
Intrinsic Scale Space for Images on Surfaces:The Geodesic Curvature FlowRon Kimmel1?Lawrence Berkeley National Laboratory, and Dept. of of MathematicsUniversity of California, Berkeley, CA 94720.Abstract. A scale space for images painted on surfaces is introduced.Based on the geodesic curvature ow of the iso-gray level contours of animage painted on the given surface, the image is evolved and forms thenatural geometric scale space. Its geometrical properties are discussed aswell as the intrinsic nature of the proposed ow. I.e. the ow is invariantto the bending of the surface.1 IntroductionIn this note we introduce and study a geometric scale space for images paintedon a given surface. We show that a natural scale for images painted on surfacescan be constructed by considering the iso-gray levels of the image as curves onthe surface, and �nding the proper geometric heat ow in the metric inducedby the immersion. Speci�cally, we study the properties of the geodesic curvaturescale space (�g scale space) for images that are painted on a given surface.Recently, surface curves ow by their geodesic curvature was studied in [9],numerically implemented for curves with and without �xed end points in [12,3], and used for re�nement of initial curves into geodesics (shortest paths onsurfaces) in [11]. In [9] Grayson studies the evolution of smooth curves immersedin Riemannian surfaces according to their geodesic curvature ow (�g ow). The�g ow is often called curve shortening ow since the ow lines in the space ofclosed curves are tangent to the gradient of the length functional. It is the fastestway to shrink curves using only local (geometrical) information. The curvatureow is also referred to as the Heat Flow on Isometric Immersion since it is theheat equation as long as the heat operator is computed in the metric induced bythe immersion.Grayson showed that as curves evolve according to the geodesic curvatureow, the embedding property is preserved, and the evolving curve exists forall times and either becomes a geodesic or shrinks into a point. We will limitour discussion to smooth Riemannian surfaces which are convex at in�nity (theconvex hull of every compact subset is compact). Moreover, we shall deal onlywith surfaces which are given as a parameterized function in a bounded domain.? This work is supported in part by the Applied Mathematics Subprogram of the O�ceof Energy Research under DE-AC03-76SFOOO98, and ONR grant under NOOO14-96-1-0381.



Given these conditions, one can apply Grayson`s Theorem 0.1 in [9] that statesthat the �g ow shrinks closed curves to points while embedding is preserved.Open curves` behavior depends on the boundary conditions, and could eitherdisappear at a point in �nite time or converge to a geodesic in the C1 norm,i.e. the geodesic curvature converges to zero. By open curves we refer to curvesthat connect two points on the boundary of our �nite domain (two points on theimage boundaries).We use the equations developed for curves in [12], generalize them, and for-mulate the natural scale space for images painted on surfaces. This generalizationis based on the observation that any gray level image can be expressed as a set ofcurves that correspond to its iso-gray level curves. Thus, evolving each of thesecurves according to the �g ow leads to the evolution of the whole image, andthe construction of the �g scale space.Since the �g ow is intrinsic, so is the image ow. Given a surface and animage that is painted on that surface, the �g ow will be invariant to bending(isometric mapping) of the surface. A simple example is an image painted on aplane. In this planar case, the �g ow is equivalent to the planar curvature ow.It was proven in [7, 8] to shrink any planar curve into a convex one and theninto a circular point, while embedding is preserved. Assuming that the planewith the image painted on it is bent into a cylinder, applying the �g ow onthe new image obtained by taking a picture of the cylinder, guarantees that thesequence of evolved images on the surface can be mapped into the sequence ofthe evolved images on the plane. This mapping is the same one that mapped theinitial planar image onto the cylinder. The result is a ow which is invariant tothe bending of the surface. This is a useful operator in computer graphics, e.g.as a post process after texture mapping.2 Relation to Existing Scale SpacesExploring the whole theory and history of scale space and its various applicationsin image processing and computer vision is beyond the scope of this paper. Werefer to [16], for a recent collection of papers dealing with linear and non linearscale spaces.Originally, the classical heat equation It = �I (where �I � Ixx + Iyy) wasconsidered to be a good candidate for the description of scale. Its linear proper-ties lead to e�cient implementations that could be realized in the Fourier domainwith low computational e�ort. The observation that the complexity of the imagetopology can increase when applying the heat equation (local maximum pointscan be formed) as well as the need for invariant ows under di�erent transforma-tion groups, lead to the consideration of other, non linear, scale spaces [2, 1, 17].Most of these non linear ows have a simple and natural mathematical relationto the evolution of the gray level sets of the image. The obvious reason is therequirement for preserving the embedding of the gray level sets along the evolu-tion, as well as the smoothing of the level sets with the scale parameter, so thatthe topology of the image is simpli�ed along the scale. This links Gage, Hamilton



and Grayson`s result of the curvature ow of planar curves to Gabors' historicalimage enhancement algorithm [6, 14]. We shall use this natural link between levelsets and the image evolution, and the nice properties of the geodesic curvatureow of curves on surfaces, to construct the natural ow for images on surfaces.In [5] the second di�erential operator of Beltrami is considered as a possibleoperator for the general heat equation under a given metric g, namely It = �gI.In a di�erent paper in this collection [19, 13] we introduce a new scale spacefor images in which the image is considered as a surface, i.e. the metric g is theinduced metric (the metric of the image surface). It is shown to give promisingresults as a selective smoothing operator in color, movies and texture. In this case�gI is the projection of the mean curvature vector onto the intensity coordinate.When setting the metric to the identity gij = �ij , �gI boils down to theclassical heat equation for the 2D case. The relation between the �g ow andthe �g ow, is analog to the relation between the classical heat equation: It = �I,and the 2D geometrical heat equation: It = (IxxI2y�2IxIyIxy+IyyI2x)=(I2x+I2y ),i.e. the planar curvature (�) ow. This is a natural analogy since considering aplane as the underlying surface, �g becomes the Laplacian operator �, and �gbecomes the planar curvature �. Although the geometric heat equation (� ow)was explored and used for several applications, to the best of our knowledge, thegeodesic curvature ow as a scale space has not yet been explored nor any otherbending invariant ows.
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^Fig. 1. The geometry of the geodesic curvature vector, �gN̂ .3 The Geodesic Curvature �gLet the surface S = (x; y; z(x; y)) be de�ned as a parameterized function. Next,consider the surface curve C(s) = (x(s); y(s); z(x(s); y(s))) where s is the ar-clength parameter of the curve: jCsj = 1. The geodesic curvature vector �gN̂ is



de�ned as: �gN̂ = Css � hCss; N iN;where Css (the curvature vector) is the second derivative of the curve accordingto s, and N is the normal to the surface, see Fig. 1.A geodesic curve is a curve along which the geodesic curvature is equal to zero.Thus, any small perturbation of a geodesic curve increases its length. Geodesicsare locally the shortest paths on a given surface, and in case there exists astraight line on a surfaces it is obviously a geodesic curve. Evolving a curve onthe surface by its geodesic curvature vector �eld is the fastest way to shrinkthe curves` length and thereby evolve it into a geodesic. Another importantgeometrical property is the invariance of the geodesic curvature to bending ofthe surface. We will use these two properties, as well as the nice characteristicsof this ow that were shown by Grayson [9], to construct the �g scale space.4 From Curve to Image Evolution on a SurfaceOur input is an image I(x; y) that is painted on the given surface S = (x; y; z(x; y)),see Fig. 2. Using the fact the embedding is preserved under geodesic curvatureow of curves on surfaces, we may consider the image as an implicit representa-tion of its iso-gray levels. This is just a mental exercise that will help us derivethe geodesic curvature evolution of the image I(x; y) as a function of its �rst andsecond derivatives, as well as the surface derivatives. Let t be the scale variable.Then the main result of this paper is the following intrinsic evolution for I(x; y)given as initial condition to:@I@t = Kg(Ix; Iy; Ixx; Ixy; Iyy; zx; zy; zxx; zxy; zyy);where Kg is the geodesic curvature scale space function.The �g scale space has the following properties:1. Intrinsic: Invariant to bending of the surface.2. Embedding: The embedding property of the level sets of the evolving graylevel image is preserved.23. Existence: The level sets exist for all the evolution time, and disappear at apoint in most cases, or converge into a geodesic connecting the boundariesin special cases.4. Causality: The total geodesic curvature of the level sets is a decreasing func-tion. This is an important property, since combined with the embeddingproperty, it means that the topology of the image is simpli�ed along theevolution.2 In general, not all the level sets of a smooth continuous function can be embeddedin the (image) plane. E.g. the eight �gure level curves that correspond to saddles ofthe gray level function have a problematic point at the intersection (the saddles). Anatural solution in the analysis of such geometric phenomena is to go to a higherdimension and perform a smooth analysis. The image, in our case, is the most naturalhigher dimensional representation for its level set curves.
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I(x,y)Fig. 2. The image I(x;y) is painted on the parameterized surface S = (x; y; z(x;y)).I.e. the surface point (x; y; z(x;y)) has the gray level I(x;y).5. Shortening ow: The scale space is a shortening ow of the level sets of theimage painted on the surface.5 �g Scale Space DerivationAs a �rst step we follow [12] and analyze the single curve case of evolution underthe �g ow. Then, based on the fact that embedding is preserved, we generalizeand consider the whole image. Let ~C(~s) = (x(~s); y(~s)) be an iso-gray level planarcurve parameterized by its arclength ~s of the image I(x; y). I.e. I(x; y) is constantalong ~C(~s): I( ~C(~s)) = Const;or equivalently @I( ~C(~s))=@~s = 0.The iso-gray level curve ~C(~s) is the projection onto the (image) coordinateplane of the 3D surface curve C(~s) = (x(~s); y(~s); z(x(~s); y(~s))). I.e. ~C(~s) = ��C(~s),where � is the projection operation (a; b) = � � (a; b; c). See Fig. 3.Let us �rst show a simple connection between an image and its level setsevolution.Lemma1. Let ~C(~s) = (x(~s); y(~s)) be the level curve of I(x; y). Assume thatthe planar curve ~C is evolving in the coordinate plane according to the smoothvelocity �eld V : ~Ct = V :Then the image follows the evolutionIt = hV ;rIi;where rI � (Ix; Iy).
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Fig. 3. The geometry of the geodesic curvature vector projection.Proof. The ow ~Ct = V was shown in [4] to be geometrically equivalent tothe normal direction evolution ~Ct = hV ; ~Ni ~N ; where ~N is the unit normal of theplanar curve. By the chain rule we have@I@t = @I@x @x@t + @I@y @y@t= hrI; ~Cti= DrI; hV ; ~Ni ~NE :Recalling that ~C is a level set of I(x; y), we can express the normal ~N as ~N =rI=jrIj. Using this relation@I@t = DrI; hV; ~Ni ~NE= �rI; hV; rIjrIj i rIjrIj�= hV ;rIi � 1jrIj2 � hrI;rIi= hV ;rIi: utLet us now derive the geodesic curvature scale space equationLemma2. The geodesic curvature scale space for the image I(x; y) painted onthe parameterized surface S = (x; y; z(x; y)) is given by the evolution equation@I@t = I2xIyy � 2IxIyIxy + I2yIxx + (zxIx+zyIy)1+z2x+z2y (zxxI2y � 2IxIyzxy + zyyI2x)I2x(1 + z2y) + I2y (1 + z2x)� 2zxzyIxIy : (1)



Proof. We start from the evolution of the 3D level sets of I(x; y) on thesurface S = (x; y; z(x; y)) that is given by the geodesic curvature ow@C@t = �gN̂ :Where �gN̂ is the 3D geodesic curvature vector de�ned by�gN̂ = �N � h�N ; N iN= Css � hCss; N iN:Here, �N = Css is the 3D curvature vector of the 3D surface curve C(s), wheres is the arclength parameterization of C. N is the surface normal:N = (�zx;�zy; 1)q1 + z2x + z2y :The projection of this 3D evolution onto the 2D coordinate plane is given by@ ~C@t = h� � �gN̂ ; ~Ni ~N :The relation between the arclength s of the 3D curve C and the arclength ~sof its 2D projection ~C is obtained from the arclength de�nition:s = Z jC~sjd~s;that yields 1g � @s@~s = jC~sj=qx2~s + y2~s + z2~s=q(1 + z2x)x2~s + (1 + z2y)y2~s + 2zxzyx~sy~s;where for the last step we applied the chain rule z~s = zxx~s + zyy~s.For further derivation we also need the following relations, that are obtainedby the chain rule: zs = zxxs + zyyszss = zxxx2s + zyyy2s + 2zxyxsys + zxxss + zyyssCs = C~s@~s@s = C~sg� � Cs = � � (gC~s) = g� � C~s = g ~C~sCss = C~s~sg2 + C~sgsh� � Css; ~Ni = g2h ~C~s~s; ~Ni = g2~�;



where ~� � h ~C~s~s; ~Ni is the curvature of the planar curve ~C: The projection of itssecond derivative, which is a vector in the normal direction, onto its normal.Using the above relations, the projection of the geodesic curvature vectoronto the coordinate plane can be computed� � �gN̂ � � � (Css � hCss; N iN )= � � Css � �xsszx � ysszy + zssq1 + z2x + z2y (�zx;�zy)q1 + z2x + z2y= � � Css + �xsszx � ysszy + zss1 + z2x + z2y (zx; zy)= � � Css + zxxx2s + zyyy2s + 2zxyxsys1 + z2x + z2y (zx; zy):We can project the above velocity �led onto the planar normal ~N = (�y~s; x~s)eliminating the tangential component which does not contribute to the geometricevolution [4]:h� � �gN̂ ; ~Ni = g2~�+ g2 (zxxx2~s + zyyy2~s + 2zxyx~sy~s)(�y~szx + x~szy)1 + z2x + z2y= ~�+ (�y~szx+x~szy)1+z2x+z2y (zxxx2~s + zyyy2~s + 2zxyx~sy~s)(1 + z2x)x2~s + (1 + z2y)y2~s + 2zxzyx~sy~sIntroducing the normal and the curvature as functions of the image in whichthe curve is embedded as a level set~N = (�y~s; x~s) = rIjrIj~� = div� rIjrIj� ;and using Lemma 1, we conclude with the desired result@I@t = I2xIyy � 2IxIyIxy + I2yIxx + (zxIx+zyIy)1+z2x+z2y (zxxI2y � 2IxIyzxy + zyyI2x)I2x(1 + z2y) + I2y (1 + z2x) � 2zxzyIxIy : utWe note that the relation between curves evolving as level sets of a higherdimensional function was explored and used in [15, 18] to construct state ofthe art numerical algorithms for curve evolution. Based on the Osher Sethiannumerical algorithm, the natural connection between shape boundaries and theirimages (a gray level image of a shape is considered as an implicit representationof the boundary of the shape) was used for the computation of o�set curves inComputer Aided Design in [10]. The same motivation lead us to the proposedframework for which the numerical implementation enjoys the same avor ofstability and accuracy.



6 Results and Numerical Implementation ConsiderationsWe have implemented the PDE given in Equation (1) by using central di�erenceapproximation for the spatial derivatives3 and a forward di�erence approxima-tion for the time derivative:Ini;j � I(i�x; j�y; n�t)It � In+1i;j � Ini;j�tIx � Ini+1;j � Ini�1;j2�xIxx � Ini+1;j � 2Ini;j + Ini�1;j(�x)2Ixy � Ini+1;j+1 + Ini�1;j�1 � Ini�1;j+1 � Ini+1;j�1(2�x)2 ;of I, and the same central di�erence approximation for the surface spatial deriva-tives (zx; :::). We have chosen mirror boundary conditions along the boundariesboth for the image I and the surface z.In the �rst example we textured mapped the images of Lenna and an imageof a hand onto a cylinder. Figure 4 present the invariance of the �g ow to thissimple banding of the original image plane.Figure 5 presents the evolution of Lenna image projected on three di�erentsurfaces (sin(x)sin(y), sin(2x)sin(2y), and a sphere). Each surface obviouslyresults in a di�erent ow, however the simpli�cation of the image topology inscale towards geodesics on the surface is a joint property for all cases.7 SummaryUsing the relation between iso-gray level curves and the gray level image fromwhich they are extracted, we derived an intrinsic evolution for images on surfaces.The ow is invariant to bending of the surface. Based on a shortening ow thatwas recently studied in curve evolution theory, the proposed �g ow preservesthe embedding of the gray levels along the evolution. The gray levels convergein �nite time to points or to geodesics (�g converges to zero in the C1 norm).The result is a simple scale space with nice geometric properties, of which thetwo important ones are the simpli�cation of the topology of the image in scale,and the invariance of the ow to bending of the surface on which the image ispainted.3 This is a pure di�usive process for which central di�erence approximation are usuallyselected.



Fig. 4. The evolution (left to right) of two images: The original planar ow and itscorresponding �g ow of the planar image mapped onto a cylinder. The original imagex-axis is scaled to the cylinder diameter size. The results show the invariance to bendingof the original image plane onto a cylinder.8 AcknowledgmentsI would like to thank Dr. Nir Sochen from LBNL, for the interesting and in-triguing discussions on invariant scale spaces and their relation to high energyphysics.References1. L Alvarez, F Guichard, P L Lions, and J M Morel. Axioms and fundamental equa-tions of image processing. Arch. Rational Mechanics, 123, 1993.
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