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Regularized Laplacian Zero Crossings as Optimal Edge Integrators
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Abstract. We view the fundamental edge integration problem for object segmentation in a geometric variational
framework. First we show that the classical zero-crossings of the image Laplacian edge detector as suggested by
Marr and Hildreth, inherently provides optimal edge-integration with regard to a very natural geometric functional.
This functional accumulates the inner product between the normal to the edge and the gray level image-gradient
along the edge. We use this observation to derive new and highly accurate active contours based on this functional
and regularized by previously proposed geodesic active contour geometric variational models. We also incorporate
a 2D geometric variational explanation to the Haralick edge detector into the geometric active contour framework.
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1. Introduction

Edge integration for segmentation is an old, yet still
very active area of research in low-level image analy-
sis. Textbooks in computer vision treat edge detection
and edge integration as separate topics, the first being
considered one of labelling edges in the image to be fol-
lowed by a process of integrating the local “edges” into
meaningful curves. In fact, one may view basic edge
detection as a process of estimating the gradient of the
image, i.e. computing at each pixel (x, y) the values
u(x, y) � ∂

∂x I (x, y) and v(x, y) � ∂
∂y I (x, y) by using

the values of I (x, y) over a neighborhood N (x, y) of
(x, y) and designating as edges the places where the
length of the gradient vector estimate [u, v] = (∇ I )
exceeds some threshold value.

The more advanced edge detectors such as those pro-
posed by Marr and Hildreth (1980) attempt to locate
points or curves defined by local maxima of the image
gradient. The Marr Hildreth proposal for edge detec-
tion yields curves that delineate the zero crossing of
the Laplacian operator applied to a smoothed version
of the image input. The smoothing proposed is via a
Gaussian convolution operator and its width is a pa-
rameter that can be varied providing the opportunity

to do scale space processing and “vertical” integration
on the zero-crossing curves. Improvements of the zero
crossing of the Laplacian operator such as those pro-
pose by Haralick (1984) and popularized by Canny
(1986) attempt to locate points or curves defined as
local maxima of the gradient magnitude along the gra-
dient direction. Similar analytically yet more accurate
numerically is the zero crossing of the second derivative
of the intensity along the gradient direction (Haralick,
1984; Deriche, 1987).

In this paper we propose to regard the edge detection
and integration process as a way to determine curves
in the image plane that pass through points where the
gradient is high and whose direction best corresponds
to the local edge direction predicted by the estimated
gradient. Indeed, if we somehow estimate the gradient
field [u(x, y), v(x, y)] based on considering I (x, y) for
each pixel (x, y) over some neighborhood Nσ (x, y),
where σ is a size parameter, we shall have at each
point a value, given by the intensity of the gradient
(u2(x, y) + v2(x, y))

1
2 , that tells us how likely an edge

is at this point and, if an edge exists, its likely direction
will be perpendicular to the vector [u(x, y), v(x, y)].
It is therefore natural to look for curves in the image
plane, C(s) = [x(s), y(s)], that pass through points
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with high intensity gradients with tangents agreeing as
much as possible to the edge directions there (in this pa-
per s denotes the arclength parameterization). Thus we
are led to consider the following functional, evaluating
the quality of C(s) as an edge-curve candidate,

ψρ(C(s)) =
∫ L

0
ρ

(
[u(C(s)), v(C(s))]

·
[

0 1
−1 0

][
dC(s)

ds

]T )
ds (1)

where ρ(·) can be a some convex symmetric scalar
function that satisfies ρ ′(0) = 0, and ρ ′′ > 0. Other less
restrictive requirements can also be considered and in
this paper we first take the identity ρ(α) = α which is
sensitive to gray scale inversion. We will refer to in-
sensitivity to gray scale inversion as inverse intensity
invariance property. For this property to hold, it is easy
to see that ρ needs to be a symmetric (ρ(α) = ρ(−α))
function. As an example we will consider a ‘robust’
version where ρ(α) = |α|.

Here, the inner product of ∇ I = [u, v] with the
normal to C(s), given by

	n(s) =
[

0 1

−1 0

][
dC(s)

ds

]T

, (2)

where C(s) is an arclength parameterized curve, is a
measure of how well C(s) is locally tracking an edge.
Indeed, we want C(s) to pass at high gradient locations
in the edge direction, and hence the inner product of its
normal with the estimated gradient of I should be high,
indicating both alignment and considerable change in
image intensity there. This inner product will also be
proportional to the gradient magnitude, since

[u(C(s)), v(C(s))]

[
0 1

−1 0

][
dC

ds

]T

= |∇ I | · cos(θ ),

(3)

where θ is the angle between the outward pointing nor-
mal 	n to C(s) and the gradient direction.

The functionals ψρ measure how well an arclength
parameterized curve of length L approximates an edge
in the image plane. Our task, of course is to determine
several most probable edge curves in the image plane.
We shall do so by determining curves that locally max-
imize these functionals.

Suppose first that we are considering closed contours
C(s), and that ρ(α) = α. Then, we have that

ψ(C(s))

=
∮

C(s)

(
u(C(s))

d

ds
y(s) − v(C(s))

d

ds
x(s)

)
ds, (4)

and Green’s theorem yields

ψ(C(s))

=
∫ ∫

�C

(
∂

∂y
v(x, y) + ∂

∂x
u(x, y)

)
dx dy, (5)

where �C is the region inside C(s). But, recalling that
v(x, y) is an estimate of ∂

∂y I (x, y) and u(x, y) an esti-
mate of ∂

∂x I (x, y), we have

ψ(C(s)) ∼=
∫ ∫

�C

(
∂2

∂x2
I (x, y) + ∂2

∂y2
I (x, y)

)
dx dy

∼=
∫ ∫

�C

(�I (x, y)) dx dy. (6)

Therefore, the functional that we want to maximize is
the integrated Laplacian over the area enclosed by C(s).
This means that if we have an area where the Laplacian
is positive, ψ(C(s)) should expand from within this
area to the places where �I (x, y) becomes zero and
subsequently changes sign. This shows that optimal
edge-curves in the sense of maximizing ψ(C(s)) are
the zero crossings of the Laplacian. If we initialize C(s)
as a small circular “bubble” at a place where �I (x, y)
is positive and then let C(s) evolve according to a rule
that implements a gradient descent in conjunction with
the functional ψ(C(s)), i.e. we implement

d

dt
C(s, t) = δψ(C(s; t))

δC
, (7)

the curve C(s, t) will expand in time t to the near-
est zero-crossing curve of the input image Laplacian.
Note that in case of homogeneous regions or very noisy
images, this process will either be stuck at the initial-
ization curve or will yield a myriad of little islands cor-
responding to false edge contours, so extra care should
be taken in these cases.

So far, we have obtained a beautiful interpretation
of the classical Marr-Hildreth edge detection method
(Marr and Hildreth, 1980). The zero-crossings of the
Laplacian are curves that best integrate the edges, in
the sense of our functional ψρ(C(s)) with ρ(α) = α, if
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we wish to do so based on gradients estimated for the
(smoothed) input image I (x, y). While this fact is ped-
agogically very pleasing, it does not alleviate the no-
torious over sensitivity properties of this edge-detector
which in noisy images yields lots of false edge curves.
However, we shall show here that this insight provides
the basis for a class of new and practical active contour
processes which enhance and improve upon previously
designed such methods for image segmentation.

The importance of using directional information for
delicate segmentation tasks was recently also realized
by Vasilevskiy and Siddiqi (2001) in a related result.
They used alignment with a general vector field as
minimization criteria for segmentation of complicated
closed thin structures in 3D medical images.

An interesting question is how to relate our method
to the Haralick (1984) edge detector, used as a main in-
gredient in the Canny (1986) edge operator. The ques-
tion here is: what is the variational approach that gives
a geometric explanation to the Canny or Haralick edge
detection operator.

In the next section we give a 2D geometric vari-
ational explanation to the Haralick-Canny-type edge
detector. We show that the Haralick-Canny operator
uses a topological homogeneity measure that regular-
izes the above alignment term, as we first presented
in Kimmel and Bruckstein (2002). When used as part
of an active contour model, the quality of the edges
captured by active contours is somewhat better when
using the GAC as a regularization term for the align-
ment based functional rather than the Haralick-Canny
topological homogeneity term. Then, we extend our re-
sults from Kimmel and Bruckstein (2001), and present
the full derivation of the variational results leading to
the new edge integration processes. Finally, we show
the performance of the resulting algorithms.

2. Haralick-Canny-Type Edge Detectors

An interesting question is how to relate the proposed
method to the Haralick (1984) edge detector, used as
a main ingredient in the Canny (1986) edge operator.
The question here is: what is the variational approach
that gives a geometric explanation to the Canny or
Haralick edge detection operator. Recently, we have
found an interesting answer to this question. The qual-
ity of the edges captured by active contours is somewhat
better when using the GAC as a regularization term
for the alignment based functional, while the Haralick-
Canny operator can be shown to use a topological

homogeneity measure that regularizes the alignment
term, as shown in Kimmel and Bruckstein (2002).

As in Marr-Hildreth edge detectors, some smoothing
of the image is performed first; then the Haralick edge
detector (Haralick, 1984; Canny, 1986; Deriche, 1987)
is defined by the zero crossings of the second deriva-
tive along the image gradient direction. Given the gray
level image I (x, y) : R

2 → [0, 1], define the gradient
direction vector field

	ξ (x, y) = ∇ I

|∇ I | = {Ix , Iy}
|∇ I | ,

and the corresponding orthogonal vector field,

	η(x, y) = ∇̄ I

|∇ I | = {−Iy, Ix }
|∇ I | ,

so that 〈	η, 	ξ〉 = 0 (see Fig. 1).
The Haralick edge detector outlines the image lo-

cations where both |∇ I | is larger than some threshold
and Iξξ = 0. This procedure was indeed observed to
yield better results compared to the zero crossings of
the Laplacian. We will not review here the justifications
provided before for this edge detection process, yet, to
the best of our knowledge there exist no rigorous expla-
nations or analysis for this operator in two dimensions.
The improved results obtained with the Haralick edge
detector were explained, as we stated before, based on
one dimensional arguments.

Let us try to justify the good properties of the
Haralick-Canny-edges from a variational point of view.
We formulate the edge operator as a result of a varia-
tional principle in 2D and in the process we get a better
understanding and a rigorous mathematical meaning
for the Haralick edge tracing operator. First, we use the
rotation invariance property of the Laplacian to define

Figure 1. The level sets of I , and {	ξ, 	η}, the gradient and the
orthogonal directions.
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the operator

Iξξ = Iξξ + Iηη − Iηη = �I − Iηη

= I 2
x Ixx + 2Ix Iy Ixy + I 2

y Iyy

I 2
x + I 2

y

.

The edge detector provides curves along which �I −
Iηη = 0. We have shown in the introduction that �I 	n =
0 is the result of maximizing the geometric integral
measure ∮ L

0
〈∇ I, 	n〉 ds, (8)

where s is the arclength parameter of the curve, 	n its
normal, and L its total length. Let us define, as usual,
	n, κ, and 	t to be the unit normal, the curvature, and
the tangent of the curve C , respectively. We have that
κ 	n = Css , and 	t = Cs = C p/|C p|. Let �C be the domain
inside the curve C , see Fig. 2.

The alignment measure (8) should be modified to
handle similarly hills and dips. Towards that goal, we
first define a unit vector field 	v(x, y) : � → S1 such
that

Note that 	v can be easily computed from the image.
Next, consider the alignment measure

∮ L

0
sign(〈	v, ∇ I 〉)〈∇ I, 	n〉 ds. (9)

C(s)
Css

sC

Cs

Css

Figure 2. A closed curve C , with Cs the unit tangent, κ 	n = Css the curvature vector, and �C the area inside the curve.

Here the term sign(〈	v, ∇ I 〉) verifies that the modi-
fied normal of the curve, given by sign(〈	v, ∇ I 〉)	n, is
oriented uphill for all hills, and downhill for all the
dips in the image. Note that the normal orientation is
smooth almost everywhere along the curve, if we ex-
clude pathological cases in which our curve tracks a
level set passing through a saddle point in the image.
The Euler-Lagrange equation corresponding to (9) is
given by sign(〈	v, ∇ I 〉)�I = 0.

The quantity Iηη is known to be the curvature of
the image level set, multiplied by the image gradient
magnitude, that is,

Iηη = |∇ I |div

( ∇ I

|∇ I |
)

= κI |∇ I |,

where κI is the curvature of the image level sets. In
order to understand the meaning of the Haralick op-
erator, we search for a geometric functional defined
along a curve that yields Iξξ 	n = 0 as an Euler Lagrange
equation. Toward this goal, we may equivalently search
for the geometric functional along a curve that yields
(�I − Iηη)	n = 0 as an Euler Lagrange equation.
Consider the general scalar cost function∫ ∫

�C

g(x, y) dx dy,

that integrates the cost function g inside the curve C .
Then, by Green’s theorem, the corresponding EL equa-
tion is given by g(C)	n = 0, see for example (Zhu et al.,
1995; Paragios and Deriche, 2000) Hence if we set,
g(x, y) = Iηη, we can get closer to the required result.
That is, we will try to find a geometric meaning for∫∫

�C
Iηη dx dy.
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Figure 3. Integration of Iηη in closed contours for various image surfaces. The integration results left to right are: 2πh, 2π (h + h1),
2π (h + h1 + h2), and 2π (h − h3).

We look into the geometric interpretation of the sec-
ond part in the Haralick operator∫ ∫

�C

Iηη dx dy =
∫ ∫

�C

κI |∇ I | dx dy

=
∫

R

(∫
I −1(u)∩�C

κI ds

)
du,

where we used the co-area equation (Evans and
Gariepy, 1992) to change coordinates from dx dy to
ds du, where u = I (x, y). Here s is the arclength of the
image level sets, and u represents its gray values. For
a closed (level set) contour we have that

∮
κI ds = 2π .

Figure 3 shows the result of integration over Iηη in
a closed contour for various simple image surfaces.
Therefore, the integral over Iηη inside C somehow mea-
sures the topological uniformity of I in �C . We see that
this is a measure generalizing the 1D total variation and
is a function of the topological–complexity of I over
�C .

If we look more carefully at the measure
∫∫

�C

Iηη dx dy, we see, as in the right case of Fig. 3, that
valleys or dips contribute a negative value to the total
cost. This contradicts what would have been expected
from a proper topological complexity measure. A sim-
ple modification however can cure this drawback.

Let us redefine the topological complexity measure
to be ∫ ∫

�C

sign(〈	v, 	ξ〉)Iηη dx dy,

which gives a positive sign to all topological parts in-
side the contour C . This now becomes a proper topo-

logical complexity measure of the interior with equal
contribution of ‘hills’ and ‘dips’.

We can therefore combine these two measures into
one that is given by

ψH (C) =
∮

C
sign(〈	v, 	ξ〉)〈∇ I, 	n〉 ds

−
∫ ∫

�C

sign(〈	v, 	ξ〉)Iηη dx dy

=
∫ ∫

�C

sign(〈	v, 	ξ〉) (�I − Iηη) dx dy

=
∫ ∫

�C

sign(〈	v, 	ξ〉) Iξξ dx dy. (10)

This measure yields, as expected, the EL equation

sign(〈	v, 	ξ〉)Iξξ = 0,

or in its simpler edge detector form Iξξ = 0.
Combining the above derivations into a unified

framework, we have that the Haralick operator searches
for alignment of the edge normals with the image gradi-
ents, while also minimizing a “topological uniformity”
or “total variation like” measure inside the contour. The
only difference between the Marr-Hildreth Laplacian
zero crossings operator (Marr and Hildreth, 1980;
Marr, 1982) and the Haralick operator (Haralick, 1984;
Canny, 1986; Deriche, 1987), is the additional min-
imization term measuring the topological complexity
inside the outlined edge contour. This extra term prefers
to group together uniform areas, avoiding noisy re-
gions, and thereby has the chance to yield more robust
edge curves for better object segmentation.
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The uniformity measure expressed by
∫∫

�C
sign

(〈	v, 	ξ〉)Iηη dx dy is just one possible choice that may be
appropriate in the context of edge detection and inte-
gration problems. We could add to our geometric mea-
sure other useful terms. Probably the simplest example
could be based on incorporating some knowledge on
the gray levels of objects expected to appear in a scene.
For example, if we know that the objects we try to
segment are expected to have a constant gray level c1,
and the background is expected to be c2, then the func-
tional we could add to the cost function may be defined
by

ψH (C) =
∫

∂�C

sign(〈	v, 	ξ〉)〈∇ I, 	n〉 ds

−
∫ ∫

�C

sign(〈	v, 	ξ〉)κI |∇ I | dx dy

−α

( ∫ ∫
�C

(I − c1)2 dx dy

+
∫ ∫

�\�C

(I − c2)2 dx dy

)
,

where �C defines the regions inside our ‘objects’,
and �\�C defines the background region. As Euler-
Lagrange equations we then get the edge detector
operator

(
sign(〈	v, 	ξ〉) (�I − Iηη) + 2α(c2 − c1)

×
(

I − c1 + c2

2

))
	n = 0,

which is a trade-off between gradient alignment
coupled with topological uniformity, and the sim-
plest segmentation we can think of: gray level thre-
sholding!

Next, we introduce some dynamics to our edge de-
tectors so that edges can be smoothly tailored and in-
tegrated into meaningful boundaries of objects. For
that we develop an active contour model that incorpo-
rates both alignment terms as well as classical integral
geometric measures and expected gray-level priors.

3. Closed Active Contours: Derivation

Motivated by the classical ‘snakes’ (Kass et al., 1988),
non-variational geometric active contours (Malladi
et al., 1993; Caselles et al., 1993; Malladi et al., 1995),

and finally by the ‘geodesic active contours’ (Caselles
et al., 1997), we search for simple parametric curves
in the plane that map their arclength interval [0, L] to
the plane, such that C : [0, L] → R

2, or in an explicit
parametric form C(s) = [x(s), y(s)], that maximize
one of the integral geometric measures ψ(C). As we
stated before, s is the arclength parameter, hence we
have the relation between the arclength s and a general
arbitrary parameterization p, given by

ds =
√(

dx(p)

dp

)2

+
(

dy(p)

dp

)2

dp = |C p| dp. (11)

We define, as usual, 	n, κ, and 	t to be the unit nor-
mal, the curvature, and the tangent of the curve C . We
have that κ 	n = Css , and 	t = Cs = C p/|C p|. We first
consider the geometric functional

ψρ(C) =
∮ L

0
ρ(〈 	V , 	n〉) ds. (12)

This is an integration along the curve C of a func-
tion ρ defined in terms of a vector field 	V =
[u(x, y), v(x, y)], where for example we can take 	V =
∇ I (x, y) = [Ix , Iy] as the gray level image gradient.
Our goal is to find curves C that minimize the above
geometric functional.

In a general parametric form, we have the following
re-parameterization invariant measure

ψρ(C) =
∮ 1

0
ρ(〈 	V , 	n〉)|C p| dp. (13)

Define, α ≡ 〈 	V , 	n〉. The Euler Lagrange (EL) equa-
tions δψρ(C)/δC = 0 should hold along the extremum
curves, and for a closed curve these equations are

δψρ(C)

δC
=




∂

∂x
− d

dp

∂

∂x p

∂

∂y
− d

dp

∂

∂yp


 ρ(α)|C p|, (14)

or in a more compact form

δψρ(C)

δC
=

(
∂

∂C
− d

dp

∂

∂C p

)
ρ(α)|C p|, (15)

where we use the shorthand notation ∂/∂C =
[∂/∂x, ∂/∂y]T and ∂/∂C p = [∂/∂x p, ∂/∂yp]T . In case
of an open curve, one must also consider the end
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points and add additional constraints to determine their
optimal locations.

Before we work out the general ρ(α) case let us
return to the simple example discussed in the introduc-
tion, where ρ(α) = α. In this case we have that

ψ(C) =
∮ 1

0
〈 	V , 	n〉|C p| dp

=
∮ 1

0

〈
	V ,

[−yp, x p]

|C p|
〉
|C p| dp

=
∮ 1

0
(−ypu + x pv) dp. (16)

The EL equation for the x part is given by

δψ

δx
=

(
∂

∂x
− d

dp

∂

∂x p

)
(−ypu + x pv)

= −ypux + x pvx − d

dp
v

= −ypux + x pvx − vx x p − vy yp

= −yp(ux + vy) = −yp div( 	V ). (17)

In a similar way, the y part of the EL equations is given
by

δψ

δy
=

(
∂

∂y
− d

dp

∂

∂yp

)
(−ypu + x pv)

= −ypuy + x pvy + d

dp
u

= −ypuy + x pvy + ux x p + uy yp

= x p(ux + vy) = x p div( 	V ). (18)

Since the EL equations are derived with respect to a
geometric measure, we can use the freedom of repa-
rameterization for the curve C , divide by |C p|, and ob-
tain the “geometric EL equation:” δψ/δC = div( 	V )	n,
and for 	V = ∇ I (x, y) we have δψ/δC = �I 	n, where
�I ≡ Ixx + Iyy is the usual Laplacian operator. It is
obvious from this that the geometric EL condition is
satisfied along the zero crossing curves of the image
Laplacian, which, as described above, nicely explains
the Marr and Hildreth (1980) and Marr (1982) edge
detector from a global-variational point of view. Be-
low, we shall extract further insights and segmentation
schemes from this observation. We note that heuristic
and non-variational flows on vector fields were pre-
sented in Xu and Prince (1998) and Paragios et al.
(2001).

As a second example we consider ρ(α) = |α| =√
α2. The EL equation in this case is given by

δψ

δC
= 〈 	V , 	n〉

|〈 	V , 	n〉| div( 	V )	n

= sign(〈 	V , 	n〉) div( 	V )	n, (19)

and for 	V = ∇ I we have δψ/δC = sign(〈∇ I, 	n〉)�I 	n.
The additional term sign(〈∇ I, 	n〉), allows the gradient
descent flow Ct = δψ/δC , to automatically handle
changing contrasts between the objects and the back-
ground. Hence, it handles equally well an image of dark
objects on bright background and the negative of this
image.

Now, we are ready to pursue the general case for ρ(α)
in the functional ψρ(C) (where α = 〈 	V , 	n〉). We shall
often use the following, readily verified, relationships:

d

dp
= |C p| d

ds
∂|C p|
∂C p

= 	t
d 	n
ds

= −κ	t
d	t
ds

= κ 	n (20)

dρ(α)

ds
= ρ ′αs = 〈∇ρ, 	t〉

dα

ds
= 〈 	Vs, 	n〉 + 〈 	V , 	ns〉 = 〈 	Vs, 	n〉 − κ〈 	V , 	t〉

∂α

∂C p
= −|C p|−1〈 	V , 	t〉	n,

and that(
∂

∂C
− d

dp

∂

∂C p

)
(α|C p|) = |C p| div( 	V )	n. (21)

Using these relations we have

δψρ(C)

δC
=

(
∂

∂C
− d

dp

∂

∂C p

)
ρ(α)|C p|

= ρ ′αC |C p| − d

dp

(
ρ ′αC p |C p| + ρ	t)

= ρ ′αC |C p| − d

dp

(
ρ ′αC p |C p| + ρ ′α	t

− ρ ′α	t + ρ	t)
= ρ ′αC |C p| − d

dp

(
ρ ′αC p |C p| + ρ ′α	t)
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− d

dp
(−ρ ′α	t + ρ	t)

= ρ ′αC |C p| − ρ ′ d

dp

(
αC p |C p| + α	t)

− ρ ′′αp
(
αC p |C p| + α	t) − d

dp
(−ρ ′α	t + ρ	t)

= ρ ′|C p| div( 	V )	n − ρ ′′|C p|αs(−〈 	V , 	t〉	n + α	t)
− |C p| d

ds
(−ρ ′α	t + ρ	t)

= |C p|(−ρκ + ρ ′(div( 	V ) + 〈 	V , 	n〉κ)

+ ρ ′′(〈 	Vs, 	n〉〈 	V , 	t〉 − κ〈 	V , 	t〉2))	n
+ some additional tangential components.

(22)

Here we used the shorthand notations αC = ∇α =
[αx , αy], and αC p = ∇C p α.

Note that by freedom of parameterization we have
the first variation given by

δψρ(C)

δC
= (−ρκ + ρ ′(div( 	V ) + 〈 	V , 	n〉κ)

+ ρ ′′(〈 	Vs, 	n〉〈 	V , 	t〉 − κ〈 	V , 	t〉2))	n
+ tangential components. (23)

As a third example we add the additional topological
homogeneity measure and consider again our geomet-
ric functional

ψ(C) =
∮ L

0
sign(〈	v, 	ξ〉)〈∇ I (x, y), 	n〉 ds

−
∫ ∫

�C

sign(〈	v, 	ξ〉)Iηη dx dy. (24)

As we have seen, the second term measures the topo-
logical uniformity inside the curve. Our goal is to find
curves C that maximize the above geometric func-
tional.

The Euler Lagrange (EL) equations δψ(C)/δC =
0 should hold along the extremum curves, where
δψ/δC = sign(〈	v, 	ξ〉)(�I − Iηη)	n. We could easily
add terms to our functional, like the geodesic ac-
tive contour model, to play the role of regularization.
These terms could actually replace the topological–
complexity measure with a simpler local implementa-
tion yielding better results especially if we couple it
with the robust version.

3.1. Gradient Descent via Level Set Formulation

In order to determine optimal curves in the plane, we
need to numerically solve the EL equations. Here we
shall follow the “geodesic active contour philosophy,”
see (Caselles et al., 1997), and design a curve evolution
rule that is given by

Ct = δψρ(C)

δC
. (25)

This is a gradient descent rule with respect to the
chosen cost functional, and in this flow one can con-
sider only the normal components of δψρ(C)/δC , since
tangential components have no effect on the geom-
etry the propagating curve. Next, we can embed the
curve in a higher dimensional φ(x, y) function, which
implicitly represents the curve C as a zero set, i.e.,
C = {[x, y] : φ(x, y) = 0}. In this way, the well
known Osher and Sethian (1988) and Sethian (1996)
level-set method can be employed to implement the
propagation.

Given the curve evolution equation Ct = γ 	n, its
implicit level set evolution equation reads

φt = γ |∇φ|. (26)

The equivalence of these two evolutions can be eas-
ily verified using the chain rule and the relation 	n =
∇φ/|∇φ|,

φt = 〈∇φ, Ct 〉 = 〈∇φ, γ 	n〉
= γ

〈
∇φ,

∇φ

|∇φ|
〉

= γ |∇φ|. (27)

We readily have that

	t = ∇̄φ

|∇φ| = [−φy, φx ]

|∇φ|
κ = div

( ∇φ

|∇φ|
)

(28)
	Vs = [us, vs] = [〈∇u, 	t〉, 〈∇v, 	t〉]

sign(〈 	V , 	n〉) = sign(〈 	V , ∇φ〉).

Thereby, the explicit curve evolution as a gradient
descent flow for ρ(α) = |α| is given by

Ct = sign(〈 	V , 	n〉)�I 	n, (29)
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for which the implicit level set evolution is given by

φt = sign(〈 	V , ∇φ〉)�I |∇φ|. (30)

In the more general case, in which ρ is an arbitrary
function, we use the above relations in the level set
evolution equation to obtain:

φt =
[

− κρ +
(

div( 	V ) +
〈
	V ,

∇φ

∇φ|
〉
κ

)
ρ ′

+
(〈

	Vs,
∇φ

∇φ|
〉 〈

	V ,
∇̄φ

∇φ|
〉

− κ

〈
	V ,

∇̄φ

∇φ|
〉2)

ρ ′′
]
|∇φ| (31)

Vasilevskiy and Siddiqi independently came up with
the φt = div( 	V )|∇φ| equation for active contours
(Vasilevskiy and Siddiqi, 2001) as a result of a geomet-
ric alignment integral measure. However, they did not
notice the direct link to the Marr-Hildreth edge detector,
and their operator is not invariant to inverse contrast, as
their ρ(α) = α (which we used in our over simplistic
examples) is not symmetric. For inverse contrast in-
variance of the process we require ρ to be symmetric,
that is ρ(α) = ρ(−α).

Finally, the explicit curve evolution as a gradient
descent flow for Eq. (10) is given by

Ct = sign(〈	v, 	ξ〉) (�I − Iηη) 	n,

for which the implicit level set evolution is given by

φt = sign(〈	v, 	ξ〉)(�I − Iηη) |∇φ|.

We can now add to our model the geodesic active
contour term of Caselles et al. (1997), the thresholding
term, or its version with dynamic expectation defined
by the minimal variance criterion of Chan and Vese
(1999). The functional now takes the form

arg
c1,c2,C

max ψ(C, c1, c2),

for

ψ(C, c1, c2) =
∮

sign(〈	v, 	ξ〉)〈∇ I, 	n〉 ds

−
∫ ∫

�C

sign(〈	v, 	ξ〉)Iηη dx dy

− α

(∫ ∫
�C

(I − c1)2 dx dy

+
∫ ∫

�\�C

(I − c2)2 dx dy

)

− ε

∮
g(C(s)) ds,

where g is an edge indicator function given for example
by g(x, y) = 1/(1 + |∇ I |2), and C = ∂�C . The Euler
Lagrange equations as a gradient descent in level set
formulation are given by

φt =
(

sign(〈	v, 	ξ〉)Iξξ + 2α(c2 − c1)

(
I − c1 + c2

2

)

+ ε div

(
g(x, y)

|∇φ|
∇φ

))
|∇φ|.

c1 = 1

|�C |
∫ ∫

�C

I (x, y) dx dy

c2 = 1

|� \ �C |
∫ ∫

�\�C

I (x, y) dx dy,

where |�C | denotes the area of the regions �C .
Efficient solutions for these equation can use multi-

plicative or additive implicit numerical schemes based
on alternating dirrections, as the AOS (Lu et al., 1991,
1992; Weickert et al., 1998), LOD (Kimmel, 2003,
to appear), or ADI methods, coupled with a nar-
row band approach (Chopp, 1993; Adalsteinsson and
Sethian, 1995). These ideas were first adopted to solve
the geodesic active contour model in Goldenberg et al.
(2001). See (Kimmel, to appear, 2002) for a Matlab
code.

4. Open Active Contours for Optimal
Edge Integration

4.1. The Fua-Leclerc Geometric Model

Fua and Leclerc (1990), were first to propose a geomet-
ric model for motion of open curves in the image-plane
to optimize an “edge” finding functional. We shall first
describe the Fua-Leclerc functional and then replace
the “geodesic active contour” part of it with our new
edge integration quality measure. Let

L(C) =
∫ 1

0
|C p| dp, (32)

be the arclength of an open curve C(p). Adding the
variation η(p) to the curve, such that C̃(p) = C(p) +
εη(p), differentiating w.r.t. ε, and letting ε go to zero,
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yields

L ′(C)=−
∫ L

0
κ〈	n, η〉 ds + 〈η(L), 	t(L)〉 − 〈η(0), 	t(0)〉,

(33)

where s is the arclength parameter (see Appendix for
derivation). Also, following Fua and Leclerc, consider

Lg(C) =
∫ L

0
g(C(s)) ds, (34)

where g is some suitably defined “edge indicator” func-
tion, for example g(x, y) = 1/(|∇ I |2 + 1). The first
variation of Lg(C) can be easily shown to be given by

L ′
g(C) =

∫ L

0
(〈∇g, 	n〉 − κg)〈	n, η〉 ds

+ g(C(L))〈η(L), 	t(L)〉
− g(C(0))〈η(0), 	t(0)〉. (35)

(See Appendix for a full derivation).
The Fua-Leclerc functional is defined as

ψg(C) = Lg(C)

L(C)
. (36)

Computing the first variation, we have that

δψg

δC
= L L ′

g − L ′Lg

L2
= 0, (37)

should hold for any η. Therefore, the following condi-
tions must be satisfied,

L L ′
g = L ′Lg, (38)

or explicitly,

L ·
(∫ L

0
(〈∇g, 	n〉 − κg) 	nη ds + η(L)g(C(L))	t(L)

− η(0)g(C(0))	t(0)

)

= Lg ·
(∫ L

0
−κ 	nη ds + η(L)	t(L) − η(0)	t(0)

)
.

(39)

Thus, we should verify the following necessary
conditions for a local extremum to hold for any η,

∫ L

0
(L(〈∇g, 	n〉 − κg) + Lgκ)〈	n, η〉 ds = 0

Lη(L)g(C(L))	t(L) = Lg〈η(L), 	t(L)〉 (40)

Lη(0)g(C(0))	t(0) = Lg〈η(0), 	t(0)〉.

Therefore, the geometric conditions that must be met
along the curve and at its end points, are:

((
Lg

L
− g

)
κ + 〈∇g, 	n〉

)
	n = 0

g(C(0)) = Lg

L
(41)

g(C(L)) = Lg

L
.

We can use these conditions to guide a gradient descent
process for an active contour evolution toward the local
minimum of the Fua-Leclerc functional. To do that we
apply the following evolution equation along the curve
and at its end points,

Ct =
(

κg − 〈∇g, 	n〉 − Lg

L
κ

)
	n. (42)

The first two terms depict the geodesic active contour
(Caselles et al., 1997) model, while the third term di-
rects the curve to gain length by applying the inverse ge-
ometric heat equation at points where g(C(s)) < Lg/L .
We still need to design the motion of the end points.
Consider the end point C(L). The curve should reduce
its length if g(C(L)) > Lg/L , in which case the end
point should move along the tangent −	t(L). Hence, for
example, we can use the following evolution rules at
the end points:

Ct (0) = (Lg(C(0)) − Lg)	t(0)
(43)

Ct (L) = (Lg − Lg(C(L)))	t(L).

4.2. Our Optimal Edge Integration

We propose to use our measure, Lρ = ∫
ρ(α) ds in-

stead of Lg , in the Fua-Leclerc functional. Here we
compute the evolution equations that propagate the
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open curve C towards a maximum of the functional

ψρ(C) = Lρ

L
. (44)

Therefore, we are searching for argC max ψρ(C). The
quantity L in this maximization process, penalizes the
length of the curve, i.e. it plays a role opposite from its
role in the minimization of the Fua-Leclerc functional.

We now use the δψρ/δC expression developed in
the previous sections for the general ρ(〈 	V , 	n〉) closed
curve case. We have that

L ′
ρ(C) =

∫ L

0
η · δψρ

δC
ds + η · (ρ	t − ρ ′〈 	V , 	t〉	n)

∣∣L

0 .

(45)

Using these conditions in the Fua-Leclerc formulae
yield along the curve,

L
δψρ

δC
+ Lρκ 	n = 0, (46)

and

L(ρ	t − ρ ′〈 	V , 	t〉	n) = Lρ	t, (47)

at the end points C(L) and C(0). For ρ(α) = |α|, the
gradient descent flow along the curve is given by

Ct = sign(〈∇ I, 	n〉)�I 	n + Lρ

L
κ 	n

Ct (0) = (Lρ − Lρ)	t − ρ ′〈 	V , 	t〉	n (48)

Ct (L) = (Lρ − Lρ)	t + ρ ′〈 	V , 	t〉	n.

4.3. A Simpler Formulation for the New Optimal
Edge Integration

Functionals that involve ratio of two integral measures,
like the Fua-Leclerc functional, require integration
along the contours for a proper gradient descent
flow. Integral parts are present in the EL equations
which require computationally intensive global inte-
gration procedures for the computation of the proper
flow. Recall however that our goal is to maximize
ψρ(C) on one hand, that leads to long curves, while
also penalizing the length of the curve on the other
hand. We shall therefore consider the following al-
ternative functional that would also realize these
goals,

ψ̃ρ(C) = Lρ − L . (49)

The EL equations in this case are given by

0 = δψρ(C)

δC
+ κ 	n, (50)

along the curve, and

0 = (ρ − 1)	t − ρ ′〈 	V , 	t〉	n, (51)

at the end points. The motivation for the tangential
term at the end point is obvious, it either extends of
shrinks the curve. The normal term pulls it from run-
ning parallel to the vector field and directs the end
point towards the center of the edge (where ρ ′ should
be zero). These two components define the motion
at the end points. For ρ(α) = |α| and 	V = ∇ I we
have

Ct = sign(〈∇ I, 	n〉)�I 	n + κ 	n
Ct (0) = (|〈∇ I, 	n〉| − 1)	t − sign(〈∇ I, 	n〉)〈∇ I, 	t〉	n
Ct (L) = (1 − |〈∇ I, 	n〉|)	t + sign(〈∇ I, 	n〉)〈∇ I, 	t〉	n.

(52)

5. Simulation Results

Most of the figures are in color that would appear only
in the electronic version of the paper. Figure 4 compares
the more robust edge detector given by the zero cross-
ings of Iξξ , and the zero crossings of the Laplacian. It
is obvious that Iξξ is less sensitive to the noise.

Next, we compared between edge integration results
of the Haralick-like and the Laplacian terms within
the geometric active contour model. Comparing the
results of the two methods clearly demonstrates the
regularization effect of the Haralick-like term. While
the Laplacian term causes the contour to oscillate and
capture insignificant and small structures, the Haralick-
like term regularizes the propagating curve and leads to
smoother boundary curves. In all the “closed contour”
cases we started from the image border as the initial
contour, and applied a multi-resolution coarse to fine
procedure, as in Paragios and Deriche (2000), to speed
up the segmentation process.

Next, we tested the edge integration methods
discussed in this paper on two simple examples,
see Fig. 5. The first presented segmentation exam-
ples shown are not typical for active contours and
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Figure 4. Zero crossings of Iξξ , in blue, compared to zero crossings of �I , in red, for edge detection of an object with various noise levels.

could also be processed with less sophisticated meth-
ods. However, they clearly exhibit the difficulties
of existing active contour models and are there-
fore quite useful for comparison of the different
methods.

The additional GAC term for regularization and the
multi-resolution both play an important factor in prop-
agating the contour in homogeneous or noisy regions
where the alignment in term of the image Laplacian
is meaningless. However, the alignment plays an cru-
cial role for final fine localization of the boundary
edges.

Figure 6 shows the advantage of the Laplacian
model in cases where only the gradient is affected,
the Laplacian being invariant to an additive intensity

Figure 5. Synthetic images with a tilted intensity plane added to the original image and additive Gaussian noise. The edge integration via
geometric active contour results for both the Laplacian term (in red) and the second order derivative along the gradient direction Haralick-like
term (in green) are shown in two resolutions.

plane, as well as in cases where the Laplacian is also
changed by a constant when a parabola was added
to the intensity surface. Figures 7 and 8 clearly ex-
hibit the segmentation advantages of the Laplacian
active curve model as a core with the geodesic ac-
tive term used as a regularization. We here used the
functional

ψ(C) =
∮

C
ρ(α) ds − β

∮
C

g(C(s)) ds (53)

where β is a small positive constant, ρ(α) = |α|,
and α = 〈∇ I, 	n〉. g is an edge indicator function
with lower values along the edges. In this case, the
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Figure 6. Top: Synthetic images with a tilted intensity plane added to the original image on the left, and a parabola intensity surface added to the
original image on the right. Middle row: Segmentation results with the GAC model given by φt = div(g(x, y) ∇φ

|∇φ| )|∇φ|. Bottom: Segmentation
results with the Laplacian model in Eq. (30).
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Figure 7. Left: Map input image. Right: The active contours results, in which the upper row shows the geodesic active contour results, middle
row presents the results of the Laplacian active contour, and bottom row is a combination of the two.

Figure 8. Top: Geodesic active contour results. Middle: Laplacian active contours. Bottom: Using the geodesic active contours as a regularization
for the Laplacian active contour.
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Figure 9. Open geometric Laplacian active contours: The initial small diagonal lines (top left frame) deform and either shrink and vanish or
extend along the boundaries of the objects and capture their shapes (the evolution sequence is top to bottom left to right).

Figure 10. Open geometric Laplacian active contours: The small curves (top left frame) extend along the boundaries and capture most of the
outer contours of the text symbols (the evolution sequence is top to bottom left to right).
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gradient descent flow for maximizing ψ(C) is given
by

Ct = (sign(〈∇ I, 	n〉)�I + β(gκ − 〈∇g, 	n〉)	n. (54)

Figure 11. Open geometric Laplacian active contours: Left to right is the evolution process of a set of initial contours shown at the left frame.

Figure 12. Open geometric Laplacian active contours: Left to right, top to bottom, is the evolution process of a set of initial contours shown
at the top left.

The level set formulation for this flow is

φt =
(

sign(〈∇ I, ∇φ〉)�I

+ β div

(
g1

∇φ

|∇φ|
))

|∇φ|. (55)
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For implementation considerations we used up-
wind schemes for most terms, and central differ-
ence approximation only for the diffusive GAC term
gdiv( ∇φ

|∇φ| )|∇φ|.
Next, we applied our open contour model for edge

integration on similar images, but here we started with
short contour segments that expanded and locked onto
boundaries, if such existed in the vicinity of the ini-
tialized contours. If no boundaries are detected lo-
cally, the contour segments shrink and eventually dis-
appear. The numerical implementation for the open
contour case is an explicit “marker-points” based
model which was easier to program in this case.
One could also use a level set defined in a band
around the active contour with explicit motion of the
end points. At each iteration the marker-points are
re-distributed along the contour to form equi-distant
numerical representations of the contour. A simple
monitoring procedure, removes a marker point when
successive marker points get too close to one another,
and adds a new marker point in the middle of two
successive marker points when the distance between
them gets larger than a given threshold. The exam-
ples show how initial segments expand and deform
until they lock onto the boundaries of rather com-
plex shapes. Figures 9–12 demonstrate the application
of the scheme to edge integration in a bit less trivial
scenarios. The same set parameters were used for all
examples.

6. Conclusions

In this paper we proposed to incorporate the di-
rectional information that is generally ignored when
designing edge integration methods in a variational
framework. Simulations that were performed with
the newly defined edge integration processes demon-
strated their excellent performance as compared to
the best existing edge integration methods. Our ex-
tended active contour models are just a few exam-
ples of the many possible combinations of geomet-
ric measures. Other functionals that could be consid-
ered to either open or closed curves are Lρ − Lg ,
or

∫
ρ(α)q(|∇ I |) ds, for an edge indicator function

like q = 1 − g(|∇ I |) or q(|∇ I |) =
√

|∇ I |2 + 1.
For closed curves, the ψρ part is most effective when
the curve is close to its final location, therefore, the

functional
∮

[ρ(α)(1 − g) − g] ds could also be con-
sidered. Efficient numerical methods can be applied
to solve the resulting geometric flows. We believe
that better understanding via integral measures of suc-
cessful low level vision operators, could lead to bet-
ter ones. These improved operators could then be
coupled together into more general schemes, simi-
lar to the way we incorporated the Haralick/Canny
edge detector into our variational edge integration
processes.

Appendix

Let

L(C) =
∫ 1

0
|C p| dp, (56)

be the arclength of an open curve C(p). We add the
variation η(p) to the curve, such that C̃(p) = C(p) +
εη(p). Next, differentiating w.r.t. ε, and letting ε go to
zero, we have

L ′(C) = δL

δC
= lim

ε→0

d

dε

∫ 1

0
〈C̃ p, C̃ p〉1/2 dp

= lim
ε→0

∫ 1

0
|C̃ p|−1〈ηp, C̃ p〉 dp

=
∫ 1

0
〈ηp, 	t〉 dp

= 〈η, 	t〉∣∣1
0 −

∫ 1

0

〈
η,

d

dp
	t
〉

dp

= 〈η(1), 	t(1)〉 − 〈η(0), 	t(0)〉
−

∫ 1

0
〈κη, 	n〉|C p| dp

= −
∫ L

0
κ〈	n, η̂〉 ds + 〈η̂(L), 	t(L)〉

− 〈η̂(0), 	t(0)〉, (57)

where s is the arclength parameter and η̂(s(p)) = η(p),
for ds = |C p| dp. Which proves the result given by
Eq. (33).
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In a similar way Eq. (35) is derived by

L ′
g(C) = lim

ε→0

d

dε

∫ 1

0
g(C̃(p))〈C̃ p, C̃ p〉1/2 dp

=
∫ L

0
〈∇g, η̂〉 ds +

∫ 1

0
g〈ηp, 	t〉 dp

=
∫ L

0
(〈∇g, 	n〉〈η̂, 	n〉 + 〈∇g, 	t〉〈η̂, 	t〉) ds

+ g〈η, 	t〉∣∣1
0 −

∫ 1

0

〈
η,

d

dp
(g	t)

〉
dp

= g〈η̂, 	t〉∣∣L

0 +
∫ L

0
(〈∇g, 	n〉〈η̂, 	n〉

+ 〈∇g, 	t〉〈η̂, 	t〉) ds

−
∫ 1

0
〈∇g, 	t〉〈η, 	t〉|C p| dp

−
∫ 1

0
g〈η, κ 	n〉|C p| dp

=
∫ L

0
(〈∇g, 	n〉 − κg)〈	n, η̂〉 ds

+ g(C(L))〈η̂(L), 	t(L)〉 − g(C(0))〈η̂(0), 	t(0)〉.
(58)
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