max[(~bT+ x, j -  ~bTj), 0]) 2 

+ (min[ (~Tj-  ckT, j-~ ), 0]) 2 

n 0 2 1/2 +(max[(d)Tj+l-~b,.j), ]) } 

(3) Find the level set ~b(x, y, L) = 0  by activating the 
contour-finder procedure as described above on 
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