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Abstract

Retinex theory addresses the problem of separating the illumination from the reflectance in a

given image, and thereby compensating for non-uniform lighting. In a previous paper (Kimmel

et al., 2003), a variational model for the Retinex problem was introduced. This model was

shown to unify previous methods, leading to a new illumination estimation algorithm. The

main drawback with the above approach is its numerical implementation. The computational

complexity of the illumination reconstruction algorithm is relatively high, since in the obtained

Quadratic Programming (QP) problem, the whole image is the unknown. In addition, the pro-

cess requirements for obtaining the optimal solution are not chosen a priori based on hardware/

software constraints. In this paper we propose a way to compromise between the full fledged

solution of the theoretical model, and a variety of efficient yet limited computational methods

for which we develop optimal solutions. For computational methods parameterized linearly by

a small set of free parameters, it is shown that a reduced size QP problem is obtained with a

unique solution. Several special cases of this general solution are presented and analyzed: a

Look-Up-Table (LUT), linear or nonlinear Volterra filters, and expansion using a truncated

set of basis functions. The proposed solutions are sub-optimal compared to the original Retinex

algorithm, yet their numerical implementations are much more efficient. Results indicate that

the proposed methodology can enhance images for a reduced computational effort.
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1. Introduction

Retinex theory deals with compensation for illumination effects in images. The pri-

mary goal is to decompose a given image S into two different images, the reflectance

image R, and the illumination image L, such that at each point ðx; yÞ in the image do-
main Sðx; yÞ ¼ Rðx; yÞ � Lðx; yÞ. The benefits of such a decomposition include the abil-

ity to remove illumination effects of back/front lighting, enhance photos that include

spatially varying illumination such as images that contain indoor and outdoor zones,

and correct the colors in images by removing illumination induced color shifts.

Recovering the illumination from a given image is known to be a mathematically

ill-posed problem. In order to alleviate this problem, additional assumptions on the

unknowns are required. The most commonly used assumption is that the spatially

smooth parts of S originate from the illumination image, whereas edges in S are
due to the reflectance in the image (Blake, 1985; Brainard and Wandell, 1986; Faug-

feras, 1979; Horn, 1974; Jobson et al., 1997a,b; Land, 1977, 1983, 1986; Land and

McCann, 1971; PersComm, 1998; Stockham, 1972; Terzopoulos, 1986).

In a previous paper (Kimmel et al., 2003), a new variational based Retinex formu-

lation to the Retinex problem was introduced and compared to other state-of-the-art

methods. This formulation takes into account the illumination smoothness assump-

tion. In addition, it exploits the known limited range of the reflectance image, and

the fact that this image, being the process output, should be visually pleasing. The
new formulation is shown to have a Quadratic Programming structure, which guar-

antees an existing unique solution. It is also shown that different previous Retinex

algorithms are essentially solutions to similar variational problems.

One important drawback with the new variational approach is its numerical imple-

mentation. The unknown to be recovered in the obtained QP optimization problem is

the reflectance or the illumination image. Thus, the number of unknowns is the number

of pixels in the treated image, which is typically a very large number. Solving such a

problem requires an iterative algorithm, where each iteration includes both radiomet-
ric and spatial operations. Such a process is known to be computationally demanding,

even if efficient QP solvers, as the one proposed in Kimmel et al. (2003), are used.

Another problem with the above formulation is that the induced numerical pro-

cess for obtaining the optimal solution is not constrained by software/hardware con-

siderations. For example, in case where the illumination reconstruction system is

restricted to a linear filter of pre-specified size, followed by a general LUT (Look-

Up-Table) operation, the algorithm cannot take this constraint into account in the

reconstruction process.
In this paper we propose to exploit the same variational formulation in order to

define an optimal system with a pre-specified structure. A general framework for

such a solution is constructed for general processes controlled by a limited set of pa-

rameters. The Retinex problem in this case translates into a search for optimal values

for these small number of parameters.

For structures controlled linearly by a set of free parameters, we show that a re-

duced size QP problem is obtained, which guarantees a unique solution. Several spe-

cial cases of this general solution are presented and analyzed:
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1. Expressing the unknown illumination by a truncated set of basis functions.

2. A general linear filter with a pre-specified kernel size.

3. A general nonlinear Volterra filter with pre-specified kernel size and order.

4. A full or polynomial Look-Up-Table (LUT).

5. A Gamma-correction process.
For all these cases, the resulting solution is sub-optimal compared to the original

Retinex method, yet the numerical implementations are more efficient. Nevertheless,

we show that these solutions succeed in enhancing the input image for the above

choices.

This paper proposes a novel approach to tuning an image processing algorithm.

We solve a reduced size QP problem which optimizes for the parameters of a

hardware implementation or alternatively an efficient computational algorithm

that will actually perform the image processing efficiently. Other efficient algo-
rithms for adaptive image processing exist, however they are usually not a result

of a rigorous problem formulation and optimization. One example of an efficient

adaptive image enhancement is tone-mapping algorithm by Holm (1996) which

proposes to tailor a tone-map to an input image according to parameters extracted

from a histogram of a thumbnail of an image (rather than the histogram of the

full image). Another example is an efficient algorithm, which much like the Ret-

inex reduces the dynamic rage of images (Durand and Dorsey, 2002). The algo-

rithm is formulated as a nonlinear filter on the full image. However, it is
implemented as an interpolation between a set of convolutions of down-sampled

images. This is, indeed, a significant algorithmic improvement aimed specifically

at efficient convolution hardware/software. It is, however, different from the meth-

od proposed in this paper in that it is specific to a unique computational tool (lin-

ear convolutions) whereas we propose a generic method to determine parameters

in a large class of efficient implementations. Furthermore, we determine those pa-

rameters via optimization with respect to a goal formulated, in our case, as a dy-

namic range compression problem.
This paper is organized as follows: In the next section, we briefly present the var-

iational Retinex formulation, as presented in Kimmel et al. (2003). Section 3 shows

the proposed method for extracting sub-optimal solutions to the exact Retinex prob-

lem, while preserving the QP structure. In Section 4, we discuss the properties of the

new reduced size QP problem. Results are given in Section 5, with concluding re-

marks in Section 6.
2. The variational Retinex formulation

Our starting point is the Retinex formulation as presented in Kimmel et al. (2003).

The variational formulation for Retinex relies on the following assumptions (Kim-

mel et al., 2003):

1. The illumination is spatially smooth.

2. The reflectance image, R, is restricted to the unit interval (06R6 1), and there-

fore, LP S ¼ L � R.
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3. The illumination image is close to the input image, S, enhancing the local contrast

of the reflectance image R.
4. The reflectance image R is likely to have a high prior probability (Blake and Ziss-

erman, 1987; Geman and Geman, 1984; Lagendijk and Biemond, 1991; Marro-

quin et al., 1987). One of the simplest prior functions used for natural images
assigns high probability to spatially smooth images (Lagendijk and Biemond,

1991).

Define s ¼ logðSÞ, r ¼ logðRÞ, and l ¼ logðlÞ. If we integrate all the above as-

sumptions into one expression we get the following penalty functional:
Minimize : F ½l� ¼
Z
X
ðjrlj2 þ aðl� sÞ2 þ bjrðl� sÞj2Þ dx dy

Subject to : lP s;
ð1Þ
where X is the support of the image. a and b are free non-negative real parameters. In
the functional F ½l�, the first penalty term (jrlj2) forces spatial smoothness on the

illumination image. The second penalty term ðl� sÞ2 forces a proximity between l
and s. The third term is the penalty expression for the prior. This term forces r to be

spatially smooth. Note that more complicated prior penalty expressions may be used

allowing for sharp edges, textures, 1=f behavior, etc. (Blake and Zisserman, 1987;

Geman and Geman, 1984; Lagendijk and Biemond, 1991; Marroquin et al., 1987).

As long as this expression is purely quadratic, the above minimization problem re-

mains fairly simple.
Since the numerical implementation is applied on sampled images, we can rewrite

the above problem using discrete notations. As we shall see in the next section, a dis-

crete representation lends itself to the definition of optimal pre-specified system

structure.

Let us define the vectors l, r, and s as the column-stack lexicographic ordering of

the illumination, reflectance, and original images, respectively. The matrices Dx and

Dy stand for a horizontal and vertical discrete first derivative operations. Thus, the

variational problem transforms into
Minimize : F ½l� ¼ kDxlk2 þ kDylk2 þ akl� sk2

þ bðkDxðl� sÞk2 þ kDyðl� sÞk2Þ
Subject to : lP s:

ð2Þ
The above problem (in both representations) has a Quadratic Programming (QP)

form (Bertsekas, 1995; Luenberger, 1987). In Kimmel et al. (2003) it was shown that

the Hessian of the function F ½l� is positive definite if a > 0. As such, this problem is

strictly convex and has a unique solution.
An interesting interpretation of the above functional is obtained for the case

where b � a. As it turns out, such a choice for the parameters leads to a

Gamma-correction solution. More details about this anomaly can be found in

Appendix A.
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3. General simplification for the Retinex problem

Solving for the optimal illumination image l, as defined by Eq. (2), requires an

iterative algorithm.

Assume that due to hardware or computational limitations, there is a pre-defined
procedure P that we are willing to apply on s in order to get l̂l. We further assume

that this operation is governed by a relatively small number, Nh, of parameters de-

noted by h. Thus, l̂l ¼ Pfh; sg.
In order to get a good quality estimate l̂l, which will imitate the solution of the

exact variational Retinex, we define the optimal parameter set h as the solution of

the problem:
Minimize : Fh½h� ¼ F ½Pfh; sg� ¼ kDxPfh; sgk2 þ kDyPfh; sgk2

þ akPfh; sg � sk2 þ bðkDxðPfh; sg � sÞk2

þ kDyðPfh; sg � sÞk2Þ
Subject to : Pfh; sgP s:

ð3Þ
If the operation P is linear with respect to the parameter set h, it can be rewritten

as Pfh; sg ¼ Mfsg � h, where Mfsg is a matrix of size ½Lx � Ly � Nh�, with Lx � Ly the

size of the image. Mfsg is a possibly nonlinear function matrix of the image s. This
special case is important since then Eq. (3) becomes
Minimize : Fh½h� ¼ kDxMfsghk2 þ kDyMfsghk2 þ akMfsgh� sk2

þ bðkDxðMfsgh� sÞk2 þ kDyðMfsgh� sÞk2Þ
Subject to : MfsghP s

ð4Þ
and this problem has again a Quadratic Programming form. In order to assure that

the function Fh½h� is strictly convex, we have to verify that the Hessian of Fh½h� is
positive definite (Bertsekas, 1995). The Hessian is given by
o2Fh½h�
oh2

¼ MTfsg aI
h

þ ð1þ bÞ DT
x Dx

�
þ DT

y Dy

�i
Mfsg: ð5Þ
The term DT
x Dx þ DT

y Dy is the Laplacian operator (Kimmel et al., 2003). Thus, if
a > 0 andMfsg is full rank (meaning that its columns are linearly independent), then

the Hessian is positive definite, the functional is strictly convex, and there is a unique

solution.

Let us explore several possibilities for the construction of the matrix M :

1. Basis functions. Since the illumination is known to be spatially smooth, it can be

spanned by relatively small number of smooth basis functions. One such possibil-

ity is to use a truncated Fourier basis. Each such basis function is a complete im-

age of size Lx � Ly , ordered lexicographically into a single column in the matrixM .
Note that in this case, M is not a function of s.

2. Linear filter. In some situations we might be forced to use a linear space invariant

filter, using a ð2K þ 1Þ � ð2K þ 1Þ kernel, for the construction of l̂l. Let us define a
global displacement operation Disp½i;j�fsg, which displaces image s by ½i; j� (in the
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two axes). This definition must assume a specific boundary condition (e.g. for the

condition mentioned earlier, one shift left causes the rightmost column of the im-

age to be replicated and represent the new entering column from the right). Thus,

M is built by
Mfsg ¼ Disp½�K;�K�fsg; . . . ;Disp½0;0�fsg; . . . ;Disp½K;K�fsg
h i

;

i.e., by displacing s to all possible positions in a block of ð2K þ 1Þ � ð2K þ 1Þ. A
linear combination of these columns is a simple linear space invariant convolu-

tion, as required.

A bias can be added to the linear filter by adding one more column to the ma-

trix Mfsg, containing ones. This way, each pixel in the estimated illumination im-

age is created by a weighted average of the local neighborhood, added to a pre-

specified optimal bias value.

3. Full Look-Up-Table. One of the simplest, and therefore, computationally appeal-
ing, possible operations on an image is a Look-Up-Table (LUT). In the general

case, LUT is a map that assigns an output value to each input gray-value. Assum-

ing an 8 bit input, the 256 output values are the parameters of this operation. It is

not trivial to see how a LUT operation falls into the linear structure Mfsgh. To
see that, let us define an indicator operation Indvfsg as
Indvfsg ¼ 1; s½i; j� ¼ v;
0; s½i; j� 6¼ v;

�

i.e., all pixels in the image which are equal to v are set to 1, and the remaining

pixels are zeroed. Using this operation, the LUT operation can be modeled as the
multiplication of the following sparse matrix:

Mfsg ¼ ½Ind0fsg; Ind1fsg; . . . ; Ind255fsg�
by a vector h representing the 256 output gray-values. In this case, M uses s in a

nonlinear manner.

4. Polynomial Look-Up-Table. If 256 unknowns are hard to get, or if the desired

LUT should be smooth, a polynomial approximation of it can be used instead.
The operation on the input image s will be
l̂l½i; j� ¼
XN�1

k¼0

hksk½i; j�: ð6Þ

In this case, the unknown vector will be the coefficients of the above sum, and the

matrix M is represented by

Mfsg ¼ s0; s1; . . . ; sN�1
� �

;

where the operation sk is applied per entry.

5. Volterra filtering. A possible nonlinear extension to the linear filter is the Volterra

filer. Instead of linearly weighting gray values of a neighborhood, Volterra filter

proposes linear weight of polynomials of the gray values. The resulting matrix M
turns out to combine the mathematical machinery of both the linear filter and the
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polynomial LUT approximation. For example, for a simple 2-pixels spatial Vol-

terra operation of up to second -order polynomials we get
Mfsg ¼ Disp½1;0�fsg;Disp½0;0�fsg;Disp½0;0�fsg
0
; . . . ;Disp½0;0�fsgDisp½1;0�fsg;

h
Disp½0;0�fsg

2
;Disp½1;0�fsg

2
i
;

where Disp½0;0�fsg
0
is a vector of ones.

Other possibilities can be formulated using this approach, and in particular, a

combination of the above options is also possible.

It is important to note that while choosing a linear structure of the form

Pfh; sg ¼ Mfsg � h is limiting, we see that it leads to a diverse set of options, com-
monly used as processing-blocks in image processing systems (especially hardware

ones). Thus, not only we have gained some simplification with respect to the compu-

tational complexity due to this choice, but we also gain the ability to perform the

Retinex-correction process in hardware with optimized parameters of linear filtering,

LUT, and more.

We also note that the approach taken above (both the general and the subsequent

linear) can be posed as the original variational Retinex method as posed in (2) with

an additional constraint of the form l̂l ¼ Pfh; sg. Thus this additional constraint lim-
its the solution space and therefore yields suboptimal result. As we shall see next, this

loss in output quality comes with a gain in stability speed of implementation. The

limited solution space could be interpreted as a variant of regularization that stabi-

lizes the problem and its numerical solution.
4. Properties of the reduced Retinex problem

In all the above options for the choice of Mfsg, the QP problem becomes
Minimize : F ½h� ¼ 1

2
hTHfsghþ hTQfsg þ Const

Subject to : MfsghP s;
ð7Þ
where
Hfsg ¼ MTfsg aI
h

þ ð1þ bÞ DT
x Dx

�
þ DT

y Dy

�i
Mfsg;

Qfsg ¼ � 2MTfsg b DT
x Dx

�h
þ DT

y Dy

�
þ aI

i
s; ð8Þ

Const ¼ sT b DT
x Dx

�h
þ DT

y Dy

�
þ aI

i
s

and both H and Q are relatively small. For a typical problem treating images of size

1000� 1000 pixels, the original Retinex procedure requires the recovery of 1e6 un-

known pixels and the Hessian of the QP is of size 1e6� 1e6 entries. Going to the new

approach with 1000 parameters (a reasonable number for the options discussed in

the previous section), the number of unknowns is 1000 and the Hessian is of size
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1000� 1000 entries. Moreover, for the MðsÞ proposed here, the condition-number of

the new Hessian is far better than the original one, leading to a better numerical

stability.

In order to solve the above QP problem, we need to compute Hfsg, Qfsg, and the

set of constraints. The constant value appearing in the penalty function has no im-
pact on the solution and thus can be omitted. Here are some comments about this

computational process.

For the computation of H, we have to apply a linear operator
aI
h

þ ð1þ bÞ DT
x Dx

�
þ DT

y Dy

�i
ð9Þ
on each of the images representing the columns of MTfsg. The final stage is an

application of an inner product between these images and the images in Mfsg. If the
columns of Mfsg are obtained by pure global displacement (as in the linear filter

case), then, instead of computing the filtering results per row, we can simply generate
them by displacing the filtered result for the center column.

For the case where Mfsg is built by basis functions, this matrix does not depend

on s. Therefore, the matrix Hfsg can be computed off-line once.

Computing Q is done by applying the filter ½aI þ bðDT
x Dx þ DT

y DyÞ� on the input

image s, and again, performing an inner product with the columns of MTfsg. A sec-

ond option is to use the matrix
aI
h

þ ð1þ bÞ DT
x Dx

�
þ DT

y Dy

�i
Mfsg
as obtained from the computation ofH, and perform an inner product with the input

image s.
In general, the constraint set MðsÞhP s has Lx � Ly inequality constraints. This

may become prohibitive, especially because we would like to avoid the actual storage

of the matrix M .

As it turns out, a very effective shortcut can be used in order to prune the number

of constraints for the LUT design in both the full and the polynomial approxima-

tion. In these two cases, the number of different constraints is smaller or equal to
256, since for all the pixels getting gray value v, all the corresponding constraints

are identical. Pruning the constraints-set is done by first finding all the existing gray

values in the image s, and then creating for each one of them a scalar inequality con-

straint. For example, if all (8 bits) gray values are occupied, then for the full LUT

design we have the constraint
h0
h1
:
:
:

h255

2
6666664

3
7777775
P

0

1

:
:
:

255

2
6666664

3
7777775
:

This constraint requires the resulting LUT to be bounded from below by the unity

LUT operation.
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For the same case, the third-order polynomial LUT will have the constraint
0 0 0 0

10 11 12 13

20 2 22 23

: : : :
: : : :

2550 2551 2552 2553

2
6666664

3
7777775

h0
h1
h2
h3

2
664

3
775P

0

1

:
:
:

255

2
6666664

3
7777775
:

For the other cases where such simple pruning is not possible, an interesting problem

is how to efficiently prune redundant constraints from such a set, either as an ac-

curate or as an approximated process. This problem is left for future research. In our

simulations we exploited the fact that constraints for neighboring pixels are expected

to be similar. Therefore, we simply decimated the constraints list.
Another interesting option with respect to the LUT-based approaches is to en-

force monotonicity on the results. If desired, this property can be forced as a set

of additional inequality constraints. Monotonicity is guaranteed if the first derivative

of the obtained LUT is non-negative. For the complete LUT design, this require-

ment is formulated by
�1 1 0 : : : 0

0 �1 1 0 : : 0

0 0 �1 1 0 : 0
: : : : : : :
: : : : : : :
: : : 0 �1 1 :
0 0 : : 0 �1 1

2
666666664

3
777777775

h0
h1
:

h255

2
664

3
775P

0

0

:
:
:
0

2
6666664

3
7777775
:

In the polynomial approach we require that the derivative of (6) is non-negative
for all h.
dl̂l
ds

¼
XN�1

k¼1

khksk�1 P 0;
which implies
1 � 00 2 � 01 3 � 02 : : ðN � 1Þ � 0N�2

1 � 10 2 � 11 3 � 12 : : ðN � 1Þ � 1N�2

1 � 20 2 � 21 3 � 22 : : ðN � 1Þ � 2N�2

: : : : : :
: : : : : :
: : : : : :

1 � 2550 2 � 2551 3 � 2552 : : ðN � 1Þ � 255N�2

2
666666664

3
777777775

h1
h2
:
:
:

hN�1

2
6666664

3
7777775
P

0

0

:
:
:
:
0

2
666666664

3
777777775
:

Assuming that the image s is given in the Log domain, Gamma correction is

merely the multiplication of s by a constant value, 1=c. Thus, such a case turns

out to be a special case of the polynomial approximated LUT, using a single column

in the matrixM , i.e.,Mfsg ¼ s. Note that in this case, the constraint is sh0 P s, which
is equivalent to h0 P 1.
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All the above refers to treating the image in the 8 bit gray-value domain. If the

algorithms are to be applied in the Log domain, each input gray value x is replaced

by logð1þ xÞ=8. Note that for the LUT operations, this change implies a change of

entries in the constraint matrix.

As to the overall complexity of the resulting algorithm, it generally depends on the
specific method used (essentially the choice of MðsÞ and the number of the parame-

ters in the assumed model). Generally speaking, the complexity obtained is of the or-

der of one iteration of the original Retinex algorithm or below, and thus expected to

be solved much faster.
5. Results

In this section we present several examples to demonstrate the quality of the pro-

posed reduced complexity approach. Throughout this section we apply an RGB Ret-

inex algorithm, i.e., each color layer is treated separately (Kimmel et al., 2003). For

all the shown results we have used the parameters a ¼ 0:01, b ¼ 1e� 5.

We start by showing the test images, and the full fledged variational-based Ret-

inex algorithm results (Fig. 1) that serve as reference.

Next, Fig. 2 shows the results of a full LUT for the two input images. Fig. 3 shows

the obtained LUT for the three color components. As can be seen, the look-up-tables
are above the identity function, which means that the reflectance image turns out to

be a brighter version of the input image, as expected.
Fig. 1. Full fledged variational-based Retinex results: (left) source image; (middle) estimated reflectance

image; (right) estimated illumination image.



Fig. 2. Optimal complete Look-Up-Table results: (left) source image; (middle) estimated reflectance

image; (right) estimated illumination image.

Fig. 3. Optimal complete Look-Up-Table results: (left) the LUT for the first image (‘‘child’’); (right) the

LUT for the second image (‘‘Houses’’).
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Note that when comparing the results of the full fledged Retinex to the full

LUT in the first image, we get the impression that the LUT result is better. This

is because Retinex algorithms in general attempt to recover the reflectance image,

thereby enhancing contrast in the dark tones. In order to get a visually pleasing

output, some of the illumination should be returned to the image (Kimmel et al.,

2003). In these simulations the original Retinex succeeded better in recovering de-
tails, which would have resulted in a better visual quality if the obtained reflec-

tance results were to be used in the appropriate enhancement algorithm

(Kimmel et al., 2003).
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Fig. 4 shows the results of a polynomial approximated LUT of sixth order. Fig. 5

shows the resulting LUT for the three color components. A close resemblance can be

seen between these results and the ones obtained by the full LUT. Note that the LUT

are not monotone for the first image, but the descending part of the LUT corre-

sponds to gray values that do not exist in the image, and thus, the fact that the
LUT is not monotone should not be disturbing.

Our last example in the family of LUT operations is Gamma correction, in which

a single parameter is determined. Figs. 6 and 7 show the results and the resulting
Fig. 4. Optimal polynomial Look-Up-Table results: (left) source image; (middle) estimated reflectance im-

age; (right) estimated illumination image.

Fig. 5. Optimal polynomial Look-Up-Table results: (left) the LUT for the first image (‘‘child’’); (right) the

LUT for the second image (‘‘Houses’’).



Fig. 6. Optimal Gamma Look-Up-Table results: (left) source image; (middle) estimated reflectance image;

(right) estimated illumination image.

Fig. 7. Optimal Gamma Look-Up-Table results: (left) the LUT for the first image (‘‘child’’); (right) the

LUT for the second image (‘‘Houses’’).
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LUT. Again, we see that the results resemble the ones obtained the previous two

methods.
Fig. 8 shows the results obtained for a 5� 5 linear kernel, combined with a bias

value. Fig. 9 shows the actual kernels for the three colors. Notice that the illumina-

tion image is obtained from the input image by blurring, and therefore, the reflec-

tance image has a sharpening effect. In this simulation we chose to decimate the

set of constraints by a factor 10:1, i.e., for every 10 constraints, only the first was



Fig. 8. Optimal linear filter+ bias results: (left) source image; (middle) estimated reflectance image; (right)

estimated illumination image.
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used. This way we simplified the QP solution, relaying on the expected spatial

smoothness of these inequalities.
As a final example we show the results of the basis functions approach. We chose

to use a two-dimensional DCT basis functions, using the L2 functions taken from the

square of L� L starting from the origin. In the following simulation L ¼ 5. Fig. 10

shows the results obtained for this method.

All these simulations were done using Matlab v6.0, run on a Pentium-III Win-

dows machine with 500 MHz processor and 200 MB RAM. The images described

here are of size 256� 256. The original Retinex algorithm built on multi-resolution

solver approach (see (Kimmel et al., 2003) for more details) takes 16 s1—this is a
highly efficient numerical scheme, implying that a regular iterative solver is expected

to take much longer. The simplified parametric algorithm with a direct or a polyno-

mial LUT requires 2 s, the Gamma LUT takes on the average 0.7 s, the linear + bias

parameterization requires 1.5 s, and the DCT method requires 2.1 s. We should

stress, however, that the proposed parametric methods are expected to be far more

efficient when hardware, DSP, or even plain C-code implementation is considered.

Also, when discussing running the same algorithm for a set of images we expect

to see a further speedup since some preparation of the matrices involved could be
done only once.

As a last point in this section we return to the claim made in Section 3 about the

choice b � a causing the solution to become a pure Gamma correction. Appendix A

gives an explanation for this property and Appendix B shows that indeed, for such a
1 All run-times reported here are average ones.



Fig. 9. Optimal linear filter + bias results: (Up) the kernels for the first image (‘‘child’’); (down) the kernels

for the second image (‘‘Houses’’).
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choice of parameters, the above methods tend to give close to Gamma-correction

results.
6. Concluding remarks

In this paper we presented several methods for reducing the complexity of the var-
iational Retinex method, as described in Kimmel et al. (2003), while restricting the

solution to have a pre-specified structure. Systems based on a Look-Up-Table, linear

or nonlinear filtering, and expansion by arbitrary basis functions are shown to be



Fig. 10. Optimal combination of 2D DCT basis functions: (left) source image; (middle) estimated reflec-

tance image; (right) estimated illumination image.
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special cases of the proposed methodology. This way, instead of searching for an un-
known illumination image, the newly defined problem focuses its search on a very

small number of free parameters and thereby controlling the chosen system. It

was shown that the proposed approach yields reasonable quality output with very

efficient numerical implementations.

An alternative lesson from the obtained results is a characterization of the heuris-

tics we want to employ in order to get a Retinex imitation. For example, using a

LUT it was found (see Fig. 3) that simple dynamic range stretching, followed by

Gamma correction is the effective solution. As another example, the linear filter ap-
proach (see Fig. 9) indicated that Retinex effect is obtained by sharpening, followed,

again, by Gamma correction.
Appendix A. The Retinex algorithm for b � a—theory

Let us look at the variational expression (Eq. (2)), and assume that b � a. If we
ignore the inequality constraints, the optimal image l should satisfy
ð1
h

þ bÞ DT
x Dx

�
þ DT

y Dy

�
þ aI

i
l̂l ¼ b DT

x Dx

�h
þ DT

y Dy

�
þ aI

i
s: ð10Þ
Using the assumption b � a we get that
l̂l � ð1
h

þ bÞ DT
x Dx

�
þ DT

y Dy

�i�1

b DT
x Dx

�h
þ DT

y Dy

�i
s ¼ b

1þ b
s;



Fig. 11. Optimal LUT designed for b � a: (left) the results as a LUT mapping for the image ‘‘Child’’;

(right) the results as a LUT mapping for the image ‘‘Houses.’’
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where we have assumed that the Laplacian operator is invertible. Since this is

not true, the term aI stands as an algebraic regularization to the inverted

matrix.

An interesting property of this solution is that it also satisfies the constraints, and

therefore, this is the solution for the original optimization problem. We should re-
member that the images are in the Log domain, and their values are negative.2 Thus,

multiplying by a positive fraction smaller than 1, we get that ð1þ bÞ�1bs is indeed
higher than s, as required. This result implies that
2 W
r̂r ¼ s� l̂l � 1

1þ b
s ) R̂R ¼ expfr̂rg ¼ S

L̂L
� S1=ð1þbÞ;
which is exactly the Gamma-correction operation S
1
c. Therefore, if the required

Gamma for a given image is known, it may give an indication as to the required

value of the parameter b.
Note that in Eq. (10), adding a constant � to the solution does not impact the cor-

rectness of this equation, since
DT
x Dx

h
þ DT

y Dy

i
�

�
þ b
1þ b

s
�
¼ DT

x Dx

h
þ DT

y Dy

i b
1þ b

s:
The constant � must be such that it does not contradict the constraint
�þ b
1þ b

sP s ! �P
1

1þ b
MaxðsÞP 1

1þ b
s:
Among all the possible values of �, preferred values are those which cause the il-
lumination image to be as close as possible to the input image. This is true if a is not
e assume that the input image is normalized to the range ½0; 1�.
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zero (even if it is very small). This implies that � should be the smallest possible value

which still satisfies the constraint. For the case where MaxðsÞ ¼ 0 (in the Log do-

main), we get that � ¼ 0. For cases where s does not fill the entire dynamic range,

� can be chosen as a negative value that will improve the proximity between s and
l̂l. Therefore
Fig. 1

obtain
� ¼ min
1

1þ b
MaxðsÞ; 0

� �
:

2. Optimal linear filter + bias for b � a: (Up) the obtained kernels for the image ‘‘Child’’; (down) the

ed kernels for the image ‘‘Houses.’’
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Effectively, the value of � plays a role of stretching before the Gamma correction,

since
Fig. 1

(right)
r̂r ¼ s� l̂l ¼ ��þ 1

1þ b
s ¼ 1

1þ b
s�min

1

1þ b
MaxðsÞ; 0

� �

¼ min
1

1þ b
s½

�
�MaxðsÞ�; b

1þ b
s
�
;

R̂R ¼ min
S

MaxðSÞ

� �1=ð1þbÞ

; ½S�1=ð1þbÞ

( )
:

Appendix B. The Retinex algorithm for b � a—results

In this appendix we show through several examples that indeed we get a Gamma

correction for the choice b � a. More specifically, in the following simulations, we

have chosen a ¼ 1e� 6, b ¼ 1. Obviously, following the results of the previous ap-

pendix, the results are supposed to be very close to exact Gamma correction with ef-

fective Gamma value of c ¼ 1þ b ¼ 2.

Fig. 11 shows the obtained look-up-tables for the full LUT case. For both images,

we can see that the optimal LUT has a shape of a stretching, followed by Gamma
correction.

Fig. 12 shows the obtained kernels in the application of linear filter + bias ap-

proach. In this case, instead of performing a spatial sharpenning operation, the ker-

nels are chosen to be a simple unit operation multiplied by some constant.

Fig. 13 shows the results of the linear + bias approach by plotting the output ver-

sus the input as a Look-Up-Table. Again, we see that the results are an effective LUT

having the shape of a Gamma correction, as expected.
3. Optimal linear filter+ bias for b � a: (left) the results as a LUT mapping for the image ‘‘Child’’;

the results as a LUT mapping for the image ‘‘Houses.’’
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In all these examples, the measured Gamma in these graphs was found to be 2, as

expected.
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