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Abstract

We view the fundamental edge integration problem for ob-
ject segmentation in a geometric variational framework.
First we show that the classical zero-crossings of the image
Laplacian edge detector as suggested by Marr and Hildreth,
inherently provides optimal edge-integration with regardto
a very natural geometric functional. This functional accu-
mulates the inner product between the normal to the edge
and the gray level image-gradient along the edge. We use
this observation to derive new and highly accurate active
contours based on this functional and regularized by pre-
viously proposed geodesic active contour geometric varia-
tional models.

1. Introduction
Edge integration for segmentation is an old, yet still very
active area of research in low-level image analysis. Text-
books in computer vision treat edge detection and edge in-
tegration as separate topics, the first being considered one
of labelling edges in the image to be followed by a process
of integrating the local “edges” into meaningful curves. In
fact one may view basic edge detection as a process of es-
timating the gradient of the image, i.e. computing at each
pixel (x; y) the valuesu(x; y) andv(x; y) by using the val-
ues ofI(x; y) over a neighborhoodN (x; y) of (x; y) and
designating as edges the places where the length of the gra-
dient vector estimate[u; v] = (rI) exceeds some threshold
value.

The more advanced edge detectors such as those pro-
posed by Marr and Hildreth [8] attempt to locate points or
curves defined by local maxima of the image gradient. The
Marr Hildreth proposal for edge detection yields curves that
delineate the zero crossing of the Laplacian operator applied
to a smoothed version of the image input. The smooth-
ing proposed is via a Gaussian convolution operator and its
width is a parameter that can be varied providing the oppor-
tunity to do scale space processing and “vertical” integra-
tion on the zero-crossing curves.

In this paper we propose to regard the edge detection
and integration process as a way to determine curves in the

image plane that pass through points where the gradient is
high and whose direction best corresponds to the local edge
direction predicted by the estimated gradient.

Indeed, if we somehow estimate the gradient field[u(x; y); v(x; y)] based on consideringI(x; y) for each
pixel (x; y) over some neighborhoodN�(x; y), where� is
a size parameter, we shall have at each point a value, given
by the intensity of the gradient(u2(x; y) + v2(x; y)) 12 , that
tells us how likely an edge is at this point and, if an edge ex-
ists, its likely direction will be perpendicular to the vector[u(x; y); v(x; y)]. It is therefore natural to look for curves
in the image plane,C(s) = [x(s); y(s)], that pass through
points with high intensity gradients with tangents agreeing
as much as possible to the edge directions there. Thus we
are led to consider the following functional, evaluating the
quality ofC(s) as an edge-curve candidate, �(C(s)) == Z L0 � [u(C(s)); v(C(s))] � � 0 1�1 0 � �dC(s)ds �T! ds
where �(�) is some monotonically increasing function.

Here, the inner product ofrI = [u; v] with the normal

to C(s), given by ~n(s) = � 0 1�1 0 � hdC(s)ds iT ; whereC(s) is an arclength parameterized curve, is a measure of
how wellC(s) is locally tracking an edge. Indeed we wantC(s) to pass at high gradient locations in the edge direction,
and hence the inner product of its normal with the estimated
gradient ofI should be high, indicating both alignment and
considerable change in image intensity there. This inner
product will also be proportional to the gradient magnitude,
since[u(C(s)); v(C(s))] � 0 1�1 0 � �dCds �T = jrIj � cos(�);
where� is the angle between the outward pointing normal~n toC(s) and the gradient direction.

The functionals � measure how well an arclength pa-
rameterized curve of lengthL approximates an edge in the
image plane. Our task, of course is to determine several
most probable edge curves in the image plane. We shall do
so by determining curves that locally maximize these func-
tionals.
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Suppose first that we are considering closed contoursC(s), and that�(�) = �. Then, we have that (C(s)) = IC(s)�u(C(s)) ddsy(s) � v(C(s)) ddsx(s)� ds;
and Green’s theorem yields (C(s)) = ZZ 
C � @@y v(x; y) + @@xu(x; y)� dxdy;
where
C is the region insideC(s). But, recalling thatv(x; y) is an estimate of@@y I(x; y) andu(x; y) an estimate

of @@xI(x; y) we have (C(s)) �= ZZ 
C � @2@x2 I(x; y) + @2@y2 I(x; y)� dxdy�= ZZ 
C (�I(x; y))dxdy:
Therefore, the functional that we want to maximize is the
integrated Laplacian over the area enclosed byC(s). This
means that if we have an area where the Laplacian is
positive (C(s)) should expand from within this area to
the places where�I(x; y) becomes zero and subsequently
changes sign. This shows that optimal edge-curves in the
sense of maximizing (C(s)) are the zero crossings of the
Laplacian. If we initializeC(s) as a small circular “bub-
ble” at a place where�I(x; y) is positive and then letC(s)
evolve according to a rule that implements a gradient de-
scent in conjunction with the functional (C(s)); i.e. we
implement ddtC(s; t) = � (C(s; t))�C ;
the curveC(s; t) will expand in timet to the nearest zero-
crossing curve of the input image Laplacian.

Therefore, we have obtained a beautiful interpretation of
the classical Marr-Hildreth edge detection method [8]. The
zero-crossings of the Laplacian are curves that best integrate
the edges, in the sense of our functional �(C(s)) with�(�) = �, if we wish to do so based on gradients estimated
for the (smoothed) input imageI(x; y). While this fact is
pedagogically very pleasing, it does not alleviate the noto-
rious over sensitivity properties of this edge-detector which
in noisy images yields lots of false edge curves. However,
we shall show here that this insight provides the basis for
a new and practical active contour process which enhances
and improves upon the previously designed such methods
for image segmentation.

We next present the full derivation of the variational re-
sults leading to the new edge integration processes and then
show the performance of the resulting algorithms.

2. Closed Active Contours: Derivation
Motivated by the classical ‘snakes’ [4], geometric active
contours [5, 1, 6], and finally the ‘geodesic active con-
tours’ that were shown in [2] to be related to the ‘snakes’,
we search for simple parametric curves in the plane that
map their arclength interval[0; L] to the plane, such thatC : [0; L]! IR2, or in an explicit parametric formC(s) =[x(s); y(s)]. Heres is the arclength parameter, and we have
the relation between the arclengths and a general arbitrary
parameterizationp, given byds =s�dx(p)dp �2 +�dy(p)dp �2dp = jCpjdp:

We define, as usual,~n; �; and~t to be the unit normal,
the curvature, and the tangent of the curveC. We have that�~n = Css, and~t = Cs = Cp=jCpj. As described in the
introduction, consider the geometric functional �(C) = I L0 �(h~V ; ~ni)ds:
This is an integration along the curveC of a function� de-
fined in terms of a vector field~V = [u(x; y); v(x; y)], where
for example we can take~V = rI(x; y) = [Ix; Iy] as the
gray level image gradient. Our goal is to find curvesC that
minimize the above geometric functional.

In a general parametric form, we have the following re-
parameterization invariant measure �(C) = I 10 �(h~V ; ~ni)jCpjdp:
Define,� � h~V ; ~ni. The Euler Lagrange (EL) equations� �(C)=�C = 0 should hold along the extremum curves,
and for a closed curve these equations are� �(C)�C =  @@x � ddp @@xp@@y � ddp @@yp ! �(�)jCpj;
or in a more compact form� �(C)�C = � @@C � ddp @@Cp��(�)jCpj;
where we use the shorthand notation@=@C = [@=@x; @=@y]T and @=@Cp = [@=@xp; @=@yp]T .
In case of an open curve, one must also consider the end
points and add additional constraints to determine their
optimal locations.

Before we work out the general�(�) case let us return
to the simple example discussed in the introduction, where�(�) = �. In this case we have that (C) = I 10 h~V ; ~nijCpjdp
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= I 10 �~V ; [�yp; xp]jCpj � jCpjdp= I 10 (�ypu+ xpv)dp:
The EL equation for thex part is given by� �x = � @@x � ddp @@xp� (�ypu+ xpv)= �ypux + xpvx � ddpv= �ypux + xpvx � vxxp � vyyp= �yp(ux + vy) = �ypdiv(~V ):
In a similar way, they part of the EL equations is given by� �y = � @@y � ddp @@yp� (�ypu+ xpv)= �ypuy + xpvy + ddpu= �ypuy + xpvy + uxxp + uyyp= xp(ux + vy) = xpdiv(~V ):
Since the EL equations are derived with respect to a geomet-
ric measure, we can use the freedom of reparameterization
for the curveC, divide by jCpj, and obtain the “geometric
EL equation:”� =�C = div(~V )~n, and for~V = rI(x; y)
we have� =�C = �I~n, where�I � Ixx + Iyy is the
usual Laplacian operator. It is obvious from this that the
geometric EL condition is satisfied along the zero cross-
ing curves of the image Laplacian, which as described
above explains the Marr-Hildreth [8, 7] edge detector from
a global-variational point of view. Below, we shall extract
further insights and segmentation schemes from this obser-
vation. We note that heuristic non-variational flows on vec-
tor fields were presented in [14, 11]. In a recent related
result, introduced by Vasilevskiy and Siddiqi [13], align-
ment with a vector field is used as a minimization criteria
for segmentation of complicated closed thin structures in
3D medical images.

As a second example we consider�(�) = j�j = p�2.
The EL is given by� �C = h~V ; ~nijh~V ; ~nijdiv(~V )~n= sign(h~V ; ~ni)div(~V )~n;
and for ~V = rI we have� =�C = sign(hrI; ~ni)�I~n.
The new termsign(hrI; ~ni), allows the model to automati-
cally handle changing contrasts between the objects and the
background. For example, it handles equally well an image
of dark objects on bright background and the negative of
this image.

Now, we are ready to pursue the general case for�(�)
in the functional �(C) (where� = h~V ; ~ni). We shall use

often the following readily verified relationships,ddp = jCpj dds @jCpj@Cp = ~td~nds = ��~t d~tds = �~nd�(�)ds = �0�s = hr�;~tid�ds = h~Vs; ~ni + h~V ; ~nsi = h~Vs; ~ni � �h~V ;~ti@�@Cp = �jCpj�1h~V ;~ti~n;
and that� @@C � ddp @@Cp� (�jCpj) = jCpjdiv(~V )~n:
Using these relations we have� �(C)�C = � @@C � ddp @@Cp� �(�)jCpj == �0�CjCpj � ddp ��0�Cp jCpj+ �~t�= �0�CjCpj � ddp ��0�Cp jCpj+ �0�~t�� ddp ���0�~t+ �~t�= �0�CjCpj � �0 ddp ��Cp jCpj+ �~t���00�p ��Cp jCpj+ �~t�� ddp ���0�~t+ �~t�= �0jCpjdiv(~V )~n � �00jCpj�s ��h~V ;~ti~n + �~t��jCpj dds ���0�~t+ �~t�= jCpj����+ �0(div(~V ) + h~V ; ~ni�) + �00(h~Vs; ~nih~V ;~ti��h~V ;~ti2)�~n + some additional tangential components:
Here we used the shorthand notations�C = r� =[�x; �y], and�Cp = rCp�.

Level Set Formulation: In order to determine optimal
curves in the plane, we need to solve numerically the EL
equations. Here we shall follow the “geodesic active con-
tour philosophy,” see [2], and design a curve evolution
rule that is given byCt = � �(C)�C : This is a gradient de-
scent rule with respect to the chosen cost functional, and
in this flow one can consider only the normal components
of � �(C)=�C, since tangential components have no effect
on the geometry of the propagating curve. Next, we can
embed the curve in a higher dimensional�(x; y) function,
which implicitly represents the curveC as a zero set, i.e.,C = f[x; y] : �(x; y) = 0g. In this way, the well known
Osher-Sethian [9, 12] level-set method can be employed to
implement the propagation.

Given the curve evolution equationCt = ~n, its implicit
level set evolution equation reads�t = jr�j: The equiv-
alence of these two evolutions can be easily verified using
the chain rule and the relation~n = r�=jr�j,�t = hr�;Cti = hr�; ~ni =  �r�; r�jr�j� = jr�j:
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We readily have that ~t = �r�jr�j = [��y ;�x]jr�j ;� = div� r�jr�j� ; ~Vs = [us; vs] = [hru;~ti; hrv;~ti];
and sign(h~V ; ~ni) = sign(h~V ;r�i): Thereby, the explicit
curve evolution as a gradient descent flow for�(�) = j�j is
given by Ct = sign(h~V ; ~ni)�I~n;
for which the implicit level set evolution is given by�t = sign(h~V ;r�i)�Ijr�j:
3. Open Active Contours
Fua and Leclerc in [3], were first to propose a geometric
model for motion of open curves in the image to optimize
an “edge” finding functional. We shall first describe the
Fua-Leclerc functional and then replace the “geodesic ac-
tive contour” part of it with our new edge integration qual-
ity measure. LetL(C) = R 10 jCpjdp; be the arclength of an
open curveC(p). Adding the variation�(p) to the curve,
such that~C(p) = C(p) + ��(p), differentiating w.r.t.�, and
letting� go to zero, yieldsL0(C) = � Z L0 �~n�ds+ �(L)~t(L) � �(0)~t(0);
wheres is the arclength parameter. Also, following Fua
and Leclerc, considerLg(C) = R L0 g(C(s))ds; whereg is
some suitably defined “edge indicator” function, for exam-
pleg(x; y) = 1=(jrIj2 + 1). The first variation ofLg(C)
can be easily shown to be given byL0g(C) = R L0 (hrg; ~ni � �g)~n�ds+�(L)g(C(L))~t(L) � �(0)g(C(0))~t(0):

The Fua-Leclerc functional is defined as g(C) = Lg(C)L(C) : Computing the first variation, we

have that � g�C = LL0g�L0LgL2 = 0; should hold for any�. Therefore, the following conditions must be satisfied,LL0g = L0Lg; or explicitly,L � �R L0 (hrg; ~ni � �g)~n�ds+ �(L)g(C(L))~t(L)��(0)g(C(0))~t(0)�= Lg � �R L0 ��~n�ds+ �(L)~t(L) � �(0)~t(0)� :
Thus, we should verify the following necessary conditions
for a local extremum to hold for any�,Z L0 (L(hrg; ~ni � �g) + Lg�)~n�ds = 0L�(L)g(C(L))~t(L) = Lg�(L)~t(L)L�(0)g(C(0))~t(0) = Lg�(0)~t(0):

Therefore, the geometric conditions that must be met along

the curve is
��LgL � g��+ hrg; ~ni�~n = 0; and at its

end pointsg(C(0)) = LgL , andg(C(L)) = LgL . We can
use these conditions to guide a gradient descent process for
an active contour evolution toward the local minimum of the
Fua-Leclerc functional. To do that we apply the following
evolution equation along the curve and at its end points,Ct = ��g � hrg; ~ni � LgL ��~n:
The first two terms depict the geodesic active contour ([2])
model, while the third term directs the curve to gain length
by applying the inverse geometric heat equation at points
whereg(C(s)) < Lg=L. We still need to design the motion
of the end points. Consider the end pointC(L). The curve
should reduce its length ifg(C(L)) > Lg=L, in which case
the end point should move along the tangent�~t(L). Hence,
for example, we can use the following evolution rules at the
end points:Ct(0) = (Lg(C(0)) � Lg)~t(0)Ct(L) = (Lg � Lg(C(L)))~t(L):
Optimal Edge Integration: We propose to use our mea-
sure,L� = R �(�)ds instead ofLg, in the Fua-Leclerc
functional. Here we compute the evolution equations that
propagate the open curveC towards a maximum of the
functional �(C) = L�L : Therefore, we are searching forargC max �(C). The quantityL in thismaximization pro-
cess, penalizes the length of the curve, i.e. it plays a role op-
posite from its role in theminimization of the Fua-Leclerc
functional.

We now use the� �=�C expression developed in the
previous sections for the general�(h~V ; ~ni) closed curve
case. We have thatL0�(C) = Z L0 � � ��C ds + � ��~t � �0h~V ;~ti~n����L0 :
Using these conditions in the Fua-Leclerc formu-
lae yield along the curve, L � ��C + L��~n = 0; andL(�~t � �0h~V ;~ti~n) = L�~t; at the end pointsC(L) andC(0). For �(�) = j�j, the gradient descent flow of the
curve is given byCt = sign(hrI; ~ni)�I~n+ L�L �~nCt(0) = (L� � L�)~t � �0h~V ;~ti~nCt(L) = (L� � L�)~t + �0h~V ;~ti~n:
A Simpler Optimal Edge Integration: Functionals that
involve ratio of two integral measures, like the Fua-Leclerc
functional, require integration along the contours for a
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proper gradient descent flow. Integral parts are present in
the EL equations which require computationally intensive
global integration procedures for the computation of the
proper flow. Recall however that our goal is to maximize �(C) on one hand, that leads to long curves, while also
penalizing the length of the curve on the other hand. We
shall therefore consider the following alternative functional
that would also realize these goals,~ �(C) = L� � L: The

EL equations in this case are given by0 = � �(C)�C + �~n;
along the curve, and0 = (� � 1)~t� �0h~V ;~ti~n; at the end
points. The motivation for the tangential term at the end
point is obvious, it either extends or shrinks the curve. The
normal term pulls it from running parallel to the vector field
and directs the end point towards the center of the edge
(where�0 should be zero). These two components define
the motion at the end points. For�(�) = j�j and~V = rI
we haveCt = sign(hrI; ~ni)�I~n + �~nCt(0) = (jhrI; ~nij � 1)~t� sign(hrI; ~ni)hrI;~ti~nCt(L) = (1� jhrI; ~nij)~t+ sign(hrI; ~ni)hrI;~ti~n:
4. Simulation Results

We tested the edge integration methods discussed in this pa-
per on two simple examples. The first presented segmenta-
tion examples shown are not typical for active contours and
could be easily processed with less sophisticated methods.
However, they capture the difficulties of the existing active
contour models and therefore are useful for comparison of
the different methods.

In the ”closed contour” cases we started from the image
frame as the initial contour, and applied a multi-resolution
coarse to fine procedure, as in [10], to speed up the segmen-
tation process.

Figure 1 shows the advantage of the Laplacian model in
cases where only the gradient is affected, the Laplacian be-
ing invariant to an additive intensity plane, as well as in
cases where the Laplacian is also changed by a constant
when a parabola was added to the intensity surface. Figure
2 clearly exhibit the segmentation advantages of the Lapla-
cian active curve model as a core with the geodesic active
term as a regularization. We here used the functional (C) = IC �(�)ds� � IC g1(C(s))ds� � Z
C g2(x; y)dxdy;
where� and� are small positive constants,�(�) = j�j,

and� = hrI; ~ni. gi, i = 1; 2 are edge indicator functions
with lower values along the edges. In this case, the gradient
descent flow for maximizing (C) is given byCt = (sign(hrI; ~ni)�I + �(g1�� hrg1; ~ni) � �g2)~n:

Figure 1: Synthetic images with a tilted intensity plane (top)
and a parabola intensity surface (bottom) added to the orig-
inal image. Middle: GAC results. Left: Laplacian model
results.

The level set formulation for this flow is�t = �sign(hrI;r�i)�I + �div�g1 r�jr�j�� �g2� jr�j:
Next, we applied our open contour model for edge inte-

gration on similar images, but here we started with short
contour segments that expanded and locked onto bound-
aries, if such existed in the vicinity of the initialized con-
tours. If no boundaries are detected locally, the contour
segments shrink and eventually disappear. The numeri-
cal implementation for the open contour case is an explicit
”marker-points” based model which was easier to program
in this case. At each iteration the marker-points are re-
distributed along the contour to form equi-distant numer-
ical representations of the contour. A simple monitoring
procedure, removes a marker point when successive marker
points get too close to one another, and adds a new marker
point in the middle of two successive marker points when
the distance between them gets larger than a given thresh-
old. The examples show how initial segments expand and
deform until they lock onto the boundaries of rather com-
plex shapes. See 3.

5. Conclusions
In this paper we proposed to incorporate the directional in-
formation that is generally ignored when designing edge in-
tegration methods in a variational framework. Simulations
that were performed with the newly defined edge integration
processes amply demonstrated their excellent performance
as compared to the best existing edge integration methods.
Our extended active contour models are just a few exam-
ples of the many possible combinations of geometric mea-
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sures. Other functionals that could be considered to either
open or closed curves areL� � Lg, or

R �(�)q(jrIj)ds,
for an edge indicator function likeq = 1 � g(jrIj) orq(jrIj) = pjrIj2 + 1. For closed curves, the � part is
most effective when the curve is close to its final location,
therefore, the functional

H [�(�)(1�g)�g]ds could also be
considered.
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and capture most of the outer contours of the symbols.
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