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Abstract. A scale space for images painted on surfaces is introduced.
Based on the geodesic curvature flow of the iso-gray level contours of an
image painted on the given surface, the image is evolved and forms the
natural geometric scale space. [ts geometrical properties are discussed as
well as the intrinsic nature of the proposed flow. I.e. the flow is invariant
to the bending of the surface.

1 Introduction

In this note we introduce and study a geometric scale space for images painted
on a given surface. We show that a natural scale for images painted on surfaces
can be constructed by considering the iso-gray levels of the image as curves on
the surface, and finding the proper geometric heat flow in the metric induced
by the immersion. Specifically, we study the properties of the geodesic curvature
scale space (k4 scale space) for images that are painted on a given surface.

Recently, surface curves flow by their geodesic curvature was studied in [9],
numerically implemented for curves with and without fixed end points in [12,
3], and used for refinement of initial curves into geodesics (shortest paths on
surfaces) in [11]. In [9] Grayson studies the evolution of smooth curves immersed
in Riemannian surfaces according to their geodesic curvature flow (k, flow). The
kg flow is often called curve shortening flow since the flow lines in the space of
closed curves are tangent to the gradient of the length functional. It is the fastest
way to shrink curves using only local (geometrical) information. The curvature
flow is also referred to as the Heat Flow on Isometric Immersion since it is the
heat equation as long as the heat operator is computed in the metric induced by
the immersion.

Grayson showed that as curves evolve according to the geodesic curvature
flow, the embedding property is preserved, and the evolving curve exists for
all times and either becomes a geodesic or shrinks into a point. We will limit
our discussion to smooth Riemannian surfaces which are convex at infinity (the
convex hull of every compact subset is compact). Moreover, we shall deal only
with surfaces which are given as a parameterized function in a bounded domain.
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Given these conditions, one can apply Grayson‘s Theorem 0.1 in [9] that states
that the x4 flow shrinks closed curves to points while embedding is preserved.
Open curves’ behavior depends on the boundary conditions, and could either
disappear at a point in finite time or converge to a geodesic in the C'*° norm,
i.e. the geodesic curvature converges to zero. By open curves we refer to curves
that connect two points on the boundary of our finite domain (two points on the
image boundaries).

We use the equations developed for curves in [12], generalize them, and for-
mulate the natural scale space for images painted on surfaces. This generalization
is based on the observation that any gray level image can be expressed as a set of
curves that correspond to its iso-gray level curves. Thus, evolving each of these
curves according to the £, flow leads to the evolution of the whole image, and
the construction of the «, scale space.

Since the £, flow is intrinsic, so is the image flow. Given a surface and an
image that is painted on that surface, the &, flow will be invariant to bending
(isometric mapping) of the surface. A simple example is an image painted on a
plane. In this planar case, the x, flow is equivalent to the planar curvature flow.
It was proven in [7, 8] to shrink any planar curve into a convex one and then
into a circular point, while embedding is preserved. Assuming that the plane
with the image painted on it is bent into a cylinder, applying the x, flow on
the new image obtained by taking a picture of the cylinder, guarantees that the
sequence of evolved images on the surface can be mapped into the sequence of
the evolved images on the plane. This mapping is the same one that mapped the
initial planar image onto the cylinder. The result is a flow which is invariant to
the bending of the surface. This is a useful operator in computer graphics, e.g.
as a post process after texture mapping.

2 Relation to Existing Scale Spaces

Exploring the whole theory and history of scale space and its various applications
in image processing and computer vision is beyond the scope of this paper. We
refer to [16], for a recent collection of papers dealing with linear and non linear
scale spaces.

Originally, the classical heat equation I; = AI (where Al = I, + I,,y) was
considered to be a good candidate for the description of scale. Its linear proper-
ties lead to efficient implementations that could be realized in the Fourier domain
with low computational effort. The observation that the complexity of the image
topology can increase when applying the heat equation (local maximum points
can be formed) as well as the need for invariant flows under different transforma-
tion groups, lead to the consideration of other, non linear, scale spaces [2, 1, 17].
Most of these non linear flows have a simple and natural mathematical relation
to the evolution of the gray level sets of the image. The obvious reason is the
requirement for preserving the embedding of the gray level sets along the evolu-
tion, as well as the smoothing of the level sets with the scale parameter, so that
the topology of the image is simplified along the scale. This links Gage, Hamilton



and Grayson'‘s result of the curvature flow of planar curves to Gabors’ historical
image enhancement algorithm [6, 14]. We shall use this natural link between level
sets and the image evolution, and the nice properties of the geodesic curvature
flow of curves on surfaces, to construct the natural flow for images on surfaces.

In [5] the second differential operator of Beltrami is considered as a possible
operator for the general heat equation under a given metric g, namely [; = A 1.
In a different paper in this collection [19, 13] we introduce a new scale space
for images in which the image 1s considered as a surface, i.e. the metric ¢ is the
induced metric (the metric of the image surface). It is shown to give promising
results as a selective smoothing operator in color, movies and texture. In this case
Ay I is the projection of the mean curvature vector onto the intensity coordinate.

When setting the metric to the identity g;; = &;;, Ayl boils down to the
classical heat equation for the 2D case. The relation between the A, flow and
the x, flow, is analog to the relation between the classical heat equation: I; = Al,
and the 2D geometrical heat equation: I; = (Imfj =2 Iy Ly + Ly I2) /(12 —1—15),
i.e. the planar curvature (x) flow. This is a natural analogy since considering a
plane as the underlying surface, A, becomes the Laplacian operator A, and &,
becomes the planar curvature k. Although the geometric heat equation (k flow)
was explored and used for several applications, to the best of our knowledge, the
geodesic curvature flow as a scale space has not yet been explored nor any other
bending invariant flows.

Fig.1. The geometry of the geodesic curvature vector, KgN.

3 The Geodesic Curvature kg4

Let the surface 8§ = (#,y, z(#, y)) be defined as a parameterized function. Next,
consider the surface curve C(s) = (2(s),y(s), 2(z(s),y(s))) where s is the ar-
clength parameter of the curve: |C;| = 1. The geodesic curvature vector x N is



defined as: .

kgN = Css — (Css, N)N,
where C; (the curvature vector) is the second derivative of the curve according
to s, and N is the normal to the surface, see Fig. 1.

A geodesic curve is a curve along which the geodesic curvature is equal to zero.
Thus, any small perturbation of a geodesic curve increases its length. Geodesics
are locally the shortest paths on a given surface, and in case there exists a
straight line on a surfaces it is obviously a geodesic curve. Evolving a curve on
the surface by its geodesic curvature vector field is the fastest way to shrink
the curves® length and thereby evolve it into a geodesic. Another important
geometrical property i1s the invariance of the geodesic curvature to bending of
the surface. We will use these two properties, as well as the nice characteristics
of this flow that were shown by Grayson [9], to construct the s, scale space.

4 From Curve to Image Evolution on a Surface

Our input is an image I(z, y) that is painted on the given surface § = (z, y, z(z, y)),
see Fig. 2. Using the fact the embedding is preserved under geodesic curvature
flow of curves on surfaces, we may consider the image as an implicit representa-
tion of its iso-gray levels. This is just a mental exercise that will help us derive
the geodesic curvature evolution of the image I(z, y) as a function of its first and
second derivatives, as well as the surface derivatives. Let ¢ be the scale variable.
Then the main result of this paper is the following intrinsic evolution for I(z, y)
given as initial condition to:

or

at

where K, is the geodesic curvature scale space function.
The &, scale space has the following properties:

[X/g(Ixa Iya Ioe, Ixya Iyya Zgy Zyy Rray Loy, Zyy)a

1. Intrinsic: Invariant to bending of the surface.

2. Embedding: The embedding property of the level sets of the evolving gray
level image is preserved.?

3. Existence: The level sets exist for all the evolution time, and disappear at a
point in most cases, or converge into a geodesic connecting the boundaries
in special cases.

4. Causality: The total geodesic curvature of the level sets is a decreasing func-
tion. This is an important property, since combined with the embedding
property, it means that the topology of the image is simplified along the
evolution.

2 In general, not all the level sets of a smooth continuous function can be embedded
in the (image) plane. E.g. the eight figure level curves that correspond to saddles of
the gray level function have a problematic point at the intersection (the saddles). A
natural solution in the analysis of such geometric phenomena is to go to a higher
dimension and perform a smooth analysis. The image, in our case, is the most natural
higher dimensional representation for its level set curves.



Fig.2. The image I(z,y) is painted on the parameterized surface § = (z,y, z(z,y)).
Le. the surface point (z,y, z(z,y)) has the gray level I(z,y).

5. Shortening flow: The scale space is a shortening flow of the level sets of the
image painted on the surface.

5 K4 Scale Space Derivation

As a first step we follow [12] and analyze the single curve case of evolution under
the x4 flow. Then, based on the fact that embedding is preserved, we generalize
and consider the whole image. Let C~(§) = (2(8), y(5)) be an iso-gray level planar
curve parameterized by its arclength § of the image I(xz,y). Le. I(x,y) is constant
along C(3): R

I(C(8)) = Const,
or equivalently 6[(5(5))/65 =0.

The iso-gray level curve C~(§) is the projection onto the (image) coordinate
plane of the 3D surface curve C(8) = (2(38), y(5), z(x(5), y(3))). Le. C~(§) = mol($),
where  is the projection operation (a,b) = 7o (a, b, ¢). See Fig. 3.

Let us first show a simple connection between an image and its level sets
evolution.

Lemmal. Let C~(~§) = (2(5),y(3)) be the level curve of I(x,y). Assume that
the planar curve C s evolving in the coordinate plane according to the smooth
velocity field V: R

Ct == V

Then the image follows the evolution
It == <V, VI>,
where VI = (I, I)).



S= (xyz(xy)

Fig.3. The geometry of the geodesic curvature vector projection.

Proof. The flow C; = V was shown in [4] to be geometrically equivalent to
the normal direction evolution Ct (v, N)N where A is the unit normal of the
planar curve. By the chain rule we have

or 0l oz L or oI 9y
ot~ Oz dt Oy ot
== <VI, Ct>

- <w, (v,NW> .

Recalling that C is a level set of I(xz,y), we can express the normal Nas N =
VI/|VI|. Using this relation

2 (n0.004)
vIi VI
=(VI{
< ] IVI|>
1
= Vi) = - (VI,VI
<Va > |VI|2 < ) >
= (V,VI).

Let us now derive the geodesic curvature scale space equation

Lemma 2. The geodesic curvature scale space for the image I(x,y) painted on
the parameterized surface S = (x,y, z(x,y)) is given by the evolution equation

2_|_2 T
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ot L2V 4 22) + (14 22) — 2242y I 1y '




Proof. We start from the evolution of the 3D level sets of I(z,y) on the
surface § = (z,y, z(x,y)) that is given by the geodesic curvature flow

ac -
E —K?g./\/.

Where @./\7 is the 3D geodesic curvature vector defined by

kgN = kN — (kN ,N)N
— C,, — (Cuy, NN

Here, k" = Cy; is the 3D curvature vector of the 3D surface curve C(s), where
s is the arclength parameterization of C. N is the surface normal:

(_Zx’_zy’l)
AU+ 22+ 22

The projection of this 3D evolution onto the 2D coordinate plane 1s given by

N =

aC L
E:<TO“gNaN>N~

The relation between the arclength s of the 3D curve C and the arclength 5
of its 2D projection C is obtained from the arclength definition:

o= [leidds

that yields
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where for the last step we applied the chain rule z; = 2,25 + 2y ¥s.
For further derivation we also need the following relations, that are obtained
by the chain rule:

Zs = ZgZs + ZyYs
Zes = Zpp @+ ZygYr + 220y TsYs + ZpTss + 2y Yss
05
C, = Cg% = Czg
7o0Cs =mo(gCs) = gmols; = gCs
Ces = Cssg” + Cigs
<7TOCSS,./\7> = g2<C~§§,./\7> = gzl%,



where kK = (CNgg,./\Nf) is the curvature of the planar curve C: The projection of its
second derivative, which is a vector in the normal direction, onto its normal.

Using the above relations, the projection of the geodesic curvature vector
onto the coordinate plane can be computed

7o kg N =m0 (Css — (Cos, NYN)

—Lgsiy — ysszy + Zss (_Zxa _Zy)

=7olCss —
\/1—|—zg—|—z§ \/1—|—zg—|—z§
_ —Lssle — YssZy + Zss
—roc, + et i )
Zxxx§+zyyy§+23xy$sys
=moCs + 1—1—2%—1—25 (Zxazy)

We can project the above velocity filed onto the planar normal N = (—ys, z3)
eliminating the tangential component which does not contribute to the geometric
evolution [4]:

(Zow 3 + 2yy U3 + 220y 2595) (Y5 20 + 252y)
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(L4 z22)2i + (1 + 22)y: + 2202y 2505
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Introducing the normal and the curvature as functions of the image in which
the curve is embedded as a level set

~ VI
N = (_y§,l’§) = W

vI
di R —
v <|v1|) !

and using Lemma 1, we conclude with the desired result

K
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We note that the relation between curves evolving as level sets of a higher
dimensional function was explored and used in [15, 18] to construct state of
the art numerical algorithms for curve evolution. Based on the Osher Sethian
numerical algorithm, the natural connection between shape boundaries and their
images (a gray level image of a shape is considered as an implicit representation
of the boundary of the shape) was used for the computation of offset curves in
Computer Aided Design in [10]. The same motivation lead us to the proposed
framework for which the numerical implementation enjoys the same flavor of
stability and accuracy.



6 Results and Numerical Implementation Considerations

We have implemented the PDE given in Equation (1) by using central difference
approximation for the spatial derivatives® and a forward difference approxima-
tion for the time derivative:

I, = 1(iAz, jAy, nAt)
1

oo I

! At

1o~ T Tl

’ 2Ax
1o Ty T2 T
I~ L+ — Ly 0 — I
ry ~

(247)? ’

of I, and the same central difference approximation for the surface spatial deriva-
tives (zy,...). We have chosen mirror boundary conditions along the boundaries
both for the image I and the surface z.

In the first example we textured mapped the images of Lenna and an image
of a hand onto a cylinder. Figure 4 present the invariance of the «, flow to this
simple banding of the original image plane.

Figure b presents the evolution of Lenna image projected on three different
surfaces (sin(z)sin(y), sin(2z)sin(2y), and a sphere). Each surface obviously
results in a different flow, however the simplification of the image topology in
scale towards geodesics on the surface is a joint property for all cases.

7 Summary

Using the relation between iso-gray level curves and the gray level image from
which they are extracted, we derived an intrinsic evolution for images on surfaces.
The flow 1s invariant to bending of the surface. Based on a shortening flow that
was recently studied in curve evolution theory, the proposed «, flow preserves
the embedding of the gray levels along the evolution. The gray levels converge
in finite time to points or to geodesics (x, converges to zero in the C'°° norm).
The result is a simple scale space with nice geometric properties, of which the
two important ones are the simplification of the topology of the image in scale,
and the invariance of the flow to bending of the surface on which the image is
painted.

® This is a pure diffusive process for which central difference approximation are usually
selected.
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Fig.4. The evolution (left to right) of two images: The original planar flow and its

corresponding &4 flow of the planar image mapped onto a cylinder. The original image
z-axis is scaled to the cylinder diameter size. The results show the invariance to bending
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of the original image plane onto a cylinder.
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