
Shape offsets via level sets
R Kimmel and A M Bruckstein*

An algorithm for shape offsetting & presented that & based
on level-set propagation. This algorithm avoids the
topological problems encountered in traditional offsetting
algorithms, and it deals with curvature singularities
by including an 'entropy condition' in its numerical
implementation.

shape offsets, prairie fires, numerical algorithms, Huyffens principle

Algorithms for shape offsetting are of great importance
in computer-aided design (CAD), computer-aided manu-
facturing (CAM), the numerical control (NC) of machines,
computer graphics and related fields. The need for offset
shapes arises in applications such as the numerical
control of sawing machines or milling machines in the
car industry.

The problem of shape offsetting can be formulated as
follows: given a simple, closed planar curve

Xo(s) = Ix(s), y(s)] T (1)

where s is an arbitrary curve parameterization, find an
offset curve which is simple and closed (or has simple
and closed components) and is almost everywhere given
by

XL(s) = Xo(s) + N(s, 0)L (2)

Equation 2 represents a curve running 'parallel' to Xo(s),
where L is the displacement of the offset curve, and N(s, 0)
is the unit normal at the point Xo(S) given by

1
N(s, 0) = (x, (s) + y, (s)) 2 ~ 1/2 [- Y s (S) , X s (S)] T (3)

Consider X(s, t) to be a curve continuously changing in
time, so that, for all t, X(s, t) = Xo(s) + tN(s, 0). This curve
evolution can be described differentially by

{ ~ t 't) = 1N(s'0) (4)

X(S,0)--Xo(S)

Electrical Engineering Department, Technion, Haifa 32000, Israel
*Computer Science Department, Technion, Haifa 32000, Israel
Paper received: 9 March 1992. Revised: 6 July 1992

In Appendix A, it is proved that the evolution equation

{ ~ = IN(s, t)
(5)

X(s, 0) = Xo(s)

postulating that each point on the curve moves in the
direction of the instantaneous normal

1
N(s, t) = [- y~(s, t), x,(s, t)] T

(x2 (s, t) + y2~(s, t)) 1/2

with velocity 1 provides the same flow as Equations 4
almost everywhere (where problems do not occur).

This propagation rule is the so-called 'prairie-fire'
model for shape evolution (see, for example, References
1 and 2). If we could determine the solution of Equations
4 or Equations 5 for all t > 0, we could generate not only
the offset shape (at t=L), but a whole class of offset
shapes. Hence, it is important to analyze these equations
closely and obtain good numerical algorithms for their
solution. This was indeed done in the context of
flame-propagation models and shape analysis in com-
puter vision, with an emphasis on the analysis of the
possible singularities arising on the propagated curves.
The following singularities (or 'shocks') may occur3:

• If there is a local maximum of the curvature such that
1/k<L, a curvature-discontinuity 'shock' is formed
after time t = 1/k (see Figure la), and propagating the
curve beyond t = 1/k < L via Equation 4 forms a 'cusp'
(see Figure lb).

• At places where the original curve has breakpoints and
the derivatives are not well defined, problems of
determining the intersection of the propagated lines
arise (see Figure lc).

• Self intersections of the propagating curve may occur,
giving rise to some difficult topological problems (see
Figure ld).

HISTORICAL REVIEW

The issue of generating offset curves has often been dealt
with in the CAD literature. Several approaches to the
problem have been proposed. In the CAD/CAM appli-
cations that we consider, there are often shape boundaries

154 0010-4485/93/030154-09 © 1993 Butterworth-Heinemann Ltd com puter-aided design

II b

C

Figure 1. Problems arise when singularities form in
propagated curve

that are defined by standard parameterized curves such
as line segments, circular arcs or splines. In such cases,
one could concentrate on determining evolution equa-
tions for the control points defining such curves.
However, the offset curves of splines are not necessary
splines themselves, and straightforward translations of
spline control points only rarely produce correct offset
curves. Klass 4 approximates the offset of a B,spline
segment by moving the endpoints of the curve, and
calculating the new tangents based on replacing the
curvature k with a ~that obeys 1/k = l / E - L. He proposes
an iterative procedure for calculating the tangents. A
spline approximation of the offset curve is generated, and
then the distance between the two curves is measured,
and, if this distance deviates considerably from L, the
spline is split into several spline segments and the process
goes on. Tiller and Hanson s replace the B-spline
parametric representation of the shape by a 'rational
B-spline' representation with the control points located
on the curve itself. The offset operation is then carried
out by moving the control points a distance of L on the
normal direction. These approaches require the develop-
ment of some sophisticated procedures to deal with
the problems of loops, shocks, cusps, self-intersection
singularities etc. Hoschek 3 attacks the problem of finding
self-intersection points on offset curves using an iterative
geometrical algorithm. The algorithm is used to eliminate
the tails and loops that arise in the offset curves. It
requires as input two points that are close enough to
each intersection point to guarantee convergence, and it
does not solve the so-called island problem (see Figure
ld). Coquillart 6 suggests a new way of translating the
rational-B-spline control points to preserve circles. The
translation is controlled by the local curvature k and the
distance D from the B-spline control points to the given

Shape offsets via level sets

curve. The translation of each control point in the normal
direction is given by "f .=L(l+kD). Pham 7 uses the
uniform cubic B-spline to represent curves. She also uses
a version of B-splines with control points on the curve,
and the offset curves are improved by adding control
points ('knots'). Elber and Cohen s measure the distance
error to offset curves (and surfaces), and use it to place
new control points. Farin a provides a recursive procedure
to offset B6zier segments that is similar to the one
proposed by Klass. Meek and Walton 1° observe that,
for clothoidal splines, the offset curve remains 'in the
family' (i.e. the offset is also a clothoidal spline).

Wang and Jiang 11 use a vector representation of the
shape comprising circular arcs and straight segments only.
Clockwise directed vectors form the shape boundaries,
and multiplication of consecutive vectors yields vectors
indicating the offset direction. In his recent book x2, Held
attacks the shape-offsetting problem using Voronoi
diagrams. His aim is to design the course of a tool creating
a hole 'pocket' in solid material. He restricts his methods
to linear and circular segments whose representation can
easily be fed into CNC machines. An alternative
approach to the offset problem is provided by Saeed et
al. in Reference 13. They propose the use of morpho-
logical methods to formulate the offset operation. Indeed,
offset shapes are closely related to dilated or eroded
shapes, as defined in mathematical morphology. Related
problems are skeleton .finders in computer vision and
morphology 14, fat curves in computer graphics ~5, and
the calculation of Euclidean distance maps from plane
c u r v e s 16.

The algorithms proposed so far for the offsetting
problem deal with edge-intersection problems, shocks,
cusps and self loops in complex, and rather unnatural,
ways. In these algorithms, the curve-offsetting stage is
followed by a procedure aimed at detecting the afore-
mentioned problems and repairing the offset curve
accordingly. In the sequel, we present a way to approxi-
mate the offset shape using level-set propagation on a
rectangular grid designed to produce results of the desired ~
accuracy. This is done by applying an algorithm devised
by Osher and Sethian ~v for the stable and efficient
propagation of wavefront curves in the plane. This
numerical method generates offset curves according to
Equation 5 and a physically motivated 'entropy con-
dition', and it inherently avoids the topological problems
that required special attention with previous algorithms.

NEW ALGORITHM

We propose to generate shape offsets via an ingenious
algorithm invented in fluid dynamics for solving equa-
tions of the type of Equations 5. This algorithm translates
the problem of curve evolution into a problem of
3D-surface evolution, so that the curves changing
according to Equations 5 are zero (or level) sets of the
time-varying surface. As the 3D surface evolves, it
inherently avoids the generation of curve shocks by
implementing a physically motivated entropy condition.
The algorithm that produces the desired results works

volume 25 number 3 march 1993 155

R Kimmel and A M Bruckstein

on a square grid with a resolution determined by the
desired accuracy of the results, and it is based on a
recently discovered efficient numerical implementation of
the surface-evolution equations 17

Huygens principle and entropy condition

According to the Huygens principle18, the solution of the
curve propagation of Equations 5 at time t, X(s,t),
corresponds to the envelope generated by the set of all
the disks of radius t centred on the initial curve Xo(s).
Problems occur in curve evolution when the normals to
the initial curve collide or cross and hence the curvature
becomes singular. To obtain the solution according to
Huygens' principle after a singularity develops, an
'entropy condition' should be enforced on the propa-
gating curve. One can regard the curve as the wavefront
of a propagating prairie fire separating two areas: the
shape interior which is not burnt, and the already-burnt
exterior. The flame propagates in the direction of the
original curve normals (the so-called 'ignition curves').
If two ignition curves collide at some time t*, neither one
should have any effect on the propagating curve at t > t*.
The principle 'what was burnt until t cannot burn beyond
t' 1 s is the natural 'entropy condition' of this type of curve
evolution. See Figure 2.

The direct approach to propagating the curve can
be referred to as the 'Lagrangian' formulation, because
the coordinates (s and t) are front-dependent 19. The
Lagrangian formulation is the direct numerical approxi-
mation of Equations 5:

f
Ox(s, t) = y~(s, t)

Ot (x2(s, t) + y2(s, t)) u2 (6)

~y(s,t)_ x,(s,t)
~, Ot (x~(s , t)+ y~(s,t)) u2

Taking the discrete approximation of x~ and y~ as central
derivatives in place (s) and a forward-derivative approxi-
mation in time (t) yields a numerical-propagation
scheme. The direct numerical propagation of a curve
according to Equations 6 is both numerically unstable
and suffers from topological problems (see References 17
and 19). To avoid the various problems that occur in
this approach, such as the need for reparameterization
in order to keep numerical stability and to solve
topological problems of self intersections by an external
control procedure, the 'Eulerian formulation', described
below, was developed.

Solution via Eulerlan formulation

The Eulerian scheme is a recursive procedure which
propagates the curve while inherently implementing the
entropy condition. Introduce a smooth function ~b(x, y, t)
that is arbitrarily initialized so that ~b(x,y,0)=0 yields
the curve X(s, 0). Assume that X(s, 0) is a closed curve,
and restrict 4) to be negative in the interior and positive
in the exterior of the level set ~b(x, y, 0)= 0.

The basic idea is to determine an evolution of the
surface ~b(x, y, t) so that the level sets qb(x, y, t) = 0 provide

)

a

b

Figure 2. The principle 'what was burn until t cannot burn
beyond t' is the natural 'entropy condition' o f our curve
evolution
[(a) According to Huygens' principle, the front of the evolving curve
is constructed by the front of all the disks of radius t centered on the
initial curve. (b) If two ignition curves collide at some time t*, neither
one should have any effect on the propagating curve at t > t*. Observe
that the dotted circle does not have any effect on the front.]

the curves X(s, t) as if propagated by Equations 5, and
also obey the entropy condition. If dp(x,y , t)=O along
X(s, t), then, by the chain rule, we. have

~t~(x, y,t)+ ~xdP(x(s,t), y(s,t),t)x,

+ g~ ~b(x(s, t), y(s, t), t)yt = 0

o r

q~t + V~bXt(s, t) = 0 (7)

156 computer-aided design

where

is the gradient of the function 4~(x, y, t) at time t, at the
point (x, y). The scalar velocity of each curve point in its
normal direction is

v = N(s, t)'X,(s, t) (8)

In our case, we need to 'impose' v = 1. The gradient V¢
is always normal to the curve given by ~b(x, y, t) =0 so that

v¢
N(s, t) = -

IIV¢ll

the minus sign indicating the inward direction of
propagation, and hence

v¢
v = N'X t = - - - X t = 1 (9)

IIV4,11
Substituting this into Equation 7 yields the surface-
evolution equation

~,- I IV¢ l l = 0 (10)

Sethian called this approach Eulerian, since the coordi-
nates here are the natural physical coordinates (x,y).
Therefore, if we have a surface ~b propagating according
to Equation 10 with the level set ¢(x, y, 0)=0 coinciding
with X(s, 0), then ~b(x, y, t) = 0 produces X(s, t) propagated
according to Equations 5, while inherently solving the
topological problems. To drive a numerical scheme for
the surface-propagation equation, we follow Reference
17, and show the connection with Hamilton-Jacobi
methods, weak solutions and conservation laws.

Consider the 1D equation of the type of Equation 10:

¢ , - live II = ¢(x, t) , - (¢ #) 1 n = 0 (11)

If we define u - ¢ x and H [u] = - (u 2) 1/2, the differenti-
ation of the above with respect to x results in a so-called
Hamilton-Jacobi equation, in a conservation-law form:

u,+ [H[u]]==0 (12)

The 'weak' solution of the above equation is defined as
a function u(x, t) that satisfies

dt u(x, t) dx = H[u(a, t)] -H[u (b , t)] (13)

To devise a numerical scheme, define u~' = u(iAx, nat). A
differential scheme of three points is said to be in
conservation form if there is a 'flow' function g(u~, us)
such that

n + l n n n n
U i - - U i g (U i , U i + l) - - ~ (U i - l , U n)

- (14)
At Ax

where g(u ,u)=H(u) is the consistency condition. A
scheme is said to be monotone " "+ 1 - " " "]f ui -F (u i - l , u i , u i+ l)
is an increasing monotone function of its three variables.
A basic result in numerical analysis is that a scheme which
is monotone and can be represented in a conservation
form automatically obeys the entropy condition 2°.

Shape offsets via level sets

Some schemes based on this idea, such as the
Lax-Friedrichs and Godonov schemes, are presented in
Reference 17. The simplest flow function from our
implementation point of view is the so-called HJ flow,
for which, for H(u)=f (u2) , the numerical flow can be
given by using in Equation 14 the function

g.j(uT, uT+ 1)=f((min(uT, 0)) 2 + ((max(uT+ 1,0)) 2) (15)

and the appropriate (weak) entropy solution of ~b can be
written as

¢7 + ' = dP7 - At'g(O_ #PT, O + #PT) (16)

where

D_ ~7- 4'7 - ¢7-
Ax

and

'/'7+ 1 - ~b7
n + c r -

Ax

This is a so-called lst-order scheme. More sophisticated
higher-order schemes are introduced in Reference 17. The
above, scheme is readily extended to more than one
dimension; for example, for H(u, v) = f (u 2, V 2) (in our case
U=¢x, v=e~,),

~t)n..+ l _ _ n o x n x n . y n y n u - ~ b u - A t g(D-~bu, D+¢u, D-~bu, D+~bu) (17)

where

g.J = f((min(D~- ¢7j, 0) z + (max(D~.~b~'~, 0)) z;

(min(DL ¢~'j, 0))z + (max(D~ ~b~'i, 0)) 2) (18)

The result is the following algorithm

A l g o r i t h m

(1) Choose a function ¢(x,y,0) such that

• ~b(x, y, 0) = 0 provides the initial curve X(s, 0),
• ~b(x, y,0) < 0 in the interior of the initial

curve,
• ¢(x, y, 0) > 0 in the exterior of the initial

curve,
• ¢(x, y, 0) is Lipschitz-continuous.

The next section discusses the possible ways of
'choosing' the initialization ~b(x, y, 0).

(2) Propagate ~b on an x - y grid of desired spatial
resolution according to

4,,-IIV¢,ll =o

discretized using any conservation-form numeri-
cal scheme.

(3) Stop after n = L / A t time steps, and find the
contour (level set) ~b(x, y, L)= 0 which is XL(s).

See further below possible ways of implementing the
level-set finder. The result is a weak solution of
Equations 5 that obeys the entropy conditions.

volume 25 number 3 march 1993 157

R Kimmel and A M Bruckstein

,~(t2)

z~/ y "'::::::: ':::": '" " " :21"- " ' "

{x(s,tl),y(s,tl)}

X

Figure 3. When q5 propagates in time, the function may
stay continuous while the offset curves form two separate
close curves which are no longer connected

The algorithm automatically enforces the entropy
condition, and frees us from the need to take care of
possible topological changes (see Figure 3). The algorithm,
by choosing forward derivatives, readily deals with shock
formation and propagation within the numerical flow.

Initialization

It is obvious that an initialization of the type

4~(x, y, O)

+ d((x, y), X(s, 0))
!

(x, y) ~ exterior ofX(s, 0)

(x, y) e interior ofX(s, 0)

(x ,y) ~ X(s,0)
(19)

where d is the (minimal) Euclidean distance of the point
from the curve, would be a reasonable initialization, but,
on the other hand, such an initialization is, in fact,
equivalent to solving the problem of offsetting, since we
could produce X(s, d) as the locus of all the points where
(a(x, y, O)=d.

However, to provide a proper solution, we can use the
fact that ck(x,y,O) only needs to be continuous, and
initialize dp(x,y,O) on the x -y grid as follows:

4,(x, y, 0)

I
min[+d((x,y),X(s,O)),C] (x,y) ~ exterior of

X(s, 0)
=,~max[-d((x , y),X(s, O)), - C] (x,y) ~interiorof

X(s,O)
(x, y) ~ X(s, 0)

(20)

where C is an arbitrary constant. If we choose

h = A x = A y = C = l , then the values of the 0(x,y,0)
function on the grid varies in the interval [- 1, 1]. The
values of the open interval (- 1,1) are given only to grid
points at a distance of less than the mesh size from the
curve. This initialization problem is quite simple, and
can be regarded as a problem of finding a very tight offset
neighborhood to the initial curve before topological
problems can even begin to affect the results. See Figure 4
for the results of the offsetting process with such an
initialization.

Initializing qS(x,y,0) when the shape outline is a
sequence of line segments and circular arcs (the common
NC case (see Reference 12)) is quite simple, and it can
be dealt with as follows:

• Find all the intersection points of the shape outline
with the given grid.

• For each grid point (i,j), define a cell as ~' i j= [(oij,
(oi+ l,jcki+ 1,j+ 1, (bl,j+ 1]. For each grid point (i,j), check
whether the boundaries of the cell JVij are intersected
by the shape boundaries.

i
l . tO~

l e e ,

° e ,

6e,

40

I °

e o ,

"i i
I, :. " ~o ,h ,h

Figure 4. Offsetting of simple shape on 128 × 128 grid

158 computer-aided design

i

Shape offsets via level sets

we can use the gray levels of the image in order to initialize
~b(x, y, 0). For example, if the gray level of the shape is
black (~-0), the background is white (---1), and the
boundaries pass through the gray level gray (--- 1/2), then
we can take ~p(x,y,O)=l(x,y)-l/2, as the required
initialization, making direct use of the continuity of the
gray levels in the picture, without any extra calculations
(see Figure 6 for the Postscript halftoned version of a
gray-level test picture, and Figure 7 for the offsets of this
shape).

After initialization has been completed, the function ~b
is propagated according to the above-described algorithm
for n = L/At iteration steps. Finally, a contour finder must
be invoked to produce the resulting contour X(s, L) from
ck(x,y, L)=0. A description of the offsetting algorithm
can be found in Appendix B.

zoo

| o

60

qo.

Jo,

I, I, '.. J, 11, do

Contour finder

Following Reference 21, a simple contour finder for
X(s,L) can be generated in the following manner: for
each grid point (i,j), use the same cell definition as in
the previous section X o. Now, if max[Xu] < 0 or
min[Yu] > 0, then the contour X(s,L) does not pass
through the cell. Otherwise, find the entrance and exit
points of ~b=0 by linear interpolation; this provides a
line segment of X(s, L) belonging to the contour. The line
segments need to be neither ordered nor directed in the
same direction to display the desired contour (see Figure
8); however, using additional information such as the
knowledge of interior and exterior points, one can
produce any desired representation of the curve, such as
a planar polygon, or a curve comprising cubic or any
other polynomial arcs.

Figure 5. Offsetting polygons

• If there is an intersection, attach a value to the two
grid points on the two sides of the intersection point
so that the interior grid point is given a value within
the interval (- 1, 01 and the exterior grid point a value
within [0, + 1). These two values are samples of a linear
approximation of the ~) function whose zero is the
intersection point.

• Set values for the rest of the grid points as follows:
assign - 1 to the interior points and + 1 to the exterior
points of the given shape. (Chains of 'dependent' points
may occur. When this happens, attach values to the
dependent points so that the intersection points are
the zeros of the linear ~b approximation). Figure 5
shows an example of polygon offsetting using this
initialization process.

Note that, if we must offset a shape that is provided as
a dark region on a light background in a given picture,

Figure 6. Miekey Mouse in gray-level picture (128 x 128
pixels)

volume 25 number 3 march 1993 159

R Kimmel and A M Bruckstein

~, I0 " I, d, J,

O

. ,~, ,I,

Figure 7. Offsetting Mickey Mouse (grid size 128)

Cell {i, j }

i~,j.1, ~i.1,#.~

Figure 8. Contour finder." find a line segment in .At u

CONCLUDING REMARKS

We have described a new method of generating shape
offsets so that topological problems are inherently
avoided, and shocks, cusps and other singularities are
also readily dealt with in an efficient numerical scheme.
The algorithm works on an image grid with a resolution
chosen according to the desired accuracy. It is easy to
implement the algorithm in parallel using each mesh
point as a small calculating device which communicates
with its four close neighbors. In each iteration, we need
to calculate the values of c~(x,y,t) for those grid points
close to the current contour, and the rest of the grid
points serve as sign holders. This can be exploited to
reduce calculation effort.

In summary, we propose to introduce to the CAD/CAM
field some recent advances in numerical methods for fluid
dynamics. We have shown that wavefront-propagation
methods in fluid dynamics also provide a new approach
to the problem of shape offsetting.

ACKNOWLEDGEMENTS

We would like to thank Professor James Sethian for
providing us with his reports on numerical methods of
front evolution. We thank Professor Moshe Israeli,
Professor Ben Kimia, Professor Allen Tannenbaum and
Professor J Rubinstein for their help in introducing us

• to the world of numerical analysis and moving surfaces.
R Kimmel's work was partly supported by the

Ollendorf Fund. A Bruckstein's work was supported in
part by the Fund for the Promotion of Research at the
Technion, Haifa, Israel.

REFERENCES

I Blum, H and Nagel, R N 'Shape description using
symmetric axis features' Pattern Recognition Vol 10
(1978) pp 167-180

2 Calabi, L and Hartnett, W E 'Shape recognition,
prairie fires, convex deficiencies and skeletons' Amer.
Math. Mon. Vol 75 (1968) pp 335-342

3 Ho~ehek, J 'Offset curves in the plane' Comput.-
Aided Des. Vol 17 No 2 (1985)

4 Klan, R 'An offset spline approximation for plane
cubic splines' Comput.-AidedDes. Vol 15 No 5 (1983)
pp 297-299

5 Tiller, W and Hanson, E G 'Offset of two dimensional
profiles' 1EEE Trans. Comput. Graph. & Applic. Vol
4 No 9 (1984) pp36-46

6 Ceqmllart, S 'Computing offsets of B-spline curves'
Comput.-AidedDes. Vo119 No 6 (1987) pp 305-309

7 Pham, B 'Offset approximation of uniform B-splines'
Comput.-AidedDes. Vo120 No 8 (1988) pp 471-474

8 Eiher, G and Cohen, E 'Error bounded variable
distance offset operator for free form curves and

160 computer-aided design

surfaces' Int. J. Comput. Geom. & Applic. Vol I No 1
(1991) pp 67-78

9 Farin, G 'Curvature continuity and offsets of
piecewise conics' ACM Trans. Graph. Vol 8 No 2
(1989) pp 89-99

10 Meek, D S and Walton, D S 'Offset curves of
clothoidal splines' Comput.-Aided Des. Vol 22 No 4
(1990) pp 199-200

11 Wang, R and Jiang, W 'An algorithm of the
offset shape' Comput. Graph. Vol 15 No 3 (1991)
pp 435--439

12 Held, M On the Computational Geometry of Pocket
Machining Springer-Verlag, Germany (1991)

13 Saeed, S E O, de Pennington, A and Dodsworth, J R
'Offsetting in geometric modeling' Comput.-Aided
Des. Vol 20 No 1 (1988) pp 67-74

14 Riazanoff, S, Cervelle, B and Chorowicz, J 'Para-
metrisable skeletonization of binary and multi-level
images' Pattern Recognition Lett. No 11 (1990)
pp 25-33

15 Yao, C and Rokne, J 'Fat curves' Comput. Graph.
Forum No 10 (1991) pp 237-248

16 Vincent, L 'Exact Euclidean distance function by
chain propagation' IEEE Trans. Comput. V. Pattern
Recognition (May 1991)

17 Osher, S J and Sethian, J A 'Fronts propagating
with curvature dependent speed: algorithms based
on Hamilton-Jacobi formulations' J. Comput. Phys.
Vol 79 (1988) pp 12-49

18 Sethian, J A 'Curvature and the evolution of fronts'
Comm. Math. Phys. Vol 101 (1985) pp 487-499

19 Sethian, J ~A 'A review of recent numerical algorithms
for hypersurfaces moving with curvature dependent
speed' J. Differ. Geom. No 33 (1989) pp 131-161

20 Sod, G A Numerical Methods in Fluid Dynamics
Cambridge University Press (1985)

21 Sethian, J A and Strain, J 'Crystal growth and
dendritic solidification' J. Comput. Phys. Vol 98
(1992)

22 Kimia, B B, Tannenbaum, A and Zucker, S W 'On
the evolution of curves via a function of curvature.
Part 1: The classical case' J. Math. Anal. & Applic.
Vol 163 (1992) pp 438-458

23 Kimia, B B 'Toward a computational theory of
shape' PhD Thesis Dep. Electrical Engineering,
McGill University, Canada (1990)

BIBLIOGRAPHY

Mitchel, A R and Grifliths, D F The Finite Difference
Method in Partial Differential Equations John Wiley,
USA (1985)

Shape offsets via level sets

Sethian, J A 'Numerical methods for propagating fronts'
in Concus, P and Finn, R (Eds.) Variational Methods for
Free Surface Interfaces Springer-Verlag, USA (1987)

APPENDIX A

Normal evolution

In this section, we show that, in a curve evolution
described by

-- X(s, t) = N(s, t)
~t

the direction of the normal does not change in time
prior to shock formation (following References 17, 22
and 23).

Proof." Let us first define the metric along the curve and
the arc-length parameter 5:

~, X 2 2 1/2 g(s , t) - =(x, +Ys)

fo
Now we can define the tangent, curvature and the
normal in a standard way:

r_ a x=l__ax
c~ g c~s

- - T
t~ _ 1 _ ~ T N -

f~s T kg &

It is easily established that the curve evolution induces

-- T = - kgN &

-- N = kgT
~s

The evolution of g can be computed as follows:

- g \ N , x

= /

= 2(gT, kgT)

=2g(kg)

volume 25 number 3 march 1993 161

R Kimmel and A M Bruckstein

Hence,

dr

Then, the evolution of the tangent is as follows:

ot =ot

- g' ex+-l£- x
g 2 dS g ~t C3S

= _ g ' T + ! ~ N
g g c~s

_ kgT+l_kgT
g g

= 0

Thus, the normal (to the stationary tangent direction) is
also stationary; in other words, there is no change in
the normal direction while the curve evolves, and no
shocks appear. Therefore, Equations ~1 are equivalent to
Equations 5. []

A P P E N D I X B

O f f s e t t i n g a l g o r i t h m

(1) Initialize O°=c~(ih,jh, O), where h = A x = A y ,
according to the curve representation in hand.
~b(x, y, 0) = 0 is the implicit representation of the
initial curve. See above for ways in which to
determine O(x,y,O). Note that, if shape is
defined by a dark region on a white back-
ground, set c~(x,y,O) equal to the gray-level
image of the object at the camera resolution.

(2) For n= 1 to L/At do

~. + 1 = ~ . , j + zxt . . . id ~ { (mm[(~bl,j - ~bi-, j), O])2

+ (max[(~bT+ x, j - ~bTj), 0]) 2

+ (min[(~Tj- ckT, j-~), 0]) 2

n 0 2 1/2 +(max[(d)Tj+l-~b,.j),]) }

(3) Find the level set ~b(x, y, L) = 0 by activating the
contour-finder procedure as described above on

162 computer-aided design

