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ompositionof periodi
 motions.Roman Goldenberg, Ron Kimmel, Ehud Rivlin, and Mi
hael RudzskyComputer S
ien
e Department, Te
hnion|Israel Institute of Te
hnologyTe
hnion City, Haifa 32000, ISRAELAbstra
t. Following Futurism, we show how periodi
 motions 
an be represented by a smallnumber of eigen-shapes that 
apture the whole dynami
 me
hanism of periodi
 motions.Spe
tral de
omposition of a silhouette of an obje
t in motion serves as a basis for behavior
lassi�
ation by prin
iple 
omponent analysis. The boundary 
ontour of the walking dog, forexample, is �rst 
omputed eÆ
iently and a

urately. After normalization, the impli
it repre-sentation of a sequen
e of silhouette 
ontours given by their 
orresponding binary images, isused for generating eigen-shapes for the given motion. Singular value de
omposition produ
esthese eigen-shapes that are then used to analyze the sequen
e. We show examples of obje
tas well as behavior 
lassi�
ation based on the eigen-de
omposition of the binary silhouettesequen
e.1 Introdu
tionFuturism is a movement in art, musi
, and literature that began in Italy at about1909 and marked espe
ially by an e�ort to give formal expression to the dynami
energy and movement of me
hani
al pro
esses. A typi
al example is the `Dynamismof a Dog on a Leash' by Gia
omo Balla, who lived during the years 1871-1958 inItaly, see Figure 1 [2℄. In this painting one 
ould see how the artist 
aptures in onestill image the periodi
 walking motion of a dog on a leash. Following Futurism, weshow how periodi
 motions 
an be represented by a small number of eigen-shapesthat 
apture the whole dynami
 me
hanism of periodi
 motions. Singular value de-
omposition of a silhouette of an obje
t serves as a basis for behavior 
lassi�
ationby prin
iple 
omponent analysis. Figure 2 present a running horse video sequen
eand its eigen-shape de
omposition. One 
an see the similarity between the overlappedeigen-shapes 2(
) and another futurism style painting "The Red Horseman" by CarloCarra [2℄. The boundary 
ontour of the walking dog, for example, is 
omputed eÆ-
iently and a

urately by the fast geodesi
 a
tive 
ontours [15℄. After normalization,the impli
it representation of a sequen
e of silhouette 
ontours given by their 
or-responding binary images, is used for generating eigen-shapes for the given motion.Singular value de
omposition produ
es the eigen-shapes that are used to analyze thesequen
e. We show examples of obje
t as well as behavior 
lassi�
ation based on theeigen-de
omposition of the sequen
e.



Fig. 1. `Dynamism of a Dog on a Leash' 1912, by Gia
omo Balla. Albright-Knox Art Gallery, Bu�alo.2 Related workMotion based re
ognition re
eived a lot of attention in the last several years. Thisis due to the general re
ognition of the fa
t that the dire
t use of temporal datamay signi�
antly improve our ability to solve a number of basi
 
omputer visionproblems su
h as image segmentation, tra
king, obje
t 
lassi�
ation, et
., as wellas the availability of a low 
ost 
omputer systems powerful enough to pro
ess largeamounts of data.In general, when analyzing a moving obje
t, one 
an use two main sour
es ofinformation to rely upon: 
hanges of the moving obje
t position (and orientation) inspa
e, and obje
t deformations.Obje
t position is an easy-to-get 
hara
teristi
, appli
able both for rigid and non-rigid bodies that is provided by most of the target dete
tion and tra
king systems,usually as a 
enter of the target bounding box. A number of te
hniques [17℄, [16℄,[11℄, [26℄ were proposed for the dete
tion of motion events and for the re
ognitionof various types of motions based on the analysis of the moving obje
t traje
toryand its derivatives. Dete
ting obje
t orientation is a more 
hallenging problem whi
his usually solved by �tting a model that may vary from a simple ellipsoid [26℄ to a
omplex 3D vehi
le model [18℄ or a spe
i�
 air
raft-
lass model adapted for noisyradar images as in [9℄.While obje
t orientation 
hara
teristi
 is more appli
able for rigid obje
ts, it isobje
t deformation that 
ontains the most essential information about the natureof the non-rigid body motion. This is espe
ially true for natural non-rigid obje
tsin lo
omotion that exhibit substantial 
hanges in their apparent view, as in this
ase the motion itself is 
aused by these deformations, e.g. walking, running, hoping,
rawling, 
ying, et
.There exists a large number of papers dealing with the 
lassi�
ation of movingnon-rigid obje
ts and their motions, based on their appearan
e. Lipton et al. des
ribea method for moving target 
lassi�
ation based on their stati
 appearan
e [19℄ andusing the skeletonization [13℄. Polana and Nelson [24℄ used lo
al motion statisti
s



(a)(b)
(
) (d) (e)Fig. 2. (a) running horse video sequen
e, (b) �rst 10 eigen-shapes, (
,d) �rst and se
ond eigen-shapesenlarged, (e) `The Red Horseman', 1914, by Carlo Carra, Civi
o Museo d'Arte Contemporanea, Milan.
omputed for image grid 
ells to 
lassify various types of a
tivities. An originalapproa
h using the temporal templates and motion history images (MHI) for a
tionrepresentation and 
lassi�
ation was suggested by Davis and Bobi
k in [3℄. Cutlerand Davis [10℄ des
ribe a system for real-time moving obje
t 
lassi�
ation based onperiodi
ity analysis. It would be impossible to des
ribe here the whole spe
trum ofpapers done in this �eld and we refer the reader to the following surveys [5℄, [14℄ and[21℄.The most related to our approa
h is a work by Ya
oob and Bla
k [28℄, wheredi�erent types of human a
tivities were re
ognized using a parameterized represen-tation of measurements 
olle
ted during one motion period. The measurements wereeight motion parameters tra
ked for �ve body parts (arm, torso, thigh, 
alf and foot).In this paper we 
on
entrate on the analysis of the deformations of moving non-rigid bodies in an attempt to extra
t 
hara
teristi
s that allow us to distinguishbetween di�erent types of motions and di�erent 
lasses of obje
ts.3 Our approa
hOur basi
 assumption is that for any given 
lass of moving obje
ts, like humans, dogs,
ats, and birds, the apparent obje
t view in every phase of its motion 
an be en
odedas a 
ombination of several basi
 body views or 
on�gurations. Assuming that aliving 
reature exhibits a pseudo-periodi
 motion, one motion period 
an be usedas a 
omparable information unit. Then, by extra
ting the basi
 views from a largetraining set and proje
ting onto them the observed sequen
e of obje
t views 
olle
tedfrom one motion period, we obtain a parameterized representation of obje
t's motionthat 
an be used for 
lassi�
ation.



Unlike [28℄ we do not assume an initial segmentation of the body into parts anddo not expli
itly measure the motion parameters. Instead, we work with the 
hangingapparent view of deformable obje
ts and use the parameterization indu
ed by theirform variability.In what follows we des
ribe the main steps of the pro
ess that in
lude,{ Segmentation and tra
king of the moving obje
t that yield an a

urate externalobje
t boundary in every frame.{ Periodi
ity analysis, in whi
h we estimate the frequen
y of the pseudo-periodi
motion and split the video sequen
e into single-period intervals.{ Frame sequen
e alignment that brings the single-period sequen
es above to astandardized form by 
ompensating for temporal shift, speed variations, di�erentobje
t sizes and imaging 
onditions.{ Parameterization by building an eigen-shape basis from a training set of possibleobje
t views and proje
ting the apparent view of a moving body onto this basis.3.1 Segmentation and Tra
kingAs our approa
h is based on the analysis of deformations of the moving body, thea

ura
y of the segmentation and tra
king algorithm in �nding the target outlineis 
ru
ial for the quality of the �nal result. This rules out a number of available oreasy-to-build tra
king systems that provide only a 
enter of mass or a bounding boxaround the target and 
alls for more pre
ise and usually more sophisti
ated solutions.Therefore we de
ided to use the geodesi
 a
tive 
ontour approa
h [4℄ and spe
i�-
ally the `fast geodesi
 a
tive 
ontour' method des
ribed in [15℄, where the segmenta-tion problem is expressed as a geometri
 energy minimization. We sear
h for a 
urveC that minimizes the fun
tionalS[C℄ = Z L(C)0 g(C)ds;where ds is the Eu
lidean ar
length, L(C) is the total Eu
lidean length of the 
urve,and g is a positive edge indi
ator fun
tion in a 3D hybrid spa
ial-temporal spa
ethat depends on the pair of 
onse
utive frames I t�1(x; y) and I t(x; y). It gets smallvalues along the spa
ial-temporal edges, i.e. moving obje
t boundaries, and highervalues elsewhere.In addition to the s
heme des
ribed in [15℄, we also use the ba
kground infor-mation whenever a stati
 ba
kground assumption is valid and a ba
kground im-age B(x; y) is available. In the a
tive 
ontours framework this 
an be a
hievedeither by modifying the g fun
tion to re
e
t the edges in the di�eren
e imageD(x; y) = jB(x; y)� I t(x; y)j, or by introdu
ing additional area integration terms tothe fun
tional S(C):S[C℄ = Z L(C)0 g(C)ds+ �1 Zinside(C) jD(x; y)� 
1j2da+ �2 Zoutside(C) jD(x; y)� 
2j2da;



where �1 and �2 are �xed parameters and 
1, 
2 are given by:
1 = averageinside(C)[D(x; y)℄
2 = averageoutside(C)[D(x; y)℄The latter approa
h is inspired by the `a
tive 
ontours without edges' model proposedby Chan and Vese [6℄ and for
es the 
urve C to 
lose on a region whose interior andexterior have approximately uniform values inD(x; y). A di�erent approa
h to utilizethe region information by 
oupling between the motion estimation and the tra
kingproblem was suggested by Paragios and Deri
he in [22℄.Figure 3 shows some results of moving obje
t segmentation and tra
king usingthe proposed method.

Fig. 3. Non-rigid moving obje
t segmentation and tra
king.
3.2 Periodi
ity analysisHere we assume that the majority of non-rigid moving obje
ts are self-propelled alive
reatures whose motion is almost periodi
. Thus, one motion period, like a step of awalking man or a rabbit hop, 
an be used as a natural unit of motion and extra
tedmotion 
hara
teristi
s 
an by normalized by the period size.The problem of dete
tion and 
hara
terization of periodi
 a
tivities was addressedby several resear
h groups and the prevailing te
hnique for periodi
ity dete
tion andmeasurements is the analysis of the 
hanging 1-D intensity signals along spatio-temporal 
urves asso
iated with a moving obje
t or the 
urvature analysis of featurepoint traje
tories [23℄, [20℄, [25℄, [27℄. Here we address the problem using global 
har-a
teristi
s of motion su
h as moving obje
t 
ontour deformations and the traje
toryof the 
enter of mass.



By running frequen
y analysis on su
h 1-D 
ontour metri
s as the 
ontour area,velo
ity of the 
enter of mass, prin
ipal axes orientation, et
. we 
an dete
t thebasi
 period of the motion. Figures 4 and 5 present global motion 
hara
teristi
sderived from segmented moving obje
ts in two sequen
es. One 
an 
learly observethe 
ommon dominant frequen
y in all three graphs.
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e.
The period 
an also be estimated in a straightforward manner by looking forthe frame where the external obje
t 
ontour best mat
hes the obje
t 
ontour in the
urrent frame. Figure 6 shows the deformations of a walking man 
ontour during onemotion period (step). Samples from two di�erent steps are presented and ea
h verti
alpair of frames is phase syn
hronized. One 
an 
learly see the similarity betweenthe 
orresponding 
ontours. An automated 
ontour mat
hing 
an be performed in anumber of ways, e.g. by 
omparing 
ontour signatures or by looking at the 
orrelationbetween the obje
t silhouettes in di�erent frames. Figure 7 shows four graphs of inter-frame silhouette 
orrelation values measured for four di�erent starting frames takenwithin one motion period. It is 
learly visible that all four graphs nearly 
oin
ideand the lo
al maxima peaks are approximately evenly spa
ed. The period, therefore,
an be estimated as the average distan
e between the neighboring peaks.
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hara
teristi
s measured for walking 
at sequen
e.3.3 Frame sequen
e alignmentOne of the most desirable features of any 
lassi�
ation system is the invarian
e to aset of possible input transformations. As the input in our 
ase is not a stati
 image,but a sequen
e of images, the system should be robust to both spa
ial and temporalvariations.Spatial alignment: S
ale invarian
e is a
hieved by 
ropping a square boundingbox around the 
enter of mass of the tra
ked target silhouette and re-s
aling it to aprede�ned size (see Figure 8).One way to have orientation invarian
e is to keep a 
olle
tion of motion samplesfor a wide range of possible motion dire
tions and then look for the best mat
h.This approa
h was used by Ya
oob and Bla
k in [28℄ to distinguish between di�erentwalking dire
tions. Although here we experiment only with motions nearly parallelto the image plane, the system proved to be robust to small variations in orienta-tion. Sin
e we do not want to keep models for both left-to-right and right-to-leftmotion dire
tions, the right-to-left moving sequen
es are 
onverted to left-to-rightby horizontal mirror 
ip.Temporal alignment: A good estimate of the motion period allows us to 
om-pensate for motion speed variations by re-sampling ea
h period subsequen
e to a



(t) (t+3) (t+6) (t+9) (t+12)
(� ) (�+3) (�+6) (�+9) (�+12)Fig. 6. Deformations of a walking man 
ontour during one motion period (step). Two steps syn
hronizedin phase are shown. One 
an see the similarity between 
ontours in 
orresponding phases.prede�ned duration. This 
an be done by interpolation between the binary silhou-ette images themselves or between their parameterized representation as explainedbelow. Figure 9 presents an original and re-sampled one-period subsequen
e afters
aling from 11 to 10 frames.Temporal shift is another issue that has to be addressed in order to align the phaseof the observed one-
y
le sample and the models stored in the training base. In [28℄it was done by solving a minimization problem of �nding the optimal parametersof temporal s
aling and time shift transformations so that the observed sequen
e isbest mat
hed to the training samples. Polana and Nelson [24℄ handled this problemby mat
hing the test one-period subsequen
e to referen
e template at all possibletemporal translations.Assuming that in the training set all the sequen
es are a

urately aligned, we�nd the temporal shift of a test sequen
e by looking for the starting frame that bestmat
hes the generalized (averaged) starting frame of the training samples, as they alllook alike. Figure 10 shows (a) - the referen
e starting frame taken as an average overthe temporally aligned training set, (b) - a re-sampled single-period test sequen
eand, (
) the 
orrelation between the referen
e starting frame and the test sequen
eframes. The maximal 
orrelation is a
hieved at the seventh frame, therefore the testsequen
e is aligned by 
y
li
ally shifting it 7 frames to the left.3.4 ParameterizationIn order to redu
e the dimensionality of the problem we �rst proje
t the obje
t imagein every frame onto a low dimensional base that represents all possible appearan
esof obje
ts that belong to a 
ertain 
lass, like humans, four-leg animals, et
.Let n be number of frames in the training base of a 
ertain 
lass of obje
tsand M be a training samples matrix, where ea
h 
olumn 
orresponds to a spatiallyaligned image of a moving obje
t written as a binary ve
tor. In our experimentswe use 50 � 50 normalized images, therefore, M is a 2500 � n matrix. Matrix M
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(a) (b)Fig. 8. S
ale alignment. A minimal square bounding box around the 
enter of the segmented obje
t silhou-ette (a) is 
ropped and re-s
aled to form a 50� 50 binary image (b).is de
omposed using Singular Value De
omposition as M = U�V T , where U is anorthogonal matrix of prin
ipal dire
tions and the � is a diagonal matrix of singularvalues. The prin
ipal basis fUi; i = 1::kg for the training set is then taken as k
olumns of U 
orresponding to the largest singular values in �. Figure 11 presents aprin
ipal basis for the training set formed of 800 sample images 
olle
ted from morethan 60 sequen
es showing dogs and 
ats in motion. The basis is built by taking thek = 20 �rst prin
ipal 
omponent ve
tors.We assume that by building su
h representative bases for every 
lass of obje
tsand then �nding the basis that best represents a given obje
t image in a minimaldistan
e to the feature spa
e (DTFS) sense, we 
an distinguish between variousobje
t 
lasses. Figure 12 shows the distan
es from more than 1000 various images ofpeople, dogs and 
ats to the feature spa
e of people and to that of dogs and 
ats.



Fig. 9. Temporal alignment. Top: original 11 frames of one period subsequen
e. Bottom: re-sampled 10frames sequen
e.In all 
ases, images of people were 
loser to the people feature spa
e than to theanimals' feature spa
e and vise a versa. This allows us to distinguish between thesetwo 
lasses. A similar approa
h was used in [12℄ for the dete
tion of pedestrians intraÆ
 s
enes.If the obje
t 
lass is known (e.g. we know that the obje
t is a dog), we 
anparameterize the moving obje
t silhouette image I in every frame by proje
tingit onto the 
lass basis. Let B be the basis matrix formed from the basis ve
torsfUi; i = 1::kg. Then, the parameterized representation of the obje
t image I is givenby the ve
tor p of length k as p = BTvI , where vI is the image I written as a ve
tor.The idea of using a parameterized representation in motion-based re
ognition
ontext is 
ertainly not a new one. To name a few examples we mention again thework of Ya
oob and Bla
k [28℄. Cootes et al. [8℄ used similar te
hnique for des
ribingfeature point lo
ations by a redu
ed parameter set. Baumberg and Hogg [1℄ usedPCA to des
ribe a set of admissible B-spline models for deformable obje
t tra
king.Chomat and Crowley [7℄ used PCA-based spatio-temporal �lter for human motionre
ognition.Figure 13 shows several normalized moving obje
t images from the original se-quen
e and their re
onstru
tion from a parameterized representation by ba
k-proje
tionto the image spa
e. The numbers below are the norms of di�eren
es between theoriginal and the ba
k-proje
ted images. These norms 
an be used as the DTFS esti-mation.Now, we 
an use these parameterized representations to distinguish between dif-ferent types of motion. The referen
e base for the a
tivity re
ognition 
onsists oftemporally aligned one-period subsequen
es, whereas the moving obje
t silhouettein every frame of these subsequen
es is represented by its proje
tion to the prin
ipalbasis. More formally, let fIf : f = 1::Tg be a one-period, temporally aligned set ofnormalized obje
t images, and pf ; f = 1::T a proje
tion of the image If onto theprin
ipal basis B of size k. Then, the ve
tor P of length kT formed by 
on
atenationof all the ve
tors pf ; f = 1::T , represent a one-period subsequen
e. By 
hoosing abasis of size k = 20 and the normalized duration of one-period subsequen
e to be
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)Fig. 10. Temporal shift alignment: (a) - average starting frame of all the training set sequen
es, (b) -temporally shifted single-
y
le test sequen
e, (
) - the 
orrelation between the referen
e starting frame andthe test sequen
e framesT = 10 frames, every single-period subsequen
e is represented by a feature point ina 200-dimensional feature spa
e.In the following experiment we pro
essed a number of sequen
es of dogs and
ats in various types of lo
omotion. From these sequen
es we extra
ted 33 samplesof walking dogs, 9 samples of running dogs, 9 samples with galloping dogs and 14samples of walking 
ats. In Figure 14 we depi
t the resulting feature points proje
tedfor visualization to the 3-D spa
e using the three �rst prin
ipal dire
tions . One 
aneasily observe four separable 
lusters 
orresponding to the four groups.Another experiment was done over the `people' 
lass of images. Figure 15 presentsfeature points 
orresponding to several sequen
es showing people walking and run-ning parallel to the image plane and running at oblique angle to the 
amera. Again,all three groups lie in separable 
lusters.The 
lassi�
ation 
an be performed, for example, using the k-nearest-neighboralgorithm. We 
ondu
ted the `leave one out' test for the dogs set above, 
lassifyingevery sample by taking them out from the training set one at a time, and the three-nearest-neighbors strategy resulted in 100% su

ess rate.



Fig. 11. The prin
ipal basis for the `dogs and 
ats' training set formed of 20 �rst prin
ipal 
omponentve
tors.
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es to the `people' and 'dogs and 
ats' feature spa
es from more than 1000 various imagesof people, dogs and 
ats.



       5.23       4.66       4.01       3.96       3.42       4.45       4.64       6.10       5.99       6.94       5.89Fig. 13. Image sequen
e parameterization. Top: 11 normalized target images of the original sequen
e.Bottom: the same images after the parameterization using the prin
ipal basis and ba
k-proje
ting to theimage basis. The numbers are the norms of the di�eren
es between the original and the ba
k-proje
tedimages.4 Con
luding remarksWe presented a new framework for motion-based 
lassi�
ation of moving non-rigidobje
ts. The te
hnique is based on the analysis of 
hanging appearan
e of moving ob-je
ts and is heavily relying on high a

ura
y results of segmentation and tra
king byusing the fast geodesi
 
ontour approa
h. The periodi
ity analysis is then performedbased on the global properties of the extra
ted moving obje
t 
ontours, followedby video sequen
e spatial and temporal normalization. Normalized one-period sub-sequen
es are parameterized by proje
tion onto a prin
ipal basis extra
ted from atraining set of images for a given 
lass of obje
ts. A number of experiments showthe ability of the system to analyze motions of humans and animals, to distinguishbetween these two 
lasses based on obje
t appearan
e, and to 
lassify various typeof a
tivities with a 
lass, su
h as walking, running, galloping. The `dogs and 
ats'experiment demonstrate the ability of the system to dis
riminate between these twovery similar by appearan
e 
lasses by analyzing their lo
omotion.Referen
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ats and proje
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