
`Dynamism of a Dog on a Leash'orBehavior lassi�ation by eigen-deompositionof periodi motions.Roman Goldenberg, Ron Kimmel, Ehud Rivlin, and Mihael RudzskyComputer Siene Department, Tehnion|Israel Institute of TehnologyTehnion City, Haifa 32000, ISRAELAbstrat. Following Futurism, we show how periodi motions an be represented by a smallnumber of eigen-shapes that apture the whole dynami mehanism of periodi motions.Spetral deomposition of a silhouette of an objet in motion serves as a basis for behaviorlassi�ation by priniple omponent analysis. The boundary ontour of the walking dog, forexample, is �rst omputed eÆiently and aurately. After normalization, the impliit repre-sentation of a sequene of silhouette ontours given by their orresponding binary images, isused for generating eigen-shapes for the given motion. Singular value deomposition produesthese eigen-shapes that are then used to analyze the sequene. We show examples of objetas well as behavior lassi�ation based on the eigen-deomposition of the binary silhouettesequene.1 IntrodutionFuturism is a movement in art, musi, and literature that began in Italy at about1909 and marked espeially by an e�ort to give formal expression to the dynamienergy and movement of mehanial proesses. A typial example is the `Dynamismof a Dog on a Leash' by Giaomo Balla, who lived during the years 1871-1958 inItaly, see Figure 1 [2℄. In this painting one ould see how the artist aptures in onestill image the periodi walking motion of a dog on a leash. Following Futurism, weshow how periodi motions an be represented by a small number of eigen-shapesthat apture the whole dynami mehanism of periodi motions. Singular value de-omposition of a silhouette of an objet serves as a basis for behavior lassi�ationby priniple omponent analysis. Figure 2 present a running horse video sequeneand its eigen-shape deomposition. One an see the similarity between the overlappedeigen-shapes 2() and another futurism style painting "The Red Horseman" by CarloCarra [2℄. The boundary ontour of the walking dog, for example, is omputed eÆ-iently and aurately by the fast geodesi ative ontours [15℄. After normalization,the impliit representation of a sequene of silhouette ontours given by their or-responding binary images, is used for generating eigen-shapes for the given motion.Singular value deomposition produes the eigen-shapes that are used to analyze thesequene. We show examples of objet as well as behavior lassi�ation based on theeigen-deomposition of the sequene.



Fig. 1. `Dynamism of a Dog on a Leash' 1912, by Giaomo Balla. Albright-Knox Art Gallery, Bu�alo.2 Related workMotion based reognition reeived a lot of attention in the last several years. Thisis due to the general reognition of the fat that the diret use of temporal datamay signi�antly improve our ability to solve a number of basi omputer visionproblems suh as image segmentation, traking, objet lassi�ation, et., as wellas the availability of a low ost omputer systems powerful enough to proess largeamounts of data.In general, when analyzing a moving objet, one an use two main soures ofinformation to rely upon: hanges of the moving objet position (and orientation) inspae, and objet deformations.Objet position is an easy-to-get harateristi, appliable both for rigid and non-rigid bodies that is provided by most of the target detetion and traking systems,usually as a enter of the target bounding box. A number of tehniques [17℄, [16℄,[11℄, [26℄ were proposed for the detetion of motion events and for the reognitionof various types of motions based on the analysis of the moving objet trajetoryand its derivatives. Deteting objet orientation is a more hallenging problem whihis usually solved by �tting a model that may vary from a simple ellipsoid [26℄ to aomplex 3D vehile model [18℄ or a spei� airraft-lass model adapted for noisyradar images as in [9℄.While objet orientation harateristi is more appliable for rigid objets, it isobjet deformation that ontains the most essential information about the natureof the non-rigid body motion. This is espeially true for natural non-rigid objetsin loomotion that exhibit substantial hanges in their apparent view, as in thisase the motion itself is aused by these deformations, e.g. walking, running, hoping,rawling, ying, et.There exists a large number of papers dealing with the lassi�ation of movingnon-rigid objets and their motions, based on their appearane. Lipton et al. desribea method for moving target lassi�ation based on their stati appearane [19℄ andusing the skeletonization [13℄. Polana and Nelson [24℄ used loal motion statistis



(a)(b)
() (d) (e)Fig. 2. (a) running horse video sequene, (b) �rst 10 eigen-shapes, (,d) �rst and seond eigen-shapesenlarged, (e) `The Red Horseman', 1914, by Carlo Carra, Civio Museo d'Arte Contemporanea, Milan.omputed for image grid ells to lassify various types of ativities. An originalapproah using the temporal templates and motion history images (MHI) for ationrepresentation and lassi�ation was suggested by Davis and Bobik in [3℄. Cutlerand Davis [10℄ desribe a system for real-time moving objet lassi�ation based onperiodiity analysis. It would be impossible to desribe here the whole spetrum ofpapers done in this �eld and we refer the reader to the following surveys [5℄, [14℄ and[21℄.The most related to our approah is a work by Yaoob and Blak [28℄, wheredi�erent types of human ativities were reognized using a parameterized represen-tation of measurements olleted during one motion period. The measurements wereeight motion parameters traked for �ve body parts (arm, torso, thigh, alf and foot).In this paper we onentrate on the analysis of the deformations of moving non-rigid bodies in an attempt to extrat harateristis that allow us to distinguishbetween di�erent types of motions and di�erent lasses of objets.3 Our approahOur basi assumption is that for any given lass of moving objets, like humans, dogs,ats, and birds, the apparent objet view in every phase of its motion an be enodedas a ombination of several basi body views or on�gurations. Assuming that aliving reature exhibits a pseudo-periodi motion, one motion period an be usedas a omparable information unit. Then, by extrating the basi views from a largetraining set and projeting onto them the observed sequene of objet views olletedfrom one motion period, we obtain a parameterized representation of objet's motionthat an be used for lassi�ation.



Unlike [28℄ we do not assume an initial segmentation of the body into parts anddo not expliitly measure the motion parameters. Instead, we work with the hangingapparent view of deformable objets and use the parameterization indued by theirform variability.In what follows we desribe the main steps of the proess that inlude,{ Segmentation and traking of the moving objet that yield an aurate externalobjet boundary in every frame.{ Periodiity analysis, in whih we estimate the frequeny of the pseudo-periodimotion and split the video sequene into single-period intervals.{ Frame sequene alignment that brings the single-period sequenes above to astandardized form by ompensating for temporal shift, speed variations, di�erentobjet sizes and imaging onditions.{ Parameterization by building an eigen-shape basis from a training set of possibleobjet views and projeting the apparent view of a moving body onto this basis.3.1 Segmentation and TrakingAs our approah is based on the analysis of deformations of the moving body, theauray of the segmentation and traking algorithm in �nding the target outlineis ruial for the quality of the �nal result. This rules out a number of available oreasy-to-build traking systems that provide only a enter of mass or a bounding boxaround the target and alls for more preise and usually more sophistiated solutions.Therefore we deided to use the geodesi ative ontour approah [4℄ and spei�-ally the `fast geodesi ative ontour' method desribed in [15℄, where the segmenta-tion problem is expressed as a geometri energy minimization. We searh for a urveC that minimizes the funtionalS[C℄ = Z L(C)0 g(C)ds;where ds is the Eulidean arlength, L(C) is the total Eulidean length of the urve,and g is a positive edge indiator funtion in a 3D hybrid spaial-temporal spaethat depends on the pair of onseutive frames I t�1(x; y) and I t(x; y). It gets smallvalues along the spaial-temporal edges, i.e. moving objet boundaries, and highervalues elsewhere.In addition to the sheme desribed in [15℄, we also use the bakground infor-mation whenever a stati bakground assumption is valid and a bakground im-age B(x; y) is available. In the ative ontours framework this an be ahievedeither by modifying the g funtion to reet the edges in the di�erene imageD(x; y) = jB(x; y)� I t(x; y)j, or by introduing additional area integration terms tothe funtional S(C):S[C℄ = Z L(C)0 g(C)ds+ �1 Zinside(C) jD(x; y)� 1j2da+ �2 Zoutside(C) jD(x; y)� 2j2da;



where �1 and �2 are �xed parameters and 1, 2 are given by:1 = averageinside(C)[D(x; y)℄2 = averageoutside(C)[D(x; y)℄The latter approah is inspired by the `ative ontours without edges' model proposedby Chan and Vese [6℄ and fores the urve C to lose on a region whose interior andexterior have approximately uniform values inD(x; y). A di�erent approah to utilizethe region information by oupling between the motion estimation and the trakingproblem was suggested by Paragios and Derihe in [22℄.Figure 3 shows some results of moving objet segmentation and traking usingthe proposed method.

Fig. 3. Non-rigid moving objet segmentation and traking.
3.2 Periodiity analysisHere we assume that the majority of non-rigid moving objets are self-propelled alivereatures whose motion is almost periodi. Thus, one motion period, like a step of awalking man or a rabbit hop, an be used as a natural unit of motion and extratedmotion harateristis an by normalized by the period size.The problem of detetion and haraterization of periodi ativities was addressedby several researh groups and the prevailing tehnique for periodiity detetion andmeasurements is the analysis of the hanging 1-D intensity signals along spatio-temporal urves assoiated with a moving objet or the urvature analysis of featurepoint trajetories [23℄, [20℄, [25℄, [27℄. Here we address the problem using global har-ateristis of motion suh as moving objet ontour deformations and the trajetoryof the enter of mass.



By running frequeny analysis on suh 1-D ontour metris as the ontour area,veloity of the enter of mass, prinipal axes orientation, et. we an detet thebasi period of the motion. Figures 4 and 5 present global motion harateristisderived from segmented moving objets in two sequenes. One an learly observethe ommon dominant frequeny in all three graphs.
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Center of mass − vertical velocity Fig. 4. Global motion harateristis measured for walking man sequene.
The period an also be estimated in a straightforward manner by looking forthe frame where the external objet ontour best mathes the objet ontour in theurrent frame. Figure 6 shows the deformations of a walking man ontour during onemotion period (step). Samples from two di�erent steps are presented and eah vertialpair of frames is phase synhronized. One an learly see the similarity betweenthe orresponding ontours. An automated ontour mathing an be performed in anumber of ways, e.g. by omparing ontour signatures or by looking at the orrelationbetween the objet silhouettes in di�erent frames. Figure 7 shows four graphs of inter-frame silhouette orrelation values measured for four di�erent starting frames takenwithin one motion period. It is learly visible that all four graphs nearly oinideand the loal maxima peaks are approximately evenly spaed. The period, therefore,an be estimated as the average distane between the neighboring peaks.
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Center of mass − vertical velocity Fig. 5. Global motion harateristis measured for walking at sequene.3.3 Frame sequene alignmentOne of the most desirable features of any lassi�ation system is the invariane to aset of possible input transformations. As the input in our ase is not a stati image,but a sequene of images, the system should be robust to both spaial and temporalvariations.Spatial alignment: Sale invariane is ahieved by ropping a square boundingbox around the enter of mass of the traked target silhouette and re-saling it to aprede�ned size (see Figure 8).One way to have orientation invariane is to keep a olletion of motion samplesfor a wide range of possible motion diretions and then look for the best math.This approah was used by Yaoob and Blak in [28℄ to distinguish between di�erentwalking diretions. Although here we experiment only with motions nearly parallelto the image plane, the system proved to be robust to small variations in orienta-tion. Sine we do not want to keep models for both left-to-right and right-to-leftmotion diretions, the right-to-left moving sequenes are onverted to left-to-rightby horizontal mirror ip.Temporal alignment: A good estimate of the motion period allows us to om-pensate for motion speed variations by re-sampling eah period subsequene to a



(t) (t+3) (t+6) (t+9) (t+12)
(� ) (�+3) (�+6) (�+9) (�+12)Fig. 6. Deformations of a walking man ontour during one motion period (step). Two steps synhronizedin phase are shown. One an see the similarity between ontours in orresponding phases.prede�ned duration. This an be done by interpolation between the binary silhou-ette images themselves or between their parameterized representation as explainedbelow. Figure 9 presents an original and re-sampled one-period subsequene aftersaling from 11 to 10 frames.Temporal shift is another issue that has to be addressed in order to align the phaseof the observed one-yle sample and the models stored in the training base. In [28℄it was done by solving a minimization problem of �nding the optimal parametersof temporal saling and time shift transformations so that the observed sequene isbest mathed to the training samples. Polana and Nelson [24℄ handled this problemby mathing the test one-period subsequene to referene template at all possibletemporal translations.Assuming that in the training set all the sequenes are aurately aligned, we�nd the temporal shift of a test sequene by looking for the starting frame that bestmathes the generalized (averaged) starting frame of the training samples, as they alllook alike. Figure 10 shows (a) - the referene starting frame taken as an average overthe temporally aligned training set, (b) - a re-sampled single-period test sequeneand, () the orrelation between the referene starting frame and the test sequeneframes. The maximal orrelation is ahieved at the seventh frame, therefore the testsequene is aligned by ylially shifting it 7 frames to the left.3.4 ParameterizationIn order to redue the dimensionality of the problem we �rst projet the objet imagein every frame onto a low dimensional base that represents all possible appearanesof objets that belong to a ertain lass, like humans, four-leg animals, et.Let n be number of frames in the training base of a ertain lass of objetsand M be a training samples matrix, where eah olumn orresponds to a spatiallyaligned image of a moving objet written as a binary vetor. In our experimentswe use 50 � 50 normalized images, therefore, M is a 2500 � n matrix. Matrix M
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(a) (b)Fig. 8. Sale alignment. A minimal square bounding box around the enter of the segmented objet silhou-ette (a) is ropped and re-saled to form a 50� 50 binary image (b).is deomposed using Singular Value Deomposition as M = U�V T , where U is anorthogonal matrix of prinipal diretions and the � is a diagonal matrix of singularvalues. The prinipal basis fUi; i = 1::kg for the training set is then taken as kolumns of U orresponding to the largest singular values in �. Figure 11 presents aprinipal basis for the training set formed of 800 sample images olleted from morethan 60 sequenes showing dogs and ats in motion. The basis is built by taking thek = 20 �rst prinipal omponent vetors.We assume that by building suh representative bases for every lass of objetsand then �nding the basis that best represents a given objet image in a minimaldistane to the feature spae (DTFS) sense, we an distinguish between variousobjet lasses. Figure 12 shows the distanes from more than 1000 various images ofpeople, dogs and ats to the feature spae of people and to that of dogs and ats.



Fig. 9. Temporal alignment. Top: original 11 frames of one period subsequene. Bottom: re-sampled 10frames sequene.In all ases, images of people were loser to the people feature spae than to theanimals' feature spae and vise a versa. This allows us to distinguish between thesetwo lasses. A similar approah was used in [12℄ for the detetion of pedestrians intraÆ senes.If the objet lass is known (e.g. we know that the objet is a dog), we anparameterize the moving objet silhouette image I in every frame by projetingit onto the lass basis. Let B be the basis matrix formed from the basis vetorsfUi; i = 1::kg. Then, the parameterized representation of the objet image I is givenby the vetor p of length k as p = BTvI , where vI is the image I written as a vetor.The idea of using a parameterized representation in motion-based reognitionontext is ertainly not a new one. To name a few examples we mention again thework of Yaoob and Blak [28℄. Cootes et al. [8℄ used similar tehnique for desribingfeature point loations by a redued parameter set. Baumberg and Hogg [1℄ usedPCA to desribe a set of admissible B-spline models for deformable objet traking.Chomat and Crowley [7℄ used PCA-based spatio-temporal �lter for human motionreognition.Figure 13 shows several normalized moving objet images from the original se-quene and their reonstrution from a parameterized representation by bak-projetionto the image spae. The numbers below are the norms of di�erenes between theoriginal and the bak-projeted images. These norms an be used as the DTFS esti-mation.Now, we an use these parameterized representations to distinguish between dif-ferent types of motion. The referene base for the ativity reognition onsists oftemporally aligned one-period subsequenes, whereas the moving objet silhouettein every frame of these subsequenes is represented by its projetion to the prinipalbasis. More formally, let fIf : f = 1::Tg be a one-period, temporally aligned set ofnormalized objet images, and pf ; f = 1::T a projetion of the image If onto theprinipal basis B of size k. Then, the vetor P of length kT formed by onatenationof all the vetors pf ; f = 1::T , represent a one-period subsequene. By hoosing abasis of size k = 20 and the normalized duration of one-period subsequene to be
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Fig. 11. The prinipal basis for the `dogs and ats' training set formed of 20 �rst prinipal omponentvetors.
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Fig. 14. Feature points extrated from the sequenes with walking, running and galloping dogs and walkingats and projeted to the 3-D spae for visualization
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Fig. 15. Feature points extrated from the sequenes showing people walking and running parallel to theimage plane and at 45 degrees angle to the amera. Feature points are projeted to the 3-D spae forvisualization
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