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A b s t r a c t - - I n  this paper, a curve evolution approach for the computation of geodesic curves on 
3D surfaces is presented. The algorithm is based on deforming, via the curve shortening flow, an 
arbitrary initial curve ending at two given surface points. The 3D curve shortening flow is first 
transformed into an equivalent 2D one. This 2D flow is implemented, using an efficient numerical 
algorithm for curve evolution with fixed end points. 

K e y w o r d s - - G e o d e s i c  curve, Geodesic curvature, Curve shortening flow, Numerical implementa- 
tion. 

1. I N T R O D U C T I O N  

The  theory  of curve evolution has recently been studied in a number  of  different research areas 

such as differential geomet ry  [1-4], parabolic equat ions theory  [5], numerical  analysis [6], viscosity 

solutions [7-9], compute r  vision [4,10-14], and image processing [15]. In  this work, an a lgor i thm 

for compu t ing  geodesic curves, which is based on the theory  of curve evolution, is presented. 

One  of  the  mos t  s tudied curve flows is the Euclidean geometric heat equation. In  this case, 

the  curve evolves by its curvature  vector.  In  the case of  planar  closed curves, this means  tha t  

the  curve deforms in the  direction of  the Eucl idean normal,  with velocity equal to  the  Eucl idean 

curvature.  Gage  and Hami l ton  [1] proved tha t  a simple convex curve converges to  a round  point  
when  deforming according to  this flow. Grayson  [2] proved t h a t  a nonconvex curve converges to  

a convex one. Then ,  any simple curve converges to  a round point  when deforming according to  

the  Eucl idean geometr ic  heat  flow. 

Grayson  [16] extended the planar  work to  smooth  curves immersed in a l~iemannian surface. 

He proved t h a t  the  curve remains smooth ,  and it either converges to  a point  or its curvature  

converges to  zero in the C °O norm. 

One  of  the  great  propert ies  of the  f low-by-curvature curve evolution process is t h a t  it shrinks 

the  curve as fast as possible, in the  sense t h a t  flow lines in the space of closed curves are t angen t  to  

the  gradient  for the  length functional [16]. For this reason, the flow is also called curve shortening 
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flow. Therefore, as pointed out by Grayson himself [16], deforming a curve by its curvature vector 
is a very efficient way of finding geodesic curves. 

The geodesic computation approach presented here is based on the curve shortening flow, per- 
formed on 3D surfaces. Given the surface and two points on it, based on this flow, the algorithm 
deforms an arbitrary initial embedded curve which ends at these points. From Grayson's results, 
the curve remains smooth and embedded, and if the end points are fixed, it converges to a surface 
geodesic ending at the given points. 1 

For the computer implementation of the algorithm, the three-dimensional curve flow is first 
transformed into an equivalent two-dimensional one, this step being crucial. This two-dimensional 
curve flow is implemented based on a numerical algorithm derived from [6], together with a simple 
algorithm, motivated by [17], for keeping the end points fixed. 

The remainder of this paper is as follows. Section 2 presents basic concepts on surface differ- 
ential geometry. The corresponding three- and two-dimensional evolution equations are given in 
Section 3. Section 4 deals with the numerical implementation. Examples are given in Section 5, 
and concluding remarks in Section 6. 

2. S U R F A C E  D I F F E R E N T I A L  G E O M E T R Y  

In this section, basic concepts on surface differential geometry are presented. For details, 
see [20]. 

DEFINITION 1. Let S be a regular three-dimensional surface, T(p, S) the tangent plane to S at 

the point p E S, and 1Q(p) the normal to the surface at  a point p E S. A regular connected curve C 
in S is said to be a geodesic if  for every p c C, the parameterization a(s) of  a neighborhood of  p 

in C by the arc-length s satisfies: 
02a 
os~ II N, 

i.e., 

Since 

a2c~ 

cqs--- ~ I T(p, S). 

192o~ 
OS 2 = t ~ ,  

where ~ is the Euclidean curvature, and ~ the unit normal to the curve, we obtain that  a curve 
is a geodesic if the vector ~ is perpendicular to the surface tangent plane (or parallel to the 
surface normal vector) at each of its points. 

DEFINITION 2. Let C be an oriented regular curve contained on an oriented surface S. The 
geodesic curvature vector of the curve at a given point p E C, is defined as the component of the 
vector ~ ( p )  on the tangent plane T(p, S). 

The geodesic curvature vector is given by ~gA~, where J~ is a unit vector in the direction of 
the intersection between the plane normal to the curve and the surface tangential plane, and 

According to its definition, Y~ may be written as 

#=~'x I~, 

where t' E T(p, S) is the unit tangent vector to the curve C E S. (See Figure 1). 

1After this work was completed, we noticed that related work was independently done by Chopp and Sethian 
[18,19]. 



Shortening Three-Dimensional Curves 51 

Figure 1. Geometry of the geodesic curvature vector. 

DEFINITION 3. ag is denoted as the geodesic curvature. 

From the definitions above, it follows that  C is a geodesic curve if and only if ag - 0. The 
following theorems show the importance of geodesic curves. 

THEOREM 1. There exists a geodesic curve from any point Sl E S to any point s2 E S. 

THEOREM 2. Let a : I --* S be a regular parameterized curve with parameter proportional to 

arc-length. Suppose that  the arc-length of  a between any two points Sl, s2 E I,  is sma/ler than 
or equal to the arc-length of any other regular parameterized curve joining a( Sl ) to a(s2).  Then, 
a is a geodesic. 

The theorems above say that  the minimal path between two points on the surface is always a 
geodesic. On the other hand, not every geodesic is a minimal path (it is only locally minimal). 
Therefore, finding geodesic curves on a surface, will give us paths which are at least locally 
minimal, with the possibility of also being globally minimal (depending on the surface structure). 
In the forthcoming sections, we present an algorithm which obtains, from an arbitrary curve, a 
geodesic one (both curves ending at the same given points). 

3 .  T H E  S H O R T E N I N G  F L O W  

Given a regular surface S and two points a and b on it, we want to compute a geodesic curve 
ending at these points. Let Co : [Pl,P2] --+ S, be a given initial embedded smooth curve such 
that  C0(pl) = a and C0(P2) = b. Based on Grayson's results [16], if Co is deformed via the curve 
shortening flow on S, and if the two end points are kept fixed, the curve converges to a geodesic 
curve as fast as possible. From Section 2, we obtain that  the flow is given by 

OC(p, t) 
= ~gJ~, (1) 

Ot 

where p pararneterizes the curve, and t stands for time. From (1), it follows immediately that  
the only possible stable curves are geodesic curves. Hence, applying (1) to the initial curve Co 
will give us the required geodesic curve. 

As we will see in Section 4, there exists a very efficient numerical algorithm for the computer  
implementation of planar curve flows. For this reason, we transform the 3D flow (1) into a 2D 
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one. Assume that the surface S is given as a graph, i.e., as a function z (x ,  y),  where x and y 
stand for the Cartesian coordinates on the (x, y)-plane. Then, the curve C(p, t) is given by the 
triplet [x(p), y(p), z(p)], where z(p)  = z (x (p) ,  y(p)) .  Define the curve 

d := [z(p), y(p)] 

as the projection of the 3D curve C(p, t) on the (x,y)-plane. We show now how d evolves when 
C deforms according to (1), and in this way obtain the desired 2D curve flow. For this, we have 
to find the corresponding velocity vector 17 such that C satisfies 

^ {  =17 

d(p, o) = do, 

when C(p, t) satisfies 
= 

C (p, 0) = C0. 

Of course, 17 will be a function of d and the graph-surface S (which together give enough infor- 
mation to restore the 3D curve C(p, t) from the 2D one d(p, t)). 

We first compute the evolution velocity ~ of d, which corresponds to C evolving according to 

OC(p, t) = f f  . 
Ot 

A well-known result from the theory of planar (geometric) curve evolution is that the tangential 
component of the velocity vector of an evolving curve does not affect its trace (i.e., its geometry). 
The tangential component affects only the parameterization of the curve [21] (see also [14] for a 
proof). Therefore, in order to describe the geometric behavior of d, it is enough to observe the 
following 2D evolution rule 

od(p,t) 
- -  = Yah, 

Ot 

where h = [nx,n2l = 1~v/x2 + y2[ -yp ,  Xv] is the unit normal 2 of the planar curve d, and vn 

is the planar normal component of ~Y. The vector g itself is obtained by projecting ~ onto the 
(x, y)-plane. Define lr as the projection operator: 

o Ix, y, z ] : =  Ix, y]. 

Then, vn is obtained by first projecting A~ onto the (x, y)-plane, i.e., Ir o j~, and then projecting 
this result on the planar normal ¢t. See Figure 2. By recalling the definition of J~, we write 

= (7r o ( t  × 1~), In1, n2]> 

= ~ o cp × [ - z x , - z ~ ,  1] , [n l ,n2]  

v/1 + + 

= z z )n  2 -- 2nln2zxz~].  l + z2z + z~[(l  + z2uln~ + (l  + 2 2 

Since ~ is obtained by projecting J~ onto the plane, and Vn by the projection of i7 onto the 
normal direction, the normal component of the velocity 17 is given by ~gvnh. We, therefore, 

2The x, y, t,p, s sub-indexes stand for partial derivatives. 
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Figure 2. Geometry of the constant velocity projection. 

proceed and compute ag just as a function of the planar curve C and the graph-surface S, i.e., 

ag = F(zx ,  zu, zxx,z::u,zvy,5,  k),  where ~ is the curvature of C and z~, zy , . . ,  are the surface 
partial derivatives. Following the geodesic curvature definition, we obtain 

where C88 = a~ is the second derivative of C with respect to its arc-length s. Assume that  C is 
parameterized by its arc-length ~. Define the metric of C as 

g := IC~I = V/X~ + y~ + z~ $ ° 

Then,  Cs = C, /g ,  and 

G~ = 

g2 g3 " 

Observe tha t  the second term of C88 is parallel to t'. Therefore, 

I~ g, ) ~=\g2 ~c~ ,~x  

By applying the chain rule to z~ and z~,  we obtain 

z 2 1 [(1 + z~ + z~)(~y~ - ~ x , ) + ( z , ~  - z=y~)(~==x~ + 2~x~y~ + ,~y~)]. 
ag=  ga~/1-- + z~ + z~ 
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Since ~ is the arc-length parameterization of the curve C, we have 

= x ~ y ~  - x ~ y ~ ,  

---- [hi,n2] ---- [--y~,x~], 

and 

 3v/1 + + 
[(1 + z 2 + Z2y) ~ + <Vz,~> (z~xx~ + 2zxux~y~ + Zyuy2)] . 

Therefore, while C evolves according to (1), its projection C onto the (x,y) plane evolves 
according to 

C,= ( +01+z2z+z2] (2) 

where 

r/(~,, Vz):  ---- n12(1 + Zy 2) + n22(1 + z2x) -- 2 z x z y n l n 2 ,  (3) 

and 

¢(¢~, zxz ,  zxy, Zyy) : = zxxn22 - 2Zzyn ln2  + zyyn  2. (4) 

Solving (2) is equivalent to solving (1). In the next section, we present a numerical algorithm for 
the computer implementation of (2), while keeping the end points fixed. 

4.  N U M E R I C A L  I M P L E M E N T A T I O N  

We now present the basic concepts of the numerical algorithm that  we have used for the 
implementation of equation (2). The basic algorithm is due to Osher and Sethian. For detailed 
analysis of this algorithm, see [6,22,23]. 

Let C(p, t) : S 1 X [0, T) ~ ]~2 be a family of planar curves satisfying the following evolution 
equation: 

ad  
a-7 = (5) 

(Recall that  the tangential component of the velocity can be ignored.) 
A number of problems must be solved when implementing curve evolution equations such 

as (5) on digital computer. Accuracy and stability are general requirements for any numerical 
algorithm. The numerical algorithm must approximate the evolution equation, and it must be 
robust. Sethian [22] has shown that  a simple, Lagrangian, difference approximation requires an 
impractically small time step in order to achieve stability. The basic problem with Lagrangian 
formulations is that  the marker particles on the evolving curve may come very close during the 
evolution. This can be solved by a redistribution of the marker particles, altering the equations 
of motion in a nonobvious way. 

Osher and Sethian [6,22] proposed an algorithm for curve (and surface) evolution for the reliable 
numerical solution of this and even more complicated problems. They proposed to observe an 
implicit representation of the evolving curve, where the propagating curve is embedded as a level 
set of a higher dimensional function. 

The embedding is as follows: the curve C(p, t) is represented by the zero level set of a smooth 
and Lipschitz continuous function (I) : R 2 × [0, 7) --+ R. In the following, we assume that  • is 



Shortening Three-Dimensional Curves 55 

negative in the interior and positive in the exterior of the zero level set. Consider the zero level 
set, defined by 

{ 2 ( t )  2 : (6) 

We have to find an evolution equation of ~5 such that  the evolving curve d(t) is given by the 

evolving zero level 2((t), i.e., 

d(t) - 2 ( 0 .  (7) 

By differentiation (6) with respect to t, we obtain: 

Note tha t  for the zero level, the following relation holds: 

V ~  (9) 

In this equation, the left side uses terms of the function ~, while the right side is related to the 
curve C. The combination of equations (5) to (9) gives 

~t  = ¢~{{V~{{, (10) 

and the curve d, evolving according to (5), is obtained by the zero level set of the function q~, 
which evolves according to (10). Sethian [22] called this scheme an Eulerian formulation for front 
propagation, because it is written in terms of a fixed coordinate system. Even if the curve does 
not develop singularities, and no topological changes occur, the embedding process makes the 
algorithm more accurate and stable. 

The next step of the algorithm consists of the discretization of the equation (10). If singulari- 
ties cannot develop during the evolution, as in the Euclidean shortening flows, a straightforward 
discretization can be performed [6]. If singularities can develop, as in the case of ~ = 1, a 
special discretization must be implemented. In this case, the implementation of the evolution 
of • is based on a monotone and conservative numerical algorithm, derived from the theory of 
hyperbolic conservation laws [6,24]. For a large class of H-functions of this type, this numerical 
scheme automatically obeys the entropy condition, i.e., the physically correct solution derived 
from Hiiygens-type principles [22,24]. In general, the numerical algorithm must give the corre- 
sponding viscosity solution [8,25]. For velocity functions such as ~ = 1 + e~, a combination of 
both methods is used [6]. 

It is important  to note that  the discretization of the evolution equations is performed on a 
fixed rectangular grid [22] (see also the Appendix). This rectangular grid can be associated with 
the pixel grid of digital images, making this diseretization method natural for image processing. 

Since the evolving curve is given by the level set of the function ~5, we have to find this level 
set (~ is discrete now). This is done by using a very simple (linear) contour finding algorithm as 
the one described in [23]. 

The Osher-Sethian described algorithm works on closed curves, or curve flows with boundary 
conditions. In our ease, we have to keep the two end points fixed. This is done by adding a step 
to the algorithm, which alters the • function after each iteration (this part of the algorithm was 
motivated by Chopp's work on minimal surface computation [17]). This change is done in order 
to ensure that  the two end points will remain in their position, as two fixed points in the zero 
level set of the evolving function. The function ~ is changed in such a way that  the weighted 
average on the neighborhood of the end points is equal to zero. In our examples, we have actually 
added two lines connecting the curve end points to the picture boundary. This way, the curve 
divides the image in two, and the ~ function is defined positive on one part and negative on the 
other. 
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A stopping condition must be added to the algorithm. This condition can be related either to 
a threshold value on the geodesic curvature or to small changes in the evolving curve. 

We conclude this section by remarking the proposed algorithm for curve shortening (geodesic 
computation): 

1. Initialize ~0, using ~r o go. 
2. Evolve <I) according to (2) and (10), by using the corresponding numerical approximation 

described in the Appendix. 
3. Adapt ~, to keep the end points fixed. 
4. Find the zero level set, g is obtained as z(g). 
5. Check the stopping condition and according to it, go to 2 or stop. 

5. E X A M P L E S  

The above mentioned algorithm was implemented for different graph surfaces. The following 
pictures show a number of examples, where the black curve is the final geodesic. 

The first simple example presents an initial sin curve on a tilted plane. The initial curve 
converges to the straight line connecting the end points. Straight lines are the only possible 
geodesic curves connecting two points on a plane. See Figure 3. In the second example, a sin- 

type initial curve on an "egg-box" surface is presented. The curve converges to a geodesic curve 
as shown in Figure 4. The third example shows a Gaussian mountain, where a geodesic curve is 
reached from a sin-type initial curve (Figure 5). Figure 6 shows the dependence of the result on 
the initial curve. 
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Figure 3. 
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(a) Top view (the g curve) of the process. 

A simple planar example. The final geodesic curve is a straight line as 
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(b) The final geodesic curve is presented on the 3D surface. 
Figure 3. (cont.) 

6. C O N C L U D I N G  R E M A R K S  

In this paper, a curve evolution approach for the computation of geodesic curves on surfaces 

was presented. Given a 3D graph-surface and two points on it, we want to find a surface geodesic 
curve ending at these points. The algorithm starts from an arbitrary initial curve on the surface, 
which ends at the given points, and the geodesic curve is obtained by shortening it via the classical 
curve shortening .flow. The 3D curve flow is represented by an equivalent 2D flow, which was 
implemented by an efficient numerical algorithm for curve evolution, together with a procedure 
for keeping the end points fixed. 

Geodesics can also be computed solving the Euler-Lagrange equations of the variational prob- 
lem associated with the length functional (see, for example, [26]). The approach presented here 
can be interpreted as an efficient way of functional minimization (with constraints). 

The  main advantages of the proposed approach are the following: 

1. The curve shortening flow shrinks the curve as fast as possible. 
2. The algorithm is based on the well-developed theory of curve evolution. 
3. The computer  implementation is based on a consistent and efficient numerical algorithm. 

The computat ion of geodesic curves using graph search algorithms suffer from 'digital bias' 
problems, see [27]. The proposed algorithm can be used for correcting paths already computed 
by these methods. Note also that  the algorithm can run several initial curves at the same time, 
and sub-pixel accuracy can be achieved. 

In general, we have presented an approach for performing curve evolution, under the constraint 
tha t  the curve remains on a given surface. This approach can be used for other curve flows as well. 
It also opens interesting theoretical questions, for example, the relation between weak (viscosity) 
solutions of the evolving 3D curve and those of the 2D one. 
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(b) 
Figure 4. Example with an "egg-box" surface. The initial curve (Co) is given by a 
sin function on the (z, y)-plane. 
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Figure  5. E x a m p l e  wi th  a Gaus s i an  surface.  T h e  initial curve  is given by a sin 
func t ion  on t he  (x ,y ) -p lane .  



60 R. KIMMEL AND G. SAPIRO 

6oi 

50 

40 

30 

20 

I 0  

10 20 30 40 50 60 

0/ 

0/ 

(a) 

(b) 

Figure 6. Example of two different initial curves evolving according to the proposed 
shortening flow. 



Shortening Three-Dimensional Curves 

60 / 

o/ 

61 

(c) 
Figure 6. (cont.) 

A P P E N D I X  

The exact numerical equation corresponding to (2) and (10) is now described. If the curve 
is a level set of a function ~, then its curvature k can be computed as [22]: 

k = ~yy~2 _ 2¢x~yOxy + ~xx¢  2 
+ 

and the surface evolution equation corresponding to (10) is given by 

¢t = ~gv~lV¢l 
2 __ _~_ ~}2y~X x _}_ + _ _  

• 2(1 + z 2) + O2(1 + z 2) - 2zxzyOxOy 

Define 
~ij  '~ : :  ~ ( i A x ,  j a y ,  n a t ) .  

The time derivative is implemented using forward difference approximation 

Ot A t  ' 

and the space derivatives are implemented using central approximation 

Ox 
02,~ 
ax  2 

02~ 

OxOy 

~ + l , j  - c L I , j  
2h 

• ~+1,3 - 2~,3 + ¢~%1,j 
h 2 

Cn+l,j+l J -  ~ ? - - l , j - - 1  - -  ¢~PWI,j - -1  - -  ¢ I ) ~ - - l , j + l  
4h  2 
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where h -- Ax  -- Ay. The  same spat ial  derivative approximat ion  is applied to (I)y, (I)uu, and  
to the  surface derivatives (zx, zy, zx~, Zyu, zzy). Then,  the 2D curve flow (2) (see also (10)) is ~, 
implemented  by t ak ing  a forward derivative approx imat ion  in t ime,  which yields the  desired 
numer ica l  scheme. 
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