
A Geometric Approach to Segmentation and Analysis of3D Medical ImagesR. Malladi,� R. Kimmel,� D. Adalsteinsson,� G. Sapiro,y V. Caselles,z J. A. SethianxAbstractA geometric scheme for detecting, representing, andmeasuring 3D medical data is presented. The tech-nique is based on deforming 3D surfaces, representedvia level-sets, towards the medical objects, according tointrinsic geometric measures of the data. The 3D med-ical object is represented as a (weighted) minimal sur-face in a Riemannian space whose metric is inducedfrom the image. This minimal surface is computed us-ing the level-set methodology for propagating interfaces,combined with a narrow band technique which allowsfast implementation. This computation technique au-tomatically handles topological changes. Measurementslike volume and area are performed on the surface, ex-ploiting the representation and the high accuracy in-trinsic to the algorithm.Key words: Deformable models, minimal surfaces,segmentation, measurements, level sets, narrow-bandmethods, fast implementation.1. IntroductionOne of the basic problems in medical imaging is todetect the boundaries of the objects of interest, e�-ciently represent them, and perform measurements sig-ni�cant for diagnosis, surgery, or other applications.Active contours, initially proposed by Kass et al., anddeformable surfaces introduced by Terzopoulos et al[44], can be used to solve the �rst part of this goal,i.e. the segmentation task. These models are basedon deforming an initial contour or surface towards the�Mail Stop: 50A-2152, Lawrence Berkeley National Labora-tory, University of California, Berkeley, CA 94720yHewlett-Packard Labs., 1501 Page Mill Rd., Palo Alto, CA94304zDept. of Mathematics and Informatics, University of IllesBalears, 07071 Palma de Mallorca, SpainxDept. of Mathematics, University of California, Berkeley,CA 94720

boundary of the object to be detected. The deforma-tion is obtained by minimizing a functional designedsuch that its (local) minima is obtained at the bound-ary of the object [4, 44].Implicit surface-evolution models for medical imagesegmentation were proposed by Caselles et al. [5] andby Malladi et al. [28, 29]. In these models, the sur-face propagates by an implicit velocity containing twoterms, one related to the regularity of the deformingshape and the other attracting it to the boundary. Themodel is given by a geometric 
ow based on mean cur-vature motion, and is not the result of minimizing anenergy functional. At their core, these models rely onthe Osher-Sethian level-set model for evolving surfaces[34, 39]. The level-set approach o�ers a robust, sta-ble, and e�cient numerical algorithm that allows forcomplex changes in topology, accurate evaluation ofcurvatures, and straightforward implementation. Inaddition, fast implementations of this approach wereintroduced by Adalsteinsson and Sethian [1] and Mal-ladi, Sethian, and Vemuri [30]. In the energy based ap-proach, the 
exibility in topology can be obtained onlyif special tracking procedures are implemented [31, 42].For details about a wide collection of level-set applica-tions, see [40].In [6], formal mathematical relation between thesetwo approaches for 2D object detection is shown,proposing the \geodesic active contours." As shown in[6], the geodesic active contours model has the follow-ing main properties:1. It connects energy and curve evolution ap-proaches of active contours.2. Presents the snake problem as a geodesic compu-tation.3. Improves existing models as a result of thegeodesic formulation.4. Allows simultaneous detection of interior and ex-terior boundaries of several objects without spe-cial contour tracking procedures.



5. Holds formal existence, uniqueness, and stabilityresults.6. Stops automatically.The 2D model in [6] was then extended to 3D surfacesin [7, 8]. The proposed 3D approach has the same im-portant properties as its 2D analogous one. The orig-inal model in Malladi et al. [29] (and in [5]) has alsobeen extended to 3D and coupled with fast tube meth-ods for approximating interface position in [24, 27]. Inthis paper, we combine the model in [7], which is re-visited here, with the fast numerical approach �rst de-scribed in [1, 30] and extended to 3D in [2, 24, 27]and present a complete approach for 3D medical dataanalysis. Then, following the 2D analysis started in[36], we exploit the representation and the high accu-racy intrinsic to the algorithm to compute importantcharacteristics such as volume and surface area of thesegmented 3D medical organs.We should note that the deformable surfaces modelused here is related to a number of previously or si-multaneously developed results. It is of course closelyrelated to the works of Terzopoulos and colleagues onenergy based deformable surfaces, and the works byMalladi et al. and Caselles et al. [5, 24, 29]. It is anextension of the 2D model derived in [6]; see [7, 8].The basic equations in this paper, as well as the cor-responding 2D ones in [6], were simultaneously devel-oped in [20, 21, 41]. In [20, 21], the authors base theirapproach on gradient 
ows, while in [41], the devel-opment partially follows from the Mumford-Shah seg-mentation technique [32]. Similar 3D models are stud-ied in [45, 46] as well. In [43], the authors work withmultiple initializations and multiple parameter-space,partially motivated by the shape theory in [22], usingthe equations in [5, 28, 29]. In this paper, we developa complete and fast approach for 3D segmentation andarea and volumetric measurements on the segmentedobjects; see Whitaker [46] for fast multi-scale imple-mentation. For more details on the similitude and dif-ferences between these approaches, see [6, 7, 8]. Thedetails of tube method for moving 3D shapes and acomparison to the traditional full matrix method maybe found in [24, 27].2. Basic approaches of deformable sur-facesThe 3D deformable surface model was introducedby Terzopoulos et al. [44] and further extended byothers (e.g. [11, 12, 13]). A parameterized surfacev(r; s) = (x(r; s); y(r; s); z(r; s)); (r; s) 2 [0; 1] � [0; 1],

is considered, and the energy functional is given byE(v) = Z
 "!10 ����@v@r ����2 + !01 ����@v@s ����2 + !11 ���� @2v@r@s ����2 +!20 ����@2v@r2 ����2 + !02 ����@2v@s2 ����2 + Pdrds;where P = � k rv k2, or any related decreasing func-tion of the gradient. The �rst terms are related to thesmoothness of the surface, while the last one is respon-sible for attracting it to the object. The evolution ofthe surface is expressed via Euler-Largange equations.From an initial surface S0, generally near the desired3D boundary O, the algorithm tries to deform S0 to-wards a local minimum of E.The geometric models proposed in [5, 29] can easilybe extended to 3D object detection. Let Q =: [0; a]�[0; b]� [0; c] and I : Q !+ be a given 3D data image.Let g(I) = 1=(1+ jrÎjp), where Î a regularized versionof I , and p = 1 or 2. g(I) acts as an edge detector sothat the object boundary we are looking for is ideallygiven by the equation g = 0. Our initial active surfaceS0 will be embedded as a level-set [34, 39] of a functionu0 : Q !+, say S0 = fx : u0(x) = 0g with u0 beingpositive in the exterior and negative in the interior ofS0. The evolving active surface is de�ned by St = fx :u(t; x) = 0g where u(t; x) is the solution of@u@t = g(I)jrujdiv� rujruj�+ �g(I)jruj= g(I)(� +H)jruj; (1)with initial condition u(0; x) = u0(x) and Neumannboundary conditions. Here H = div� rujruj� is the sumof the two principal curvatures of the level sets of u,(twice its mean curvature) and � is a positive real con-stant. The 2D version of this model was heuristicallyjusti�ed in [5, 29]. It contains:� A smoothing term: Twice the mean curvature inthe case of (1). More e�cient smoothing veloci-ties as those proposed in [3, 9, 33, 25, 27] can beused instead of H1.� A constant balloon-type force similar to [12];�jruj.� A stopping factor g(I). (Related edge detectorscan be used, e.g. [47].) Note that in this model,g must be zero for the surface to stop (see nextsection).1Although curvature 
ows smooth 2D curves [17, 18, 37, 38],a 3D geometric 
ow that smoothes all possible surfaces was notfound [33]. Frequently used are mean curvature or the positivepart of the Gaussian curvature 
ows [3, 9].



The sign conventions here are adapted to active con-tours propagating inwards. For active contours evolv-ing from the inside outwards, we take � < 0. This is adrawback of this model: the active contours cannot goin both directions (see also [43]). Moreover, we alwaysneed to select � 6= 0 even if the surface is close to theobject's boundary.The goal in [7, 8] was to de�ne a 3D geometric model(with level-set formulation) corresponding to the min-imization of a meaningful and intrinsic energy func-tional. It is motivated by the extension of 2D geomet-ric model to the geodesic active contours as done in [6]and brie
y described in the following section.3. Weighted minimal surfacesIn [6], a model for 2D object detection based onthe computation of geodesics in a given Riemannianspace was presented. This means that we are com-puting paths or curves of minimal (weighted) length.That model also shows the exact mathematical relationbetween energy-based active contours and those basedon curvature motion, improving on those approaches.This idea may be extended to 3D surfaces [7, 8], com-puting surfaces of minimal area, where the area is de-�ned in a given Riemannian space. In the case of sur-faces, arc-length is replaced by surface areaA = R R da;and weighted arc-length by \weighted" area,AR = Z Z g(I)da; (2)where da is the (Euclidean) element of area. Surfacesminimizing A are denoted as minimal surfaces [35]. Inthe same manner, we will denote by minimal surfacesthose surfaces that minimize (2). The area elementda is given by the classical area element in Euclideanspace, while the area element dar is given by g(I)da.Observe that dar corresponds to the area element in-duced on a surface of R3 by the metric of R3 given bygij dxidxj with gij = g(I)2�ij . This is the 3D analogueof the metric used in [6] to construct the geodesic activecontour model. The energy AR can be formally derivedfrom the original energy formulation using basic prin-ciples of dynamical systems [6, 7, 8], further justifyingthis model. The basic element of the deformable modelwill be given by minimizing (2) by means of an evolu-tion equation obtained from its Euler-Lagrange. Letus point out the basic characteristics of this 
ow.The Euler-Lagrange of A is given by the mean cur-vature H , resulting a curvature (steepest descent) 
ow@S@t = H ~N ; where S is the 3D surface and ~N its in-ner unit normal. With the sign conventions explainedabove, the corresponding level-set [34] formulation is

ut = jrujdiv� rujruj� = jrujH: Therefore, the meancurvature motion provides a 
ow that computes (local)minimal surfaces [10]. Computing the Euler-Lagrangeof AR, we get St = (gH �rg � ~N ) ~N : (3)This is the basic weighted minimal surface 
ow.Taking a level-set representation, the steepest descentmethod to minimize (2), yields@u@t = jrujdiv�g(I) rujruj�= g(I)jrujdiv� rujruj�+rg(I) � ru: (4)We note that comparing with previous geometric sur-face evolution approaches for 3D object detection, theminimal surfaces model includes a new term, rg � ru.This term is fundamental for detecting boundaries with
uctuations in their gradient, since it will cause thesurfaces to stop even if g is not zero. See [6, 7, 8] fordetails.As in the 2D case, we can add a constant force to theminimization problem (minimizing volume), obtainingthe general minimal surfaces model for object detec-tion: @u@t = jrujdiv�g(I) rujruj�+ �g(I)jruj: (5)This is the 
ow we will use for 3D object detection.It has the same properties and geometric characteris-tics as the geodesic active contours, leading to accu-rate numerical implementations and topology free ob-ject segmentation. The 
ow also holds important ex-istence and completeness properties. Basically, thereis a unique solution to the 
ow in the viscosity sense,and the 
ow converges to ideal objects [7, 8] (see also[20, 21]). It is also possible to bound the size of the gapsthat can be successfully avoided by the 
ow [6, 8, 15].As pointed out in the introduction, see [14, 16, 20,21, 41, 43, 45, 46] for related approaches and [6, 7, 8,24, 26, 27] for full comparisons.4. The Tube method
4.1. MotivationFor a two-dimensional interface evolving in threespace dimensions, the level set algorithm is at least anO(N3) method per time step, where N is the numberof points in the spatial direction. One drawback of thetechnique stems from the expense; by embedding the



interface as the zero-level set of a higher dimensionalfunction, a two-dimensional interface problem has beentransformed into a three-dimensional problem.The main idea of the tube method is to modify thelevel set method so it only a�ects points close to theregion of interest, namely the cells where the front islocated. This will save considerable computer time,since it reduces by an order of magnitude the numberof points where terms must be evaluated. This is par-ticularly bene�cial in cases where there is signi�cantcomputation to be made at each point, as well as sim-pler cases involving fronts propagating with a constantnormal speed.Our tube is constructed by choosing points that lieless than some given distance away from the curve. Theresulting tube-like domain contains the zero-level set.This method was used before in [29] and described inmore detail in [1]. A three dimensional version of thetube method was used in [2].As an illustration, Figure 1 shows the initial surfacefor a circle in two dimensions. On the left the surfaceis de�ned on a square that contains the circle. On theright the surface is only de�ned in a neighborhood ofthe circle.

Figure 1. The signed distance function, de-
fined on a square and a tube.This technique saves memory usage, since all derivedquantities, such as curvature and the length of the gra-dient require less memory than with the full method.The implementation will only store a single copy of thefull array. Through careful programming, this too canbe eliminated, but at the cost of considerable program-ming complexity.

4.2. ImplementationThe de�nition of a tube used here is just a set ofpoints inside a rectangular array. There are no restric-tions about the shape of the tube, however most of thetime it looks like a border around the current front.Initially the surface is de�ned as the signed distancefrom the front for all points closer then some prede-�ned maximum value. Outside that tube the surface isconstant, chosen to make the surface continuous on allof space.The front is then moved the same way as in thestandard level set method, however only those pointsbelonging to the tube are updated. The tube is rebuiltwhenever the front gets too close to an edge. Boundaryconditions assume �xed values of u at the tube edge; amore sophisticated implementation is given in [1].
4.3. Speed comparisonTo check the speed of the algorithm. we studied thecollapse of a sphere with unit speed and according toits curvature. Collapse under mean curvature involvesmore computation than just the gradient, and betterre
ects the abilities of the narrow band method. Fur-thermore, inclusion of such parabolic terms requiressmaller time steps than those required by the advec-tion term. The initial sphere is chosen so that it almost�lls the computational box. We perform timings withseveral di�erent time steps and compare the executiontime. The full-matrix method and the tube method re-quire approximately the same time when there are 60cells per side; however, as the number of grid points in-creases, the narrow band method becomes signi�cantlyfaster than the full matrix method. Reinitializing thefunction values in the tube takes up sizable fraction oftime but that happens only in the starting stages. Thenumber of reinitializations is independent of the timestep, so when the time step is decreased the reinitializa-tion cost becomes a smaller fraction of the total time.We tabulate the execution times of the full matrix andthe tube methods until the sphere collapses in Table 1.5. Experimental resultsThe experiments described here are based on imple-menting the level-set 
ow (4) using the narrow bandmethod [1, 30, 24, 27] and the 3D segmentation resultsare reproduced from Malladi and Sethian [27].The volume is computed by counting the interiorvoxels as one volume unit (this is straightforwardfrom the level-sets representation), and proportionallyadding the contribution of boundary voxels. Linear



Grid size �t=0.8h �t=0.1h �t=0.05hThe full method60� 60� 60 61s 465s 925s100� 100� 100 480s 3856s 7710s150� 150� 150 2570s 20500s 41100sThe tube method60� 60� 60 49s 115s 182s100� 100� 100 274s 591s 930s150� 150� 150 1105s 2240s 3400s
Table 1. Speed comparison between the reg-
ular full matrix method and the tube method
on a Sun Sparc 10 machine.interpolation was used in this case, but more preciseinterpolators can be implemented if better accuracy isneeded. The surface area is computed by adding theareas of all the triangles representing the zero level-set,that are extracted from the implicit representation.The �rst example presents the segmentation andvolume measurement of the soft tissue in a 3D CTdata of two thighs (see Fig. 2). The computationwas done by starting from a collection of spheres in-side the thighs and growing outwards thereby recon-structing the thighs and the femur. Fig. 3 presents the�nal segmentation result in which we can observe theouter surface of the bones and the skin. The 3D datais given on a grid of 128� 128� 61 which subsequentlywas mapped onto a unit cube; i.e. 1 � 1 � 1. Themeasured volume of the soft tissue is 0.268492.In Fig. 4, the left bone of the �rst example is ex-tracted by using simple region growing on the seg-mented thighs. The volume of the bone is measuredto be 0.00844465.In the next example, we present the segmentationresults of heart chambers as the heart goes through adiastolic and systolic cycle. The time varying 3D MRIheart image data is given on a 256�256�8 grid. In Fig.5, we show two cross-sections from the third and sixthdata set from our sequence. Again, computation ismade to proceed outward from a spherical initilizationin the domain. Fig. 6 presents 10 samples of the cycleof a heart beat. The measurements of the area andthe volume of each of the segmented heart states arepresented in the two graphs in Fig. 7.6. Concluding remarksIn this paper we presented a complete approachfor detecting, representing, and measuring 3D medicaldata, extending work reported in [36, 27]. The med-

ical object is represented as a weighted minimal sur-face, following [7, 8]. This is computed from geometricmeasures on the image, via a fast numerical implemen-tation of the level-set approach as in [1, 24, 27]. Thehigh accuracy of the results of the algorithm, enableus to perform measurements like volume and surfacearea of the detected objects, as was shown in our ex-periments. Interested readers are invited to visit theweb site http://www.lbl.gov/�malladi for moviesdepicting the 3D simulations presented in this paper.

Figure 2. The 5th, 35th, and 59th cross-
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Figure 3. Detection of thighs in 128�128�61
CT data images. The volume of the soft tissue
was measured to be 0.268492.

Figure 4. The left thigh bone of Fig. 3, is ex-
tracted and its volume is 0.00844465.

Figure 5. Two cross-sections each from third
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Figure 6. 10 stages along one heart beat, 3D
segmentation results, presented left to right
top to bottom.
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graphs) along the heart beat cycle in Fig. 6.
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