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Abstract. We introduce a new method for segmentation of 3D medical data
based on geometric variational principles. A minimal variance criterion is cou-
pled with a geometric edge alignment measure and the geodesic active surface
model. An efficient numerical scheme is proposed. In order to simultaneously
detect a number of different objects in the image, a hierarchal method is pre-
sented. Finally, our method is compared with the multi-level set approach for
segmentation of medical images.
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1 Introduction and Previous Work

Medical image analysis is the process through which trained personnel interpret visual
medical information. In this paper we focus on imaging intracranial blood vessels as
demonstrated on CT images. Our goal is to extract the blood vessels from these images
and develop a tool that allows radiologists to rapidly view the vascular tree as a 3D
object. Since demonstration of the bones surrounding the vessels enables radiologists
to better localize the relevant vessels and better understand the anatomical relations
between them, these bones are also included in our visualization tool.

The problem is that in CT Angiography images, the bones and the vessels usually
have similar high density as compared to the brain parenchyma or, in other words,
similar gray values. When thresholding an image that includes enhanced blood vessels
as well as dense bones, they are usually extracted as the same object. Here, we present a
hierarchical segmentation method using variational tools that allow us to extract bones
and blood vessels as two separate 3D objects.

Codimension-two geodesic active contours were used in [20] for the segmentation
of tubular structures. Region competition introduced in [31] were used in [11] for a
similar purpose, while Fast Marching [27] and Level Sets methods were used in [10,
12]. Edge alignment with the gradient field was used in [29] and [18]. While in [7, 6],
the segmentation methods are based on the piecewise constant Mumford-Shah model
[25]. In [28] a hierarchical Mumford-Shah model is used to segment the image into
more than two regions.

Our model is based on geometric active contours [16, 3, 23, 5, 4, 24, 22] and level
set methods [26]. It exploits efficient numerical schemes [21, 30] previously used for



segmentation in [14, 13]. Here we use the better qualities of previous methods in order
to segment volumetric medical images. We combine the Chan-Vese’s minimal vari-
ance method with a geometric edge alignment measure and the geodesic active sur-
face model, and use an efficient numerical scheme for its implementation. Finally, we
present a hierarchical method which allows us to simultaneously detect a number of
objects in the image.

2 Segmentation Methods - Variational Approach

Minimal Variance and the Mumford-Shah Functional: In [7] the image is divided
into two regions, interior and exterior. Their model minimizes the variance inside and
outside the surface of the desired object. Given a 2D gray level imageI(x, y) : Ω →
R+, Chan and Vese [7] proposed to use a minimal variance criterion given by the fol-
lowing functional,

EMV (C, c1, c2) =
∫∫

ΩC

(I − c1)2dxdy +
∫∫

Ω\ΩC

(I − c2)2dxdy,

whereC is the contour separating the two regions andΩC is the area inside the contour.
When minimizing this functionalc1 and c2 obtain the mean intensity values of the
image in the interior and the exterior parts of the curveC, respectively. The optimal
curve would best separate the interior and the exterior with respect to their relative
expected values.

In [6] this model was extended to the general piecewise constant Mumford-Shah
model [25]. It minimizes the following functional,

EMS =
∑

i

∫∫

Ri

(I −meanRiI)2dxdy + ν0|Γ |,

whereRi are the non-overlapping regions, and|Γ |measures the arc length of the sepa-
rating contour and thus controls its smoothness.

A straightforward level set representation associates one function to each region.
Thus, Chan and Vese proposed to usen functions in order to define up to2n regions.
Each function defines two non-overlapping regions,{Φn > 0} and{Φn < 0}. All the
binary combinations between the positive and negative regions of each of then func-
tions, define2n non-overlapping regions. This method was extended and implemented
for 3D images in [6].
Edge based techniques:Given a gray level imageI(x, y) : R2 → [0, 1], we define the
gradient direction vector fieldξ(x, y) = ∇I

|∇I| , and the orthogonal vector fieldη(x, y) =
∇̄I
|∇I| , so that〈ξ, η〉 = 0. The Haralik edge detector [15, 2] finds the image locations
where both|∇I| is greater than some threshold andIξξ = 0.

We would like to propagate an initial contour that stops along the desired object’s
boundaries. For that, we need a geometric functional that yieldsIξξn = 0 as an Euler-
Lagrange (EL) equation, wheren is the unit normal to the curve. In [19] the authors
used the fact thatIξξ = ∆I − Iηη to show that the maximization of the functional

∫

∂ΩC

〈∇I,n〉ds−
∫ ∫

ΩC

κI |∇I|dxdy



yieldsIξξn = 0. Here,κI is the curvature of the level sets of the image. Thereby, the
above functional maximizes the alignment between the image gradient and the edge
normals while minimizing topological complexity of the image inside the curve.

In order to extend this idea to three dimensions it can be shown thatIξξ = ∆I −
HI |∇I|, whereHI is the mean curvature of the level sets of the image. In this case,
the level sets are surfaces in the volumetric image data. Therefore, the functional that
generates a similar flow in 3D has two parts:

1. Maximizing the geometric integral measure
∫∫

S
〈∇I, n〉da, whereS(u, v) is the

evolving surface,da is the surface area element, andn is the unit normal to the
surface. The maximization of this functional yields∆In = 0.

2. Minimizing the functional
∫∫∫

ΩS
HI |∇I|dxdydz. WhereΩS is the volume inside

the surfaceS(u, v). By Green’s theorem, the EL equations areHI |∇I|n = 0.

Therefore, the energy functional that yieldsIξξn = 0, is given by

EC(S) =
∫∫

S

〈∇I,n〉da−
∫∫∫

Ωs

HI |∇I|dxdydz.

This term is very important in finding the edges of the thin structures in volumetric
medical images. It has the ability to track edges of a thin low contrast object.
Geodesic Active Surface:The geodesic active surfaces model [5, 4] is defined by the
functional

EGAC(S) =
∫∫

g(S)da,

whereda is the surface area element andg(x, y, z) is an inverse edge indicator function
given, for example, byg(x, y, z) = 1

1+|∇I
α |2 .

Minimizing this functional is a surface along whichg obtains the smallest possible
values. The EL equation of this functional is(gH − 〈∇g, n〉)n = 0, whereH is the
mean curvature of the surfaceS andn is the normal to the surface. By settingg to a
constant, the functional measures the surface area. The EL of such a functional defines
a minimal surface for which the mean curvature is equal to zero. This type of functional
was used by Chan and Vese as a regularization, in order to control the smoothness of
the evolving surface.

In our scheme, the geodesic active surface is used for regularization. Its added value
over the mean curvature flow is its sensitivity to the actual edge via the functiong,
which guides the boundary surface towards the desired object’s boundaries.

3 Proposed Functional and Level Set Formulation

We propose a functional which is a weighted sum of the terms discussed in the previous
sections.

ETotal = −EC + βEMV + γEGAC ,



whereβ, γ are positive constants. The surface evolution towards an extremum derived
from this functional is given by

St = (−Iξξ − β((I − c1)2 − (I − c2)2) + γ(gH − 〈∇g, n〉))n.

Next, we embed a closed surface in a higher dimensionalΦ(x, y, z) function, which
implicitly represents the surfaceS as a zero level set, i.e.S = {{x, y, z}|Φ(x, y, z) =
0}. This is the Osher Sethian level set formulation [26] for the evolution of surfaces.
Given a surface evolutionSt = γn, the implicit level set evolution readsΦt = γ|∇Φ|.

The level set formulation of our proposed surface evolution equation is thereby

Φt =
(
−Iξξ − β((I − c1)2 − (I − c2)2) + γ

(
div

(
g
∇Φ

|∇Φ|
)))

|∇Φ|.

Hierarchical Method: In order to extract more than one object from the image, we
use a hierarchical method. In each stage we choose one subregion that includes more
than one object, and divide it into two subregions. For a given image, we first apply
the segmentation algorithm described in the previous sections. At the end of this stage
we have a surface that describes the edges of the segmented object. If there is a need
for further segmentation, we manually choose one of the regions generated from the
previous step and apply the segmentation algorithm again only to this region. This way,
we segment only the interesting parts of the image.

4 Numerical Scheme

If Φ(x, y, z; t) is a distance function of the surfaceS(t), we can simplify the short time
evolution equation by setting|∇Φ| = 1. Distance computation can be done by using
the fast marching algorithm [27]. We also use a narrow band approach [1, 8], where in
every iteration we compute the distance only at voxels close to the zero set. By this
approach we have a computationally efficient explicit scheme. However, an explicit
scheme works with a small limited time step due to stability issues.

In order to construct an unconditionally stable scheme we use a locally one dimen-
sional (LOD) scheme suggested in [17, 30]

Φn+1 =
3∏

i=1

(I − τγAi)−1(Φn + τf)

f = −(β((I − c1)2 − (I − c2)2) + Iξξ),

whereI is the identity matrix,τ is the time step, andβ andγ are constants.Ai are tri-
diagonal matrix operators given byAi = ∂

∂ig
∂
∂i , wherei = x, y, z. The LOD scheme

is used in order to accelerate the propagation of the surface in a stable way. This is due
to the fact that we can use a time step of any size, and therefore the scheme converges
efficiently. For an image of size1003 voxels the program runs a few minutes on a
Pentium III PC using double precision.



5 Experimental Results

Let us present the segmentation results of our algorithm using the hierarchical approach
and compare it to the Chan-Vese multi-level set algorithm. Figures 1 - 2 show 3D hi-
erarchical segmentation of CT angiography (CTA) images of the brain. We applied the
first step of our algorithm to a 3D image which is a part of the full CT image. The MIP
(maximal intensity projection) of this image is shown in Figure 1(a) and a 2D slice of
this image is shown in Figure 1(b). In this image the vessels appear as light gray while
the bones appear as white. We initialized the surface as a small balloon inside one of
the blood vessels and allowed it to grow towards the boundaries. The result of the first
segmentation phase is shown in Figure 2(a). The algorithm captured the bright parts of
the image which include the bones and the blood vessels. In order to split this object
into two separate objects we applied the second step of our algorithm only to the region
generated by the first step. The results are shown in Figure 2(b).

(a) (b)

Fig. 1.(a) MIP of a1003 volume of a CTA im-
age of the brain. (b) A1002 part of a 2D CTA
image of the brain. The bones adjacent to the
brain appear as white, and the blood vessels
appear as light gray.

(a) (b)

Fig. 2. (a) First phase segmentation result on
the CTA image. (b) Hierarchical segmentation
results on the CTA image. The yellow surface
shows the bone and the red surface shows the
blood vessels.

There are some cases where the multi-level set algorithm does not identify the re-
gions correctly. The problem occurs when the image consists of adjacent objects which
have close gray values and a certain amount of noise. Since the adjacent objects have
similar gray values, the multi-level set algorithm identifies three regions instead of two.
Our hierarchical algorithm, on the other hand, works in two steps. It first isolates the two
objects from the background, and then differentiates between them. Therefore, in the
second stage of the algorithm we are left with only two regions to segment. A synthetic
example is shown in Figure 3.

We applied Chan-Vese’s multi-level-set algorithm (using two level sets) to a part of
a 3D CT angiography image of the brain. The algorithm generated three regions and
background (i.e. four regions). The three foreground regions are shown in Figure 5 and
a contour of each region on a 2D slice of the image is shown in Figure 6. In this case
we do not have a single object that depicts the blood vessels. Part of the blood vessels
were classified as one object Figure 5(a), while other parts of the blood vessels were
classified as a different object that includes parts of the bone, Figure 5(c). A third object



(a) (b)

Fig. 3. (a) Shows the results of Chan-
Vese’s multi-level-set segmentation algo-
rithm. The two zero sets are painted in red
and green. (b) Shows the result of our hi-
erarchical algorithm. The final objects are
bounded by red and blue contours

(a) (b)

Fig. 4. (a) The results of our hierarchical al-
gorithm on the 3D CT image of the brain.
The yellow surface depicts the bone data
while the red surface depicts the vessels. (b)
A 2D slice of the CT data of the brain show-
ing the contours of the two objects gener-
ated by our segmentation algorithm.

included most of the bone data Figure 5(b). This result is due to the fact that the blood
vessel data appears in varying levels of light gray. Therefore, the algorithm generates
four different regions instead of three.

Next, we compared these results to our hierarchical algorithm. We applied the first
step of the algorithm to the whole image. It generates an object consisting of the blood
vessels and the bones. The second step generated two objects as shown in Figure 4. In
this case we generated only two objects, because we first segment only the bright pixels
from the whole data, and afterwards divide this data to darker (vessels) and brighter
parts (bones). We control the level of detail we want to give each of the regions in the
first step. This also allows us to change the parameters of the algorithm in each step in
order to capture the different parts of the image.

(a) (b) (c)

Fig. 5. The three foreground regions gen-
erated by Chan-Vese’s algorithm using two
level set function

Fig. 6.A 2D slice of the CT image showing
the three foreground regions generated by
Chan-Vese’s algorithm using two level set
functions. The contours in each frame rep-
resent the different regions

When dealing with MRI images of the brain, we have a similar problem of segment-
ing the gray matter and the white matter as two different objects. Figure 7 shows the
segmentation result of our hierarchical segmentation versus the Chan-Vese two level
set approach of a synthetic 3D MRI image generated by the BrainWeb [9]. The results
are similar, however there are some locations where our hierarchical approach better
segments between the white matter and the gray matter. The two level set approach



includes regions classified as a third object which is neither white nor gray. Figure 8
shows a 3D object which is the gray matter generated by our segmentation algorithm.

6 Conclusions

We introduced a new segmentation method of 3D medical images. We proposed an
efficient numerical scheme for this method. Next, we used it hierarchically in order to
segment few objects from the image. Finally, we compared our results with the Chan-
Vese multi-level-set method. In cases where the intensity levels of the different objects
were close, we found that our hierarchical approach better segments the desired objects
than the Chan-Vese multi-level-set approach.

(a) (b)

Fig. 7. (a) Hierarchical segmentation, first
phase - red contour, second phase - blue
contour. (b) Two level set approach of
Chan-Vese. The blue and red contours are
the zero level of each level set.

Fig. 8. The result of our segmentation algo-
rithm on a 3D MRI image.
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