
AN ALGEBRAIC MULTIGRID APPROACH FOR IMAGE ANALYSIS∗

RON KIMMEL† AND IRAD YAVNEH†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 4, pp. 1218–1231

Abstract. We apply a new algebraic multigrid method for solving computer vision problems
with constraints. As particular examples we solve the “shape from photometric stereo” and “image
binarization” problems. A variational formulation is applied to the problem of shape reconstruc-
tion from three or more images of an object with the same viewing direction and different lighting
conditions, supplemented by some pointwise height constraints. In order to obtain a smooth recon-
struction, we use a weight-function that is singular at the constrained points, resulting in an elliptic
equation with singular coefficients, which is solved efficiently by the algebraic multigrid algorithm.
As a second example a similar technique is applied to construct a threshold surface which interpolates
between values at centers of edges. This surface is then used for image binarization.
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1. Introduction. Many techniques of image analysis require solving elliptic
boundary-value problems, often emerging from the minimization of some functional.
For constant-coefficient problems on rectangular domains Fourier methods are very
efficient, but for varying coefficients or more general domains multigrid iterative meth-
ods are probably the most effective available solution technique. (See the description
and references in section 2 below.) Multigrid methods were proposed in the 1960s and
established as efficient solvers for elliptic boundary-value problems in the 1970s. They
were first applied to image analysis by Terzopoulos (e.g., [17]). More recent efficient
applications using classical multigrid structures include [21], which applies a fairly
standard multigrid algorithm for several image processing applications; [7], where
powerful fast-transform preconditioned conjugate gradient smoothers are employed
to handle difficult (and dense) differential-convolution equations by multigrid algo-
rithms; [12], where a linear coupled system of PDEs is solved repeatedly within an
iterative algorithm for digital image matching.

It is well known that classical (also called “geometric”) multigrid methods are
not robust with respect to discontinuous coefficients and singular boundaries (par-
ticularly small “holes” in the domain). Such problems usually require specialized
robust multigrid methods. Such situations appear in certain problems of image anal-
ysis and computer vision, particularly if the mathematical model which yields the
boundary-value problem is supplemented by pointwise constraints where the (exact
or approximate) solution and/or its derivatives are prescribed. In this paper we in-
troduce an efficient and robust multigrid method and apply it to two image analysis
techniques of this sort where such robustness is essential for obtaining fast asymptotic
convergence rates.
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A major part of computer vision deals with the problem of shape reconstruction
from two dimensional projections of the real world onto a camera. These projec-
tions, which we usually recognize as two dimensional images, serve as the key for
the shape reconstruction, where the whole family of shape reconstruction problems
is known as “shape from stereo/sequence/shading/structured-light/etc.” One distin-
guished member of this shape reconstruction family is the “shape from photometric
stereo” problem, which we use as our first example in this paper. In this problem
the camera location is fixed, and several images are obtained with different lighting
conditions. A simple model for the way the shape reflects the light is the Lambertian
reflectance model, according to which the gray level observed is proportional to the
inner product of the light source direction and the surface normal. The proportion-
ality ratio depends on the object properties, known as albedo, and the light source
intensity, which can be normalized.

Given three images I1, I2, I3 of the same object taken with three different lighting
directions l1, l2, l3, the following relation holds for a Lambertian reflectance model:

Ii = ρ〈li, N〉 ,
where i ∈ {1, 2, 3}, ρ is the albedo, and N is the normal to the surface z(x, y), given
by

N =
(−zx,−zy, 1)√
1 + z2

x + z2
y

.

Using the Lambertian reflectance model, the approximate surface gradient, (p, q)T ≈
∇z, can be extracted easily from the images. The question we deal with is how to
integrate back the surface z(x, y) from its approximate gradient vector field (p, q)T ,
keeping in mind that there are errors in the model and in the measurements. A
natural approach is to adopt a variational formulation, plugging the given gradient
values into a global measure for the reconstructed surface z and searching for the
surface which minimizes the functional∫

Ω

w(x, y)‖(p, q)T −∇z‖2dxdy ,(1)

where w(x, y) is some positive weight function. The resulting Euler–Lagrange equa-
tion is

∇ · [w(x, y)(p− zx, q − zy)
T ] = 0 , (x, y) ∈ Ω ,(2)

∇z · n = (p, q) · n , (x, y) ∈ ∂Ω ,

where n is the outwards normal to the boundary of the image, ∂Ω.
For the simple choice of w ≡ 1, we obtain the Poisson problem, which is easy

to solve by standard numerical methods. But, since the model and measurements
may contain significant errors, we are particularly interested in the case where we
can assume some additional knowledge about the surface profile, such as the surface
height at specific coordinates or along a curve. This introduces additional constraints
on the value of z(x, y) at certain points or regions in Ω. This problem was first stud-
ied by Horowitz and Kiryati [14] (henceforth HK). They assumed that the height
values were given at some coordinates and found that these constraints resulted in
an appreciable improvement in the solution of the reconstruction problem, especially
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when the data were noisy. HK suggest two approaches for dealing with the problem.
One approach is to minimize (1) subject to constraints on z at selected points. This
requires using a weight function with singularities at the constrained points. Suppose
we have a constraint at the point (xi, yj). Let ri,j = ‖(x, y) − (xi, yj)‖2 denote the
Euclidean distance from the constrained point. Then, in order to maintain k contin-
uous derivatives of the reconstructed shape at (xi, yj), we must have w(x, y) ∼ r−α

i,j

in a neighborhood of (xi, yj), with α > k.

A second approach offered by HK is to split the problem into two parts, solving
the unconstrained problem with w ≡ 1, and then adding a smooth function obtained
by interpolation between the constrained points, such that the sum will satisfy the
constraints. The interpolation in the second step is performed using radial basis
functions. Thus, the computational complexity of this step is O(cn), where c is the
number of constrained points and n is the number of variables. This is unsatisfactory
when c is large, particularly when the height is constrained on a curve or a surface,
although it is quite efficient for small c. When c might be large, we prefer to adopt the
first approach. Accordingly, we impose pointwise constraints on z and discretize (2)
at all unconstrained points. Solving the resulting linear system of equations requires
special methods to obtain high computational efficiency. The difficulty stems from
the singularities in w and the holes in the domain at the constrained points, where
z is prescribed and (2) is not imposed. (This, in turn, results from the minimization
of (1) subject to the constraints.) Our goal is to solve the problem to the level of
discretization errors in O(n) operations independently of c.

2. The algebraic multigrid approach. The computational problem of solving
a linear system of equations arising from the discretization of an elliptic PDE is well
studied. Here, however, there are complications due to the constraints and the singular
form of the weight function, w. For a very small number of constraints, suitably
modified “standard” methods based on the FFT algorithm or “classical” multigrid
methods may be efficient. But the additional work required for c constrained points
will normally be at least O(cn). This renders such methods inefficient if there are
more than just a few constrained points, and particularly if there are constrained
curves or surfaces. Furthermore, the so-called pyramidal method commonly used
has a very slow n-dependent asymptotic convergence rate even for the simple Poisson
problem. We therefore adopt an algebraic multigrid (AMG) approach, which achieves
fast convergence independently of the number of constraints. There is a computational
overhead involved, but it too is independent of the number of constraints and depends
linearly on n.

The concept of exploiting several different grids for accelerating iterative solutions
of discretized PDEs was explored in the 1960s, and the first practical algorithms were
formulated and implemented in the 1970s. (See [2] and the historical notes therein.) A
fine elementary introduction to multigrid computational methods, including a chap-
ter on AMG, is [5]. A comprehensive source for the practice and practical theory
of multigrid methods, including many applications and an excellent introduction to
AMG, is [20].

The basic idea of multigrid methods is to employ a sequence of progressively
coarser grids, which geometrically include the fine-grid domain, to accelerate some
basic iterative solver. The latter is usually a classical relaxation method, such as
damped Jacobi, Gauss–Seidel, or SOR. In this framework, the relaxation is required
only to smooth the error relative to the computational grid, where the error is de-
fined as the difference between the exact solution to the discrete equations and the
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approximate solution at any stage of the algorithm, and “error smoothness” can be
loosely defined as the property which allows accurate approximation of the error on
the next-coarser grid employed. Hence, the relaxation operator is usually referred to
as a “smoother.” Once the error is smooth relative to the current grid, it is approxi-
mated on the next-coarser grid using an appropriate coarse-grid correction equation,
and the resulting approximate correction is interpolated back to the fine grid and
used to correct the fine-grid approximation. The coarse-grid problem is solved ap-
proximately by a similar process using a still coarser grid, and so on recursively. The
efficiency of recursion is due to the fact that an error which is smooth relative to a
given grid is less smooth relative to a coarser grid, so the smoother can be applied ef-
fectively once again. The process described here is commonly called the (coarse-grid)
correction scheme.

Most multigrid algorithms employ the same basic structure, and the differences
are mainly in the choice of the particular components, e.g., the smoother and the inter-
grid transfer operators. The latter are the prolongation (or interpolation), which is
employed to transfer grid data to the next-finer grid, and the restriction, which is
used for fine-to-coarse grid transfer. For elliptic partial differential operators with
smoothly varying coefficients, simple methods such as linear interpolation for the pro-
longation, and local-averaging or injection for the restriction, are most efficient. But
discontinuous coefficients and local constraints as in the present problem require spe-
cial handling. The problem of discontinuous coefficients in multigrid solvers was first
studied in [1], and several different approaches were later developed (e.g., [9, 10]).
Further advancements which widened the scope and robustness of multigrid methods
were brought about by AMG methods, introduced in [4] and developed in [15]. Sub-
sequent developments have been numerous and branched off in many directions (see,
e.g., Stüben [20, Appendix A] and references therein). AMG methods allow solution
of problems discretized on unstructured grids, including non-PDE applications. Of
course, a significant computational overhead is required to obtain this extra flexibil-
ity. In the problems studied here we do not require such generality, and this allows
us to avoid many of the complications associated with unstructured meshes. Hence,
also, we do not try to list or compare different AMG approaches, most of which are
aimed at handling more general settings than we consider here, and are therefore
understandably more costly.

2.1. The multigrid components. Here we present the details of the AMG
algorithm. Let the linear system resulting from the finite-difference discretization be

Az̄ = f̄ ,

where A is a matrix of size n × n, and z̄ and f̄ are, respectively, an unknown and
a given n-vector. We discretize with the standard second-order finite difference dis-
cretization, first eliminating constrained variables. The resulting discretization stencil
at point (xk, y	) is given by



· −w(xk, y	 + h/2) ·

−w(xk − h/2, y	) Σw −w(xk + h/2, y	)

· −w(xk, y	 − h/2) ·


 ,(3)

where

Σw = w(xk, y	 + h/2) + w(xk, y	 − h/2) + w(xk + h/2, y	) + w(xk − h/2, y	) ,
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and h is the meshsize. If a neighboring point is constrained, then the corresponding
element is eliminated from the stencil (and a corresponding term is subtracted from
the right-hand side of the equation.) Thus, if point (xk, y	+1) is constrained, then
the element w(xk, y	 + h/2) is eliminated from the stencil above, but the stencil is
otherwise unaffected. In particular, the diagonal term is unchanged. Since w > 0, the
equations at points adjacent to constraints are therefore strictly diagonally dominant.
At the constrained points themselves, it is convenient to retain variables (with trivial
diagonal equations) in order to maintain a regular rectangular grid. The resulting
discretization matrix, A = {Ai,j}, is positive definite and diagonally dominant. In
fact, for every row i = 1, . . . , n, we have

Ai,i > 0 , Ai,j ≤ 0 for j �= i , Ai,i ≥ −
∑
j �=i

Ai,j ,

where the last inequality is strict at constrained points and their nearest neighbors.
Furthermore, the discretized operator is isotropic. For such matrices, simple Gauss–
Seidel or damped Jacobi relaxation are known to provide excellent smoothing.

For the discussion of the coarse-grid correction operators it suffices to consider just
two grids—the “fine” grid, which is the set of variables zfi , i ∈ {1, . . . , nf}, and the
“coarse” grid, zcj , j ∈ {1, . . . , nc}. The extension to a multigrid algorithm is obtained
by the usual recursion resulting in a so-called V-cycle. The coarse-grid variables are
chosen to coincide with a subset of the fine-grid points. Accordingly, we partition the
set of fine-grid indices as follows:

{1, 2, . . . , nf} = C ∪ F ,(4)

where C denotes the set of indices of fine-grid variables which coincide with coarse-grid
variables, and F ∩ C = ∅.

Given the matrix Af associated with the fine-grid equations, and the partition (4),
we need to define the prolongation matrix, P , the restriction matrix, R, and the
coarse-grid equation matrix, Ac. We adopt the standard choices for symmetric ma-
trices: R = PT for the restriction, and Ac = RAfP for the (Galerkin) coarse-grid
matrix. A more general discussion on how to define the partition (4) and how to treat
nonsymmetric matrices will appear in a later paper; these issues are outside the scope
of the present application. It remains now to define the prolongation.

2.1.1. Prolongation. The prolongation approximates the error at F points,
given (approximate) values of the error at C points. Matrix-dependent prolongations
employed in multigrid methods are generally based on some local approximate solu-
tion of the homogeneous fine-grid problem at F points, given fixed values at nearby
C points. We do this by means of one or a few local sweeps of F relaxation. These
are simply relaxation sweeps in which C points are skipped, and therefore C-variables
remain unchanged (see also Stüben [20, Appendix A]). If the coarse-grid points are
chosen properly, F relaxation must converge very fast [3]. A “symmetric” relaxation
should be preferred to avoid directional biases which might impair convergence. So
Jacobi relaxation should be preferred to lexicographically ordered Gauss–Seidel, for
example. In the structured-grid case tested below, we found black-red relaxation (see
below) to be even more effective.

The operator P is a matrix of size nf by nc, where Pi,j is the weight corresponding

to the contribution of the coarse-grid variable zcj to the fine-grid variable zfi . For every
coarse-grid point j ∈ {1, . . . , nc}, let ij ∈ C denote the fine-grid point which coincides
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Fig. 1. The first stage of Procedure 1 is illustrated. Large and small circles denote C points
and F points, respectively. The large black circle denotes the C point ij . Γj is shown by the set of
black circles enclosed by the solid line. Ωj is depicted by the set of small circles (black and white)

enclosed by the dashed line. In the first stage of Procedure 1, all values z
(local)
i are set to zero,

except z
(local)
ij

which is set to 1. Then, ν(local) relaxation sweeps are performed in Ωj . P
(tentative)
i,j is

given the values of z
(local)
i thus obtained for i ∈ Γj . In particular, Pij ,j = 1, since ij is not included

in Ωj (being a C point), so it is not relaxed.

with it. We prescribe a local interpolatory set (prolongation stencil), Γj ⊆ F ∪ {ij},
which is the set of all points to which the variable zcj contributes in the prolongation.
In particular, ij ∈ Γj , that is, the coarse-grid point j contributes to the C point which
coincides with it but to no other C point. We set Pi,j = 0 for i /∈ Γj and construct
the remainder of the matrix P by the following two-stage procedure (see Figure 1).

Procedure 1.
Tentative Prolongation Operator

Define a tentative prolongation matrix, P (tentative), of size nf × nc.
Set P (tentative) := 0.
For each j ∈ {1, . . . , nc}
{

• Define a local F point subset, Ωj , with Γj \ {ij} ⊆ Ωj ⊆ F .
• Define a vector z(local) of size nf .

• Set z
(local)
i :=

{
1 i = ij
0 otherwise .

• Perform ν(local) relaxation sweeps on z(local) in Ωj .

• Set P
(tentative)
i,j := z

(local)
i , i ∈ Γj .

}
Normalization

• Define a vector z(global) of size nf .
• Set z

(global)
i := 1 , i = 1, . . . , nf .

• Perform ν(global) global F relaxation sweeps.
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• Set

Pi,j := z
(global)
i

P
(tentative)
i,j∑

1≤k≤nc

∣∣P (tentative)
i,k

∣∣ , i = 1, . . . , nf , j = 1, . . . , nc .

The first stage of Procedure 1 is an approximate computation of the local influ-
ence of values defined at coarse-grid points, using homogeneous Dirichlet boundary
conditions on ∂Ωj . This choice is cheap and simple, but it tends to underestimate the
proper prolongation coefficients because the effects of all but a few nearby coarse-grid
points are ignored, and also partly due to the fact that the local problem is solved
only approximately by a few relaxation sweeps. In particular, if the row-sum of the
ith row of A is zero, then the row-sum of the ith row of P should be one in order to
obtain proper interpolation of the constant function. This is not generally achieved
in the first stage, but the second stage (which is motivated by the discussion of pro-
longation strategies by Stüben in [20, Appendix A]) normalizes the prolongation such
that a constant is interpolated correctly. In particular, note that if the sum of the ith

row of Af is zero, then the sum of the ith row of P is one, provided that P
(tentative)
i,j

are all nonnegative.
Amongst existing AMG algorithms, our approach is closest to the “element free

AMGe” method of [13]. The main difference (in addition to some structural variations
and the fact that we apply only a very small number of relaxation sweeps in Ωj

rather than attempt to solve the problem exactly) is that we do not try to determine
appropriate local boundary conditions for the first stage of the procedure. Instead, we
use homogeneous Dirichlet conditions and compensate for this with the normalization
stage. This results in a cheap and simple procedure, as indicated below. This approach
assumes (as do the classical AMG procedures) that the constant function needs to be
interpolated well. Of course, other functions can be chosen as well if they are known
to be important. We believe that the vectors that need to be interpolated (nearly)
exactly must be given or determined by a separate (nonlocal) process. An approach
for performing this task is currently being developed.

2.1.2. Application to the structured problem. Procedure 1 describes a gen-
eral approach which can be applied to unstructured problems. In the present problem
our domain is a rectangular array of meshpoints, corresponding to the pixels of an im-
age. Of course, we wish to take advantage of this structured mesh. Hence, we employ
the “standard” coarsening for our partition (4). That is, the vector z̄ is considered as
a two dimensional array,

z̄ = {zi,j} , (i, j) ∈ [0, 1, 2, . . . , nx − 1]× [0, 1, 2, . . . , ny − 1] ,

with a similar arrangement on all the grids. Point (i, j) is designated as a C point if
both i and j are even, hence nc/nf ≈ 1/4. Thus, the eight nearest neighbors of each
C point, j, are F points (with the possible exception of points near the boundary).
We choose Ωj to be these eight F points, and Γj = {ij} ∪ Ωj . The rationale behind
this choice that the PDE is a second-order elliptic equation, and therefore a second-
order prolongation (e.g., bilinear interpolation in the constant-coefficient case) is a
good choice. Using only nearest neighbors would not be appropriate because, due to
the five-point fine-grid stencil, about 1/4 of the fine-grid points have no coarse-grid
nearest neighbors. On the other hand, including all neighbors of neighbors would
lead to unnecessarily large prolongation stencils, resulting in correspondingly large
coarse-grid operators.
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Based on numerical tests, some of which are described in the next subsection, we
employ black-red relaxation in both stages of the algorithm, with ν(local) = ν(global) =
1. This relaxation is composed of a “black” step, whereby a Jacobi relaxation sweep
is carried out at all meshpoints (i, j) with i + j odd, followed by a “red” relaxation
step at the even-indexed points.

Let us estimate the computational cost of constructing the prolongation. Note
that the four nearest neighbors of C points are “black,” while the four diagonal near
neighbors are “red.” We assume here nine-point stencils. The local relaxation at the
black points requires only a single arithmetic operation per point (because the values
at all the neighboring points are zero, except the C point where the value is one),
and the subsequent relaxation of the red points requires five operations per point.
This adds up to 24 operations per C point, or about 6nf operations. In compari-
son, we estimate that an exact solve can be performed with about 80 operations per
C point (due to the special nearly tridiagonal form of the local matrices), or about
20nf operations. The single black-red global F relaxation in the second stage of the
algorithm requires 8 operations for the black points (of which there are nf/2), and
12 for the red points (of which there are nf/4), for a total of 7nf operations. The
normalization in the final step of Procedure 1 costs about 3nf arithmetic operations,
excluding computation of absolute values. This adds up to 16nf operations, which is
less than the cost of a single ordinary full red-black fine-grid relaxation sweep. (This
needs to be repeated for each of the coarse grids as well during the recursion, so the
total number of operations comes to about 20nf .) Of course, this work can easily be
carried out in parallel. The procedure is thus only a small part of the work required
for defining the multigrid components, most of which is spent on the sparse-matrix
multiplications required for computing the Galerkin coarse-grid operators, which is
standard for robust multigrid methods.

A detailed discussion of how the parameters, in particular Γj and Ωj , should be
chosen in general unstructured settings is outside the scope of this paper and will be
discussed separately. Here we only point out several observations. Obviously, these
choices depend on the strategy for selecting C points. Clearly, Γj must include nearest
neighbors of the C point ij , and also, every F point must belong to at least one Γj .
This would suffice if C points are chosen as in classical AMG, but we would like to
allow a sparser C set. We might therefore also include neighbors of neighbors, but we
should then “prune” the prolongation stencil by eliminating small values in order to
avoid an unnecessary and costly increase in the size of the stencil. As for Ωj , using
Ωj = Γj \ {ij} seems sufficient, at least for compact stencils.

2.2. Numerical test of robustness. To test the reliability and efficiency of
the solver, we discretize (2) by the five-point finite-difference discretization, impose
constraints at certain points, and solve the resulting system with multigrid V -cycles,
employing on each grid but the coarsest one relaxation sweep before transferring to the
next-coarser grid and one sweep after obtaining the coarse-grid correction—a so-called
V (1, 1)-cycle. We employ red-black relaxation, applying a Jacobi relaxation sweep at
all points (i, j) with i+ j even, followed by a similar sweep over the remaining points.
Of course, these are full sweeps, not F sweeps; the latter are employed only in the
construction of the prolongation.

The solution is constrained at c random points, with c = 1, 10, 100, 1000, imposing
random values. These constraints represent holes in the domain, where the solution
is imposed and the differential equation is not satisfied. The weight function is given
by w(x, y) = r−2

min , where rmin is the distance to the nearest constrained point. (Note
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Table 1
Asymptotic residual reduction factors per cycle, averaged over the last five cycles, are tabulated

for resolutions 64 by 64, 128 by 128, and 256 by 256. c denotes the number of constrained points.
V (1, 1)-cycles with red-black relaxation are employed. The best and the worst values obtained in ten
test runs for each case are given.

c 1 10 100 1000

642 0.171–0.214 0.137–0.187 0.097–0.139 0.048–0.079

1282 0.111–0.220 0.161–0.189 0.134–0.163 0.096–0.137

2562 0.124–0.216 0.166–0.214 0.157–0.176 0.119–0.129

that w is only required midway between gridpoints, so it is finite everywhere we need
to define it.) A first approximation to the solution is obtained by a full-multigrid
(FMG) algorithm (see, e.g., [5, 20]), which is essentially a pyramidal outer loop with
inner multigrid V -cycles. Then, we apply ten V (1, 1)-cycles and compute the residual-
norm reduction factor per cycle, geometrically averaged over the last five cycles. The
values of p and q are obtained from a random image, but tests with p = q = 0 (i.e.,
Laplace equation) give very similar results. In fact, the asymptotic convergence factor
is essentially independent of these data. More generally, an iterative process applied

to a linear nonsingular problem Ax = f (1), with initial guess x
(1)
0 , displays the same

convergence history (up to roundoff errors) as the same process applied to the problem

Ax = f (2) with a different initial guess, x
(2)
0 = x

(1)
0 + A−1(f (2) − f (1)), because the

initial residuals (and errors) are the same. Thus, the data do not affect the asymptotic
convergence rate, because this rate is generally independent of the initial guess (since
the modes that converge most slowly “creep in” via roundoff effects even if they
are somehow excluded initially). However, the convergence behavior obviously does
depend on the location and number of constraints, because these affect A. Hence, each
test is run ten times—for ten different random locations of the constrained points—
and the best (smallest) and worst (largest) residual reduction factors per cycle are
shown in Table 1. The tests are carried out at resolutions 64 by 64, 128 by 128,
and 256 by 256. We find that the method is robust for this set of problems. The
convergence behavior actually improves when the number of constraints is increased,
and it is not sensitive to the random location of the constrained points. In the worst
case, the error is still reduced by a factor of more than 4 per cycle, so two cycles
should easily suffice to obtain accuracy that is comparable to the discretization error
if the FMG algorithm is employed [20, section 3.2.2]. Thus, the goal of solution in
O(n) operations is met for this set of problems. There is no significant deterioration
as the resolution is increased. (The slight advantage of the lower-resolution results
when c is large is due, at least partly, to the larger c/n ratio, which results in a greater
“average” diagonal dominance; indeed, when c/n is appreciable, the relaxation process
itself is found to have good convergence properties.) We also performed a similar set
of tests to determine the optimal value for ν(global). We found ν(global) = 1 to be best
(i.e., achieve the best convergence rate) in all our tests. Similar tests using Jacobi
local and global F relaxation instead of black-red in the prolongation construction
showed comparable behavior with ν(local) = ν(global) = 2.

The numerical tests were repeated, for resolution 1282, using an exact solve in-
stead of ν(local) = 1. The asymptotic convergence rates in these tests were better
(smaller) than the ones shown above, typically by just two or three percent. The
worst behavior in this respect was exhibited for c = 1, where the average deteriora-
tion (over ten runs) was by 4.4%. This implies that the expected residual reduction
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Fig. 2. The input images for the shape from stereo reconstruction process. Same camera
position and head object with different lighting directions.

by 100 cycles using ν(local) = 1 is better than that of 95 cycles using exact solves.
Since only one or two cycles actually need to be used in practice, this difference is
negligible. The computational savings due to the approximate solution are imple-
mentation and problem dependent. In general, for each coarse-grid point one needs
to construct a linear system of |Ωj | equations and variables, and the difference is
between solving this system exactly or performing just a small number of relaxation
sweeps. In the particular case examined here, we estimate above that the exact solve
is about 3.3 times as expensive as a single relaxation, using the best implementation.
Of course the overall savings are less significant than this, because this is just a part
of the prolongation construction. In more general settings, the cost of obtaining an
exact solution quickly grows with |Ωj |, so if the number of required relaxation sweeps
remains small, significant savings may be obtained. The reason why the required
number of relaxation sweeps should remain small is the strong diagonal dominance
of the local systems (due to the fact that coefficients multiplying C points have been
eliminated).

3. Experimental results.

3.1. Shape from photometric stereo. In our first example we compute shape
from photometric stereo with and without constraints. (Actually, the unconstrained
problem does require a single arbitrary constraint, because the solution is otherwise
only determined up to a freely chosen translation due to the Neumann boundary
conditions.) Figure 2 is a set of five input images from which we reconstruct the
surface. (We use five images with averaging, rather than only three, to compensate
somewhat for the shadow and specularity effects.) We test our method with and
without a small number of constraints. To obtain the constraints, the relative height
values at eight points were manually extracted by matching corresponding points
in the two views of the object shown in Figure 3 (top). Next, the reconstruction
algorithm was applied to the images with and without the constraints. As shown
in Figure 4, the reconstruction with the given data points better captures the three
dimensional structure of the surface, while gracefully interpolating between the eight
given points without generating any artificial discontinuities.

3.2. The Yanowitz–Bruckstein binarization method. This method [22] is a
technique for image binarization which handles nonuniformly illuminated images. See
[18, 19] for a comparison and an overview of binarization methods for text analysis.
The algorithm is based on the simple observation that a proper threshold surface
(defined below) may be defined by the surface interpolating image points located at
the centers of edges, where edges are defined at the locations where, for example, the
image has high gradient magnitude.
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Fig. 3. Top: side and frontal views from which height values at a small number of points were
extracted to improve the reconstruction. Bottom: three dimensional measured height-map, obtained
with a Cyberware laser scanner.

Fig. 4. Side and perspective views of the reconstructed surface, with the frontal texture mapped
onto it. Left frames: with no constraint. Right frames: with eight (marked) constrained points.

In the Yanowitz–Bruckstein binarization method, first the locations of the edge
centers are detected. The image values at these points serve as constraints for a
Laplace equation whose solution serves as a threshold surface. The binary image
is then obtained by thresholding the original image. That is, given a gray level
image I(x, y), the binary image gets a value 1 if the image gray level at a point is
higher than the value of the computed threshold surface u(x, y), and gets a zero value
otherwise.

The main difficulty with the Yanowitz–Bruckstein method is that classical SOR
relaxation methods for solving the Laplace equation with sparse constraints at the
edge locations require many iterations to converge, especially if the constrained points
are far from one another. The AMG solver again provides an excellent remedy for
this problem.
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More formally, given the image I(x, y) : Ω → R
+, the algorithm for computing

the threshold surface u(x, y) proceeds as follows:

• Isolate the locations of edge centers, for example by the set of points, e =
{(x, y) : |∇I| > T}, for some given threshold T .

• Use the values I(x, y) as constraints at the set of points (x, y) ∈ e to solve
for the threshold surface ∆u = 0 in Ω \ e, subject to u(x, y) = I(x, y), for all
(x, y) ∈ e.

The surface u is the minimizer of
∫ |∇u|2dxdy that is constrained to pass through the

points I(x, y) for (x, y) ∈ e. Again, one may smooth the interpolation surface near
the edge points by adding a weighting function w(x, y) that gets higher values near
the points in e. The minimization functional is slightly simpler than in the previous
example and reads

∫
w|∇u|2dxdy. We can use our shape from the photometric stereo

algorithm by setting p and q to zero.

We show two examples of a 256× 256 map image, to which we first add a tilted
intensity plane defined by the gray level image n(x, y) = x + y, and then the same
image added to the intensity image n(x, y) = x2 + y2, centered in the middle of the
image. See Figure 5 for the input images and Figure 6 for the binarization results.

Fig. 5. Left: Original map image. Middle: Adding a tilted intensity plane. Right: Adding a
x2 + y2 intensity surface.

4. Conclusions. A new AMG numerical method was applied to two classi-
cal problems of image analysis. The HK problem [14] of shape from photometric
stereo with constraints was solved efficiently and robustly by the AMG algorithm.
The reconstructed surface satisfies a variational principle without compromising the
physical model, while also satisfying a discontinuous set of constraints by passing
smoothly through given points and curves on the surface. In the second example the
AMG method was applied to the image binarization problem, as the main step in the
Yanowitz–Bruckstein binarization procedure.

The AMG algorithm was tested on a set of problems with randomly distributed
pointwise constraints and singular weight functions, and was found to perform ro-
bustly and efficiently. The proposed prolongation construction is computationally
inexpensive, and the setup phase is correspondingly efficient. We conclude that the
proposed multigrid method performs essentially optimally for these problems. Sim-
pler methods may be faster in such special situations where the number of constraints
is very small (e.g., classical multigrid with Krylov subspace acceleration) or very large
(simple relaxation), but the AMG approach is robust for the full range of problems,
and it is therefore the method of choice. Generalization of the method to unstructured
problems is underway and will be reported elsewhere.
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Fig. 6. Left: Input image with edge locations marked red. Middle: Näıve thresholded binary
image I −max(I)/2. Right: Yanowitz–Bruckstein adaptive thresholded binary image I − u.

The shape from photometric stereo and the binarization method are just two
examples in which elliptic boundary-value problems with irregular constraints are en-
countered in image processing and computer vision. Further examples are shape from
shading, lightness, and optical flow [8, 16, 17], all of which can be coupled efficiently
with irregular constraints using the multigrid solver. Another example is efficient
image reconstruction from data around the edges in so-called second generation geo-
metric based image coding [6, 11].
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