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Abstract image plane that pass through points where the gradient is
high and whose direction best corresponds to the local edge
We view the fundamental edge integration problem for ob- direction predicted by the estimated gradient.
ject segmentation in a geometric variational framework. Indeed, if we somehow estimate the gradient field
First we show that the classical zero-crossings of the imagelu(z, y), v(x,y)] based on considering(x,y) for each
Laplacian edge detector as suggested by Marr and HildrethpPixel (z, y) over some neighborhootl,, (z, y), whereo is
inherently provides optimal edge-integration with regard & Sizé parameter, we shall_have at each pointa \{alue, given
a very natural geometric functional. This functional accu- by the intensity of the gradierit®(z, y) + v*(x, y)) %, that
mulates the inner product between the normal to the edge€!!s us how likely an edge is at this pointand, if an edge ex-
and the gray level image-gradient along the edge. We uséfts' its likely direction will be perpendicular to the vect
this observation to derive new and highly accurate active u(z,y), v(z,y)]. Itis therefore natural to look for curves

. : . in the image plane;'(s) = [z(s), y(s)], that pass through
contours based on this functional and regularized by pre'points with high intensity gradients with tangents agrgein

viously proposed geodesic active contour geometric varia-as mych as possible to the edge directions there. Thus we

tional models. are led to consider the following functional, evaluating th
quality of C'(s) as an edge-curve candidate,(C'(s)) =

1. Introduction

L 0 1 ][dc(s)]"
o - | = [ o{mcenveen:| % ds
Edge integration for segmentation is an old, yet still very 0 ds

active area of research in low-level image analysis. Text- _ . . . .
books in computer vision treat edge detection and edge in- where p(') is some monotonically increasing function.
tegration as separate topics, the first being considered on&l€re, the inner product o/ = [, v] with t?e normal
of labelling edges in the image to be followed by a processto C(s), given by 7i(s) = [ 01 é ] {%ﬂ} , Where
of integrating the local “edges” into meaningful curves. In N

fact one may view basic edge detection as a process of esC(S) is an arclength parameterized curve, is a measure of

timating the gradient of the image, i.e. computing at each how well C'(s) is !ocally tr_acking an edge. Indeed we Wa_nt
pixel (z, y) the valuesi(z, y) andu(z, y) by using the val- C'(s) to pass at high gradient locations in the edge direction,
ues OfI’(x y) over a neiéhborhooﬂ}(x y) of (x,y) and and hence the inner product of its normal with the estimated

designating as edges the places where the length of the gragradient of/ should be high, indicating both alignment and

dient vector estimati, v] = (V1) exceeds some threshold considerable change in image intensity there. This inner
’ product will also be proportional to the gradient magnitude

value. )
The more advanced edge detectors such as those pros-InCe
posed by Marr and Hildreth [8] attempt to locate points or 0 1 dac1t
curves defined by local maxima of the image gradient. The [u(C(s)), v(C(s))] [ 10 ] [E] = [V1] - cos(6),

Marr Hildreth proposal for edge detection yields curves tha
delineate the zero crossing of the Laplacian operatoregpli where( is the angle between the outward pointing normal
to a smoothed version of the image input. The smooth- 77 to C'(s) and the gradient direction.
ing proposed is via a Gaussian convolution operator and its  The functionals), measure how well an arclength pa-
width is a parameter that can be varied providing the oppor-rameterized curve of length approximates an edge in the
tunity to do scale space processing and *“vertical” integra- image plane. Our task, of course is to determine several
tion on the zero-crossing curves. most probable edge curves in the image plane. We shall do
In this paper we propose to regard the edge detectionso by determining curves that locally maximize these func-
and integration process as a way to determine curves in thdionals.



Suppose first that we are considering closed contours2. Closed Active Contours. Derivation

C'(s), and thaip(«) = a. Then, we have that _ . . .
Motivated by the classical ‘snakes’ [4], geometric active

contours [5, 1, 6], and finally the ‘geodesic active con-

P(C(s)) = j{ (u(C(s))—y(s) - v((](s))—x(s)) ds,  tours’ that were shown in [2] to be related to the ‘snakes’,
Cls) we search for simple parametric curves in the plane that

map their arclength intervd0, Z] to the plane, such that

C : [0, L] — R?, or in an explicit parametric forri!(s) =

[#(s), y(s)]. Heres is the arclength parameter, and we have

- // (iv(x’ y) + iu(x’ y)) dady, the relation between the arclengtland a general arbitrary
ac \0y du parameterizatiop, given by

and Green'’s theorem yields

where Q¢ is the region inside”(s). But, recalling that dz(p)\* dy(p) \”
v(x,y) is an estimate O%I(l‘, y) andu(z, y) an estimate ds = (W) + (W)

of Z1(z,y) we have

= |Cy|dp.

We define, as usualj, x, and{ to be the unit normal,

92 92 the curvature, and the tangent of the cutveWe have that

// <— (z,y) + wf( )) dedy kit = Cy,, andi’'= C, = C,/|C,|. As described in the
fe introduction, consider the geometric functional

1

$(C(5))

1R

/ . (AI(z,y))dedy.

L

6(C) = § o7 7)ds.
Therefore, the functional that we want to maximize is the 0
integrated Laplacian over the area enclosediy). This This is an integration along the cur¢eof a functiony de-
means that if we have an area where the Laplacian isfinedinterms of avector field = [u(x, y), v(x, )], where
positive :(C'(s)) should expand from within this area to for example we can také = VI(x,y) = [I,,,],] as the
the places wheré\ I(z, y) becomes zero and subsequently gray level image gradient. Our goal is to find curveshat
changes sign. This shows that optimal edge-curves in theminimize the above geometric functional.
sense of maximizing'(C/(s)) are the zero crossings of the In a general parametric form, we have the following re-
Laplacian. If we initializeC'(s) as a small circular “bub- ~ parameterization invariant measure
ble” at a place wheréI(z, y) is positive and then let’(s)

1
evolve according to a rule that implements a gradient de- U,(C) = j{ p(<x7, i) |Cy |dp.
scent in conjunction with the functiondl(C'(s)), i.e. we 0
implement Define,o = (V,). The Euler Lagrange (EL) equations
4 sy = S0(C(51) §¢,(C)/5C = 0 should hold along the extremum curves,
dt (5,1) = oC ’ and for a closed curve these equations are
the curveC'(s, ¢) will expand in timet to the nearest zero- 51, (C) 2 % 2
crossing curve of the input image Laplacian. 50 T\ 2o diaip (a)|Cy |
Y P 9Yp

Therefore, we have obtained a beautiful interpretation of
the classical Marr-Hildreth edge detection method [8]. The or in a more compact form
zero-crossings of the Laplacian are curves that best istegr §4,(C) 9 d 9
the edges, in the sense of our functiogalC(s)) with 6" = (6_ - d_ﬁ—) p()|Cyl,

p(a) = «a, if we wish to do so based on gradients estimated ¢ ¢ dpocy

for the (smoothed) input imagHx, y). While this factis  where we use the shorthand notation
pedagogically very pleasing, it does not alleviate the noto 9/9C = [0/9z,0/dy]* and §/9C, = [0/dx,,d/Iy,]7 .
rious over sensitivity properties of this edge-detectoiohh  In case of an open curve, one must also consider the end
in noisy images yields lots of false edge curves. However, points and add additional constraints to determine their
we shall show here that this insight provides the basis for optimal locations.

a new and practical active contour process which enhances Before we work out the general«) case let us return
and improves upon the previously designed such methodgo the simple example discussed in the introduction, where

for image segmentation. p(a) = a. Inthis case we have that
We next present the full derivation of the variational re- 1

sults leading to the new edge integration processes and then W(C) = j{ <x7’ ) |Cp|dp

show the performance of the resulting algorithms. 0
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j{ (—ypu + zpv)dp.

0

The EL equation for the part is given by

(0o
dx Jx  dp Oz, Yr r
—YplUg + TpVUy — —V
i3 14 dp
—Yplg + TpVs — Vg Zp — UyYp
—yp(Us + vy) = —ypdiv(V).

In a similar way, they part of the EL equations is given by

L A YR
dy Oy dp Oy,

—YpUy + TpVy + i

U

—Yply + TpUy + UpTp + UyYp
zp (Ue + vy) = 2pdiv(V).

Since the EL equations are derived with respect to a geomet-
ric measure, we can use the freedom of reparameterization

for the curveC, divide by|C,|, and obtain the “geometric
EL equation:"§v/6C = div(V)ii, and forV = VI(z, )

we havedy/0C = Aln, whereAl = I, + Iy, is the
usual Laplacian operator. It is obvious from this that the
geometric EL condition is satisfied along the zero cross-
ing curves of the image Laplacian, which as described
above explains the Marr-Hildreth [8, 7] edge detector from
a global-variational point of view. Below, we shall extract

often the following readily verified relationships,

olc,l _ r
4 =0yl 4 hes =1
le_ﬁ = —wl d—z =Kk
%gl:p’as—<Yp,{> . .
do - (Vi) + (Vi) = (Vi i) — w(V,1)
666(’); - _|Cp|_1<va{>ﬁa
and that
d d 9 .
(% - %W) (a]Cy]) = |Cpldiv(V)#
P

Using these relations we have
2ol = (& - 52 pla)lGy | =

—sc = \ac ~ @pac,
I d I
paclCyl — % (P e, |Cp| + PE)
d d ;
plac|Cp| - s (p'ac,|Cyl + plat) — pe (—p'af+ pt)
d
plac|Cyl - Pl% (an|Cp| + O‘E)
d ;

—p"ap (ac, |Gyl + ai) — dp (=p'at'+ pi)
P |Cy|div (V)7 — p"'|Cpler. (-(V, it + af)

d ;
_|CP|£ (—p'at+ pt)
(Gl (=pm + /(i (7) + (7 i) + 0" (P2, ANV 8)

—w(V, 5}2)) i + some additional tangential components

Here we used the shorthand notatioms Va

further insights and segmentation schemes from this obser{a., o, ], andac, = V¢, a.

vation. We note that heuristic non-variational flows on vec-

Level Set Formulation: In order to determine optimal

tor fields were presented in [14, 11]. In a recent related curves in the plane, we need to solve numerically the EL
result, introduced by Vasilevskiy and Siddiqi [13], align- equations. Here we shall follow the “geodesic active con-
ment with a vector field is used as a minimization criteria tour philosophy,” see [2], and design a curve evolution
for segmentation of complicated closed thin structures in ryle that is given byC, = %, (C) This is a gradient de-

3D medical images. °¢
As a second example we consigér) = |a| = Va?.
The EL is given by

scent rule with respect to the chosen cost functional, and
in this flow one can consider only the normal components
of 64,(C)/4C, since tangential components have no effect

on the geometry of the propagating curve. Next, we can
embed the curve in a higher dimensiogék, ) function,
which implicitly represents the curv€ as a zero set, i.e.,

C = {[z,y] : ¢(=,y) = 0}. In this way, the well known

- Osher-Sethian [9, 12] level-set method can be employed to
and forV = VI we haVe(S’l/)/(SC = 81gn(<VI, ﬁ>)AIﬁ imp'ement the propagation_

The new ternsign((V 1, 7i)), allows the model to automati- Given the curve evolution equati@iy = ~7, its implicit
cally handle changing contrasts between the objects and thggye| set evolution equation reads = v|V4|. The equiv-

background. For example, it handles equally well an image gjence of these two evolutions can be easily verified using
of dark objects on bright background and the negative of \ha chain rule and the relatigh= Vo/|V4l,

this image.
Now, we are ready to pursue the general caseyfen
in the functionak),(C) (wherea = (V, @)). We shall use

<‘7’ﬁ> div(V)7i
(V. 71)] )

— —

sign((V', 1)) div(V),
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We readily have that i= Ié—il = [_l‘z’vy(’zjf’z],
p=div(Z%), Vo= luy,u] = (Va8 (Ve 1)

and sign((V, 7)) = sign((V, V¢)). Thereby, the explicit
curve evolution as a gradient descent flow#be) = |«| is
given by

Cy = sign((V, @) AT,
for which the implicit level set evolution is given by

¢ = sign((V, Vo) AI|V|.

3. Open Active Contours

Therefore, the geometric conditions that must be met along
the curve is ((— — g) K+ <Vg,ﬁ>) 7=0, and at its

end pointsy(C'(0)) T- andg(C(L)) = % We can
use these conditions to guide a gradient descent process for
an active contour evolution toward the local minimum of the
Fua-Leclerc functional. To do that we apply the following
evolution equation along the curve and at its end points,

L
C, = (/fg —{Vyg,it) — fgn) fi.

The first two terms depict the geodesic active contour ([2])

model, while the third term directs the curve to gain length

by applying the inverse geometric heat equation at points
whereg(C'(s)) < Lg/L. We still need to design the motion

Fua and Leclerc in [3], were first to propose a geometric of the end points. Consider the end paiitZ). The curve

model for motion of open curves in the image to optimize
n “edge” finding functional. We shall first describe the

should reduce its lengthif(C (L)) > L,/ L, in which case
the end point should move along the tangefitZ). Hence,

Fua-Leclerc functional and then replace the “geodesic ac-for example, we can use the following evolution rules at the

tive contour” part of |t with our new edge integration qual-
ity measure. Lef(C fO |C}, |dp, be the arclength of an
open curveC(p). Addlng the variation;(p) to the curve,
such thatC'(p) = C(p) + en(p), differentiating w.r.t.c, and
lettinge go to zero, yields

—

L
2(O) =~ [ winds 5 ()LL)~ n(0)70),
0

wheres is the arclength parameter Also following Fua
and Leclerc, consideL,( fO ))ds, whereg is
some suitably defined * edge |nd|cator functlon, for exam-
pleg(z,y) = 1/(|VI|* + 1). The first variation of,(C)
can be easily shown to be given by

fo (Vyg,7) — kg)finds
+n(L)g(C(L)E(L) — n(0)g(C(0))(0).
The Fua-Leclerc functional is defined as
Py (C) = L((CC)). Computing the first variation, we
have that ?’—Cg = # =0, should hold for any

n. Therefore, the following conditions must be satisfied,
LL, = L'Ly, or explicitly,

U)Vm ) — wg)iinds + n(L)g(C(L))T(L)
—1(0)g(C(0))(0))

L = - —
=L, (fo —kfnds + n(L)t(L) — 77(0)15(0))
Thus, we should verify the following necessary conditions
for a local extremum to hold for any,

A(MWmm—wHinWs: 0
Ly(Dg(CUNAL) = Lyn(L)i(L)
Ly(0)g(C(0)I(0) = Lyn(0)7(0)

end points:

4 (0)
Gy (L)

Optimal Edge Integration: We propose to use our mea-
sure,L, = [ p(a)ds instead ofL,, in the Fua-Leclerc
functional. Here we compute the evolution equations that
propagate the open curv@ towards a maximum of the
functional,(C) LL—” Therefore, we are searching for
arg. max,(C). The quantityL in this maximization pro-
cess, penalizes the length of the curve, i.e. it plays a mle o
posite from its role in theninimization of the Fua-Leclerc
functional.

We now use the&i,/§C expression developed in the
previous sections for the general(V, 7)) closed curve
case. We have that

b= [ o7 57)|

Using these conditions in the Fua-Leclerc formu-
lae yield along the curve, L=£ 1”” + L,k =0, and
Lpt' = p/(V,17) = L,i, at the end points”'(L) and
C'(0). Forp(a) = |a|, the gradient descent flow of the
curve is given by

3¢

6Cds—|—77(pt

Cy = sign((VI,D)AI7 + %m‘i
Ce(0) = (Lp— L)l —p/(V,Dyii
Ce(L) = (L, = Lp)t+p'(V, it

A Simpler Optimal Edge Integration: Functionals that
involve ratio of two integral measures, like the Fua-Lecler
functional, require integration along the contours for a



proper gradient descent flow. Integral parts are present in
the EL equations which require computationally intensive
global integration procedures for the computation of the
proper flow. Recall however that our goal is to maximize
¥,(C) on one hand, that leads to long curves, while also
penalizing the length of the curve on the other hand. We
shall therefore consider the following alternative funotl

that would also realize these goals,(C') = I, — L. The

EL equations in this case are given loy= % + K,
along the curve, and) = (p — 1)i — p/(V,#)ii, at the end
points. The motivation for the tangential term at the end
point is obvious, it either extends or shrinks the curve. The
normal term pulls it from running parallel to the vector field
and directs the end point towards the center of the edge
(wherep’ should be zero). These two components define Figure 1: Syntheticimages with a tilted intensity planejto

the motion at the end points. Fpfa) = |a|andV = VI and a parabola intensity surface (bottom) added to the orig-
we have inal image. Middle: GAC results. Left: Laplacian model
results.
Cy = sign((VI,M)AIf + kil

Ct(0)
Ce(L)

((V 1, 7)| = 1) = sign(
(1 — VI, m)|)t + sign(

SES

(VI MV
(VI,@){V1,1)

The level set formulation for this flow is

_ _ ¢ = (sign((VI, VN AT + pdiv <g1 %) - /\gz) V|

4. Simulation Results |

) ) ) o Next, we applied our open contour model for edge inte-
We tested the edge integration methods discussed in this Pagration on similar images, but here we started with short
per on two simple examples. The first presented segmentagonioyr segments that expanded and locked onto bound-
tion examples shown are not typical for active contours and 5rjes if such existed in the vicinity of the initialized con
could be easily processed with less sophisticated methodsygrs. If no boundaries are detected locally, the contour

However, they capture the difficulties of the existing _&e;tiv segments shrink and eventually disappear. The numeri-
contour models and therefore are useful for comparison of .5 implementation for the open contour case is an explicit

the different methods. _ "marker-points” based model which was easier to program
In the "closed contour” cases we started from the image in this case. At each iteration the marker-points are re-

frame as the initial contour, and applied a multi-resolutio gjstributed along the contour to form equi-distant numer-

coarse to fine procedure, as in [10], to speed up the segmenicy| representations of the contour. A simple monitoring

tation process. _ ~ procedure, removes a marker point when successive marker
Figure 1 shows the advantage of the Laplacian m<_)d6| Mpoints get too close to one another, and adds a new marker

cases where only the gradient is affected, the Laplacian be'point in the middle of two successive marker points when

ing invariant to an additive intensity plane, as well as in tthe distance between them gets larger than a given thresh-

n

cases where the Laplacian is also changed by a constal Id. Th | how how initial i d and
when a parabola was added to the intensity surface. Figure0 - 1he examples show how Initial SEgments expand an

2 clearly exhibit the segmentation advantages of the Lapla-deform until they lock onto the boundaries of rather com-
cian active curve model as a core with the geodesic activeP!€x shapes. See 3.
term as a regularization. We here used the functional .

5. Conclusions

v(e) = 740 plajds — ?{C g1(C(s))ds — A /ﬂc g2 (w,y)dudy, In this paper we proposed to incorporate the directional in-
formation that is generally ignored when designing edge in-
where and A are small positive constants(a) = |a|, tegration methods in a variational framework. Simulations

ando = (VI,1). ¢;,1 = 1,2 are edge indicator functions thatwere performed with the newly defined edge integration
with lower values along the edges. In this case, the gradientprocesses amply demonstrated their excellent performance

descent flow for maximizing(C') is given by as compared to the best existing edge integration methods.
Our extended active contour models are just a few exam-
Cy = (sign((VI, ) AI + f(g16 — (Vyg1,7)) — Aga) 7. ples of the many possible combinations of geometric mea-



sures. Other functionals that could be considered to either

open or closed curves ate, — L, or [ p(a)q(|VI|)ds,
for an edge indicator function like = 1 — ¢(|VI|) or

q(IVI]) = +/|VI|? + 1. For closed curves, the, part is
most effective when the curve is close to its final location,

therefore, the functiond[p(«)(1 —g) — g]ds could also be
considered.
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