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Abstract

We present an efficient solution to the Eikonal equation on para-

metric manifolds, based on the fast marching approach. This method

overcomes the problem of a non-orthogonal coordinate system on the

manifold by creating an appropriate numerical stencil. The method

is tested numerically and demonstrated by calculating distances on

various parametric manifolds. It is further used for two applications:

image enhancement and face recognition.

1 Introduction

The viscosity solution φ(x, y) of the Eikonal equation

‖∇φ‖ = F, (1)

is a weighted distance map from a set of initial points, where the values of

φ are given. The weights are given by the scalar positive function F (x, y).
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Efficient solutions to the Eikonal equation on the plane parameterized by

a regular (orthogonal) numerical grid were introduced by Sethian [12] and

by Tsitsiklis [20]. Sethian’s fast marching method was extended by Kimmel

and Sethian [7] to the solution of the Eikonal equation on triangulated

manifolds

‖∇Mφ‖ = F, (2)

with M the manifold and ∇Mφ the gradient on the manifold. This exten-

sion enables a fast calculation of geodesic paths [7], Voronoi diagrams, and

offsets [8, 9] on triangulated manifolds. Sethian and Vladimirsky [15] pre-

sented Ordered Upwind Methods (OUM) for static Hamilton-Jacobi equa-

tions. These methods enable the solution of equations where the directions

of the characteristics are different from those of the gradients of φ. As an

example, they demonstrate the solution of the Eikonal equation for mani-

folds which are function graphs. Also Tsai et al. [19] solved the equation

on function graphs, but they used an iterative sweeping method. A sim-

ilar sweeping approach was previously used by Danielson [3] to compute

Euclidean distance maps on flat domains with regular grids. Mémoli and

Sapiro [10] calculated distances on implicit manifolds by using orthogonal

fast marching in a thin offset band surrounding the manifold.

We present here an efficient solution to the Eikonal equation on para-

metric manifolds, based on the fast marching approach 1 . A parametric

manifold consists of a parameterization plane U = {u1, u2} ∈ R2, which is

mapped by X :R2→ RN to the parametric manifold X(U) = {x1(u1, u2),

x2(u1, u2), . . . , xN(u1, u2)} ∈ RN . In this method the calculations are done

on the 2-dimensional uniform Cartesian grid of the parameterization plane

and not on the manifold like in Kimmel and Sethian’s method or in RN

according to Mémoli and Sapiro. The numerical stencil at each grid point is

calculated directly from the metric and there is no need for the “unfolding”

1An early version of the paper was presented at the INTERPHASE 2003 meeting

at the Newton Insitute during the 2003 Programme Computational Challenges in PDEs

[17].
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procedure of Kimmel and Sethian or for finding the“near front” as done by

Sethian and Vladimirsky. The proposed method solves the equation in one

sweep of the numerical grid as opposed to Tsai et al.’s method, which is an

iterative approach that performs several sweeps in every iteration. Further-

more, the number of iterations required for the convergence of their method

depends on the anisotropy of the equation. The presented method is first

order accurate as that of Kimmel and Sethian, but may be extended to

higher orders by using Sethian and Vladimirsky’s higher order directional

derivative approximations [14]. The error of Mémoli and Sapiro’s method

is o
(√

h
)
.

The derivatives of X with respect to ui are defined as Xi , ∂X
∂ui , and they

constitute a non-orthogonal coordinate system on the parametric manifold.

See Figure 1. The distance element on the manifold is

ds =
√

gijduiduj, (3)

where we use Einstein’s summation convention, and the metric tensor of

the manifold gij is calculated by

(gij) =

(
g11 g12

g21 g22

)
=

(
X1 ·X1 X1 ·X2

X2 ·X1 X2 ·X2

)
. (4)

This paper is organized as follows. The second section describes the

non-orthogonality of the coordinate system on the manifold and the result-

ing problem. Section 3 introduces the construction of a numerical stencil

which overcomes this problem. Section 4 presents the numerical scheme,

and Section 5 the marching method for solving the Eikonal equation on the

manifold. The performance and accuracy of the numerical scheme is tested

in Section 6. Section 7 demonstrates applications of the numerical scheme

in image processing and computer vision. The conclusions appear in Section

8.
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Figure 1: The orthogonal grid on the parameterization plane is transformed

into a non-orthogonal one on the manifold.

2 The Non-Orthogonal Coordinate System

on the Manifold

The power of the fast marching algorithm lies in its ability to solve the

Eikonal equation in one sweep without iterations. The algorithm takes

advantage of the upwind nature of the Eikonal equation in order to update

the value of each grid point by a number of times bounded by the number

of its neighbors. We would like to devise a similar algorithm for Equation

(2).

The orthogonal fast marching algorithm [12] solves the Eikonal equation

for an orthogonal coordinate system. In this case, the numerical stencil for

the update of a grid point consists of one or two points out of its four

neighbors. The first point is one of the top/bottom pair and the second is

one of the left/right pair. The two grid points in the stencil, together with

the updated grid point, compose the vertices of a right triangle. See Figure

2.
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Figure 2: The numerical stencil for the orthogonal fast marching algorithm

is a right triangle.

This is not the case for manifolds with g12 6= 0, where we get a non-

orthogonal coordinate system on the manifold, see Figure 3. The resulting

triangles are not right triangles. Each grid point is the origin of two acute

angles and two obtuse angles. If a grid point is updated by a stencil with an

obtuse angle, a problem may arise. Depending on the direction of the ad-

vancing ‘update front’, the value of one of the points of the stencil might not

be set in time and cannot be used properly for supporting the updated ver-

tex. There is a similar problem with fast marching on triangulated domains

which contain obtuse angles [7].

3 Splitting Obtuse Angles

Our solution to obtuse angles is similar to that of [7] with the exception

that there is no need for the “unfolding” step. We perform a pre-processing

stage for the grid, in which we split every obtuse triangle into two acute

ones, see Figure 4. The split is performed by adding an additional edge,

connecting the updated grid point with a non-neighboring grid point. The
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Figure 3: Two acute angles and two obtuse angles for a non-orthogonal

coordinate system on the manifold.

distant grid point becomes part of the numerical stencil.

The need for splitting is determined according to the angle between the

non-orthogonal axes at the grid point. It is calculated by

cos (α) =

(
X1 ·X2

‖X1‖‖X2‖
)

=
g12√
g11g22

. (5)

If cos (α) = 0, the axes are perpendicular, and no splitting is required.

If cos (α) < 0, the two angles with an angle of α should be split. Otherwise,

the two other angles should be split. The denominator of Equation (5) is

always positive, so we need only check the sign of the numerator g12.

In order to split an angle, we should connect the updated grid point

with another point, located m grid points from the point in the direction

of X1 and n grid points in the direction of X2 (m and n may be negative).

The point provides a good numerical support, if the obtuse angle is split

into two acute ones. For cos (α) < 0 this is the case if

cos (β1) =

(
X1 · (mX1 + nX2)

‖X1‖‖mX1 + nX2‖
)

=
mg11 + ng12√

g11 (m2g11 + 2mng12 + n2g22)
> 0,

(6)

and

cos (β2) =

(
X2 · (mX1 + nX2)

‖X2‖‖mX1 + nX2‖
)

=
mg12 + ng22√

g22 (m2g11 + 2mng12 + n2g22)
> 0.

(7)
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Figure 4: The numerical stencil for the non-orthogonal coordinate system.

Triangle 1 gives good numerical support to the black grid point, but triangle

2 includes an obtuse angle. It is replaced by triangle 3 and triangle 4.

Also here, it is enough to check the sign of the numerators. For cos (α) > 0,

the equation for cos (β2) changes its sign and the constraints are

mg11 + ng12 > 0, (8)

and

mg12 + ng22 < 0. (9)

Equations (6,7,8,9) give together the condition

∣∣∣∣
g12

g11

n

∣∣∣∣ < m <

∣∣∣∣
g22

g12

n

∣∣∣∣ , (10)

and we would like to find the minimal m and n that satisfy this condition.

We define P = |g12|
g11

and Q = g22

|g12| . The problem is solved by the following

algorithm

• If P ≥ 1, p = P − bP c and q = Q− bP c. Else, p = P and q = Q.
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• Start with n = 1.

• Pn = p · n, Qn = q · n.

• If dPne < Qn, then m = dPne. Else, set n = n + 1 and return to the

previous step.

• If P ≥ 1, m = m + bP c · n.

• If cos (α) > 0, then n = −n.

If we define L = d1/(Q− P )e = d |g12|g11

g
e, with g = det(gij) = g11g22 − g2

12,

then |n| is bounded by L, because for n = L we have Qn−Pn > 1, and there

will be an m that complies to the condition in Equation (10). We could

use binary search and the bound L to get a complexity of O(log L) for this

algorithm, but because the bound is not a tight one, we use the algorithm

as is. It should be noted that gij and therefore L are parameterization

dependent. If we have a parameterization with regions where X1 and X2

are almost parallel, the resulting m and n might be large, affecting the

accuracy and efficiency of the numerical scheme.

4 The Numerical Scheme

Once the pre-processing stage is over, we have a suitable numerical sten-

cil for each grid point and we can solve the Eikonal equation numerically.

The stencil is composed of the vertices of an acute angle, see Figure 5,

where the vertex C is updated according to the vertices A and B. If the

triangle was originally acute, we have a =
√

g11, b =
√

g22 and θ = α.

If it is a triangle created by splitting, we have a =
√

g11 or a =
√

g22,

b =
√

m2g11 + 2mng12 + n2g22 and θ = β1 or θ = β2. Next, we want to find

t such that t−u
h

= F .

The numerical scheme according to [7] is

• u = φ(B)− φ(A).
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Figure 5: Two views of the numerical stencil.

• Solve the quadratic equation

(a2+b2−2ab cos θ)t2+2bu(a cos θ−b)t+b2(u2−F 2a2 sin2 θ) = 0. (11)

• If u < t and a cos θ < b(t−u)
t

< a
cos θ

, then φ(C) = min{φ(C), t+φ(A)}.
Else, φ(C) = min{φ(C), bF + φ(A), aF + φ(B)}.

5 Marching on Manifolds

After the pre-processing stage, the Eikonal equation is solved by the follow-

ing algorithm [13].

Initialization:

• The initial points are defined as Accepted and given their initial values.

• All the other grid points are defined as Far and given the value infinity.

Iterations:

1. Far ‘neighbors’ of Accepted points are defined as Close.

2. The values of the Close points are updated according to the numerical

scheme.
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3. The Close point with the minimal value becomes an Accepted point.

4. If there remain any Far points, return to step 1.

We used the term ‘neighbors’ above to describe grid points that belong

to the same triangular numerical stencil. These points are not necessarily

neighboring points on the original grid. We find these ‘neighbors’ during

the pre-processing stage described in the previous section.

The complexity of the algorithm is upper bounded by O(N ·max(log L, log N)),

where N is the number of points in the grid. The log N results from using

a min-heap data structure for sorting the Close points [13].

6 Testing the Numerical Scheme

The algorithm was tested for parametric manifolds with non-orthogonal

coordinate systems. In Figure 6 it is implemented on the tilted plane

z = 3x + 2y, with the initial point at (x = 0.5, y = 0.5). In this figure

and the ones to follow, lower values are assigned brighter shades of gray

and black curves are used to indicate the level curves. The correctness of

the distance map is evident from the resulting level curves, which are con-

centric circles on the manifold. In Figure 7 the algorithm is implemented

for the manifold z = 0.5 sin(4πx) sin(4πy) with the same initial point. The

proposed algorithm can work also for parametric manifolds that are not

function graphs. In Figure 8 the algorithm is implemented for the sphere

{x = cos(θ) cos(φ), y = sin(θ) cos(φ), z = sin(φ)}. In this case, The initial

points construct a square on the parameterization plane {u1, u2} = {θ, φ}.
The range of the parameters in the figure is −54◦ < θ, φ < 54◦. In Figure

9 the algorithm is implemented on the tilted plane z = 2x + 2y. This time,

F on the right hand side of the Eikonal equation (2) changes abruptly on

the parameterization plane . Its value is F = 10 for x > 0.5, y > 0.5 and

F = 1 otherwise. This figure shows that the numerical scheme can handle

a sharply changing F .
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u2

u1

Figure 6: Fast marching on the manifold z = 3x + 2y. Left: implemented

on the parameterization plane. Right: projected on the manifold.

u2

u1

Figure 7: Fast marching on the manifold z = 0.5 sin(4πx) sin(4πy). Left:

implemented on the parameterization plane. Right: projected on the man-

ifold.
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Figure 8: Fast marching on a sphere. Left: implemented on the parameter-

ization plane. Right: projected on the manifold.

Figure 9: Fast marching with a non-constant F. Left: implemented on the

parameterization plane. Right: projected on the manifold.
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The accuracy of the algorithm is measured by running the algorithm on

the manifold z = 0.5 sin(4πx) sin(4πy) with one initial point at (x = 0.5, y = 0.5).

Table 1 gives the estimated errors of the algorithm on various grid sizes and

estimations of the order of accuracy. The normalized L2 error at grid size n2

is en
2 = ‖v−un‖2

n2 , where un is the result of the algorithm on a grid of size n2

and v is the correct solution. The L∞ error for this grid is en
∞ = ‖v−un‖∞.

Since v is unknown, we estimate it by the result of the algorithm on a grid

of size 10252. Assuming that v is of the form v = un +Chr +O(hr+1), where

h = 1
n−1

, the order of accuracy of the numerical scheme according to the Lk

norm at grid size n2 can be estimated according to [11]

rn
k = log2

(
en

k

e2n
k

)
. (12)

size: 172 332 652 1292 2572 5132

en
2 : 6.2 · 10−3 2.3 · 10−3 8.4 · 10−4 3.0 · 10−4 4.1 · 10−5 5.7 · 10−6

rn
2 : 1.43 1.45 1.50 2.86 2.85

en
∞: 0.4425 0.2702 0.1746 0.0977 0.0277 0.0101

rn
∞: 0.71 0.63 0.84 1.82 1.46

Table 1: The estimated errors and orders of accuracy of the algorithm as a

function of grid size.

7 Applications in Image Processing and Com-

puter Vision

The solution to the Eikonal equation on parametric manifolds has many

applications. In this section we demonstrate its use in the areas of image

processing and computer vision. The first application consists of the accel-

eration of the image enhancing Beltrami filter [6, 16] by using a short time

kernel [18]. Calculating the kernel requires the solution to the Eikonal equa-

tion on the image manifold. The second application is the implementation
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of face recognition [1] by geometric invariants [4, 5] without reconstruc-

tion of the facial surface [2]. In this case a signature of the face is computed

from geodesic distances between points on the facial manifold. The geodesic

distances are calculated from the surface metric using our method.

7.1 A Short Time Kernel for the Beltrami Filter

The Beltrami filter [6, 16] results from the minimization of the area of the 2-

dimensional Riemannian image manifold U embedded in the space-feature

manifold RN , where N = 3 for gray scale images and N = 5 for color

images. For gray scale images we have

X(u1, u2) = {u1, u2, I(u1, u2)}, (13)

where u1, u2 are the space coordinates and I is the intensity component.

We use a Euclidean space-feature manifold with the metric hij given by

(hij) =




1 0 0

0 1 0

0 0 β2


 , (14)

where β is the relative scale between the space coordinates and the intensity

component. The metric gij of the image manifold is derived by the pullback

procedure

(gij) =

(
1 + β2I2

1 β2I1I2

β2I1I2 1 + β2I2
2

)
, (15)

where Ii , ∂I
∂ui . A similar derivation is applicable for color images.

The Beltrami filter results from minimizing the area of the image man-

ifold

S =

∫∫ √
gdu1du2, (16)

with respect to the embedding. The corresponding Euler-Lagrange equa-

tions as a gradient descent process are

Xa
t = −g−

1
2 hab δS

δXb
= g−

1
2 ∂i(g

1
2 gij∂jX

a), (17)
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with gij the contravariant metric of the image manifold. For gray scale

images we get

It = g−
1
2 ∂µ(g

1
2 gµν∂νI) = ∆MI. (18)

Using the short time kernel [18], we replace the partial differential equa-

tion (18) with a convolution-like process

I(u1, u2, t0 + t) =

∫∫
I(ũ1, ũ2, t0)K(u1, u2, ũ1, ũ2; t)dũ1dũ2 , (19)

where

K(u1, u2, ũ1, ũ2; t) =
H0

t
exp


−

(∫ (ũ1,ũ2)

(u1,u2)
ds

)2

4t


 ,

(20)

and H0 is taken such that integration over the kernel equals one. The

operand of the exponent in this equation includes the geodesic distance

between the filtered pixel and its neighboring pixels. Its calculation neces-

sitates the solution to the Eikonal equation on the image manifold.

Figure 10 shows the result of applying the short time kernel Beltrami

filter to a gray scale image. In this case β = 3, the time step taken was

t = 0.5, and only grid points with a kernel value above 0.01 were used for

the filtering. The time difference between the images is 1.

7.2 Face Signature without Reconstruction of the Fa-

cial Surface

Face recognition by geometric invariants [1], which is an application of the

bending invariant canonical forms [4, 5], relies on a signature of the face

computed from geodesic distances between points on the facial manifold.

This use of geodesic distances makes this method highly robust to isometric

deformations of the face, such as those resulting from facial expressions.

The face manifold is given by

X(u1, u2) = {u1, u2, z(u1, u2)}, (21)
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Figure 10: Application of the short time kernel Beltrami filter to a gray

scale image. The original image is in the top left. The order of the images

is from top to bottom and left to right.
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and its metric can be acquired by photometric stereo, which requires at

least three images of the face using independent illumination directions.

Assuming a Lambertian reflection model, the generated images are

I i(u1, u2) = ρ(u1, u2)N(u1, u2) · Li, (22)

where ρ(u1, u2) is the albedo at each point, N(u1, u2) is the normal to the

facial surface and Li is the illumination direction for the i image. The

normal is given by

N(u1, u2) =
{−z1(u

1, u2),−z2(u
1, u2), 1}√

1 + ‖∇z(u1, u2)‖2
, (23)

where zi , ∂z
∂ui .

Given at least three images with independent illumination directions,

∇z(u1, u2) can be extracted by Least Squares. The facial surface metric is

(gij) =

(
1 + z2

1 z1z2

z1z2 1 + z2
2

)
, (24)

and it enables the calculation of geodesic distances on the facial surface

by our method for the solution of the Eikonal equation on such manifolds.

Figure 11 shows distance maps calculated by our method from the metric

of a face manifold. Note that the manifold itself {u1, u2, z(u1, u2)} needs

not be reconstructed.

The calculation of geodesic distances enables the use of the bending in-

variant canonical forms framework [4, 5] to produce a face signature. In

this framework, the face manifold is sampled and a matrix of the geodesic

distances between the points is produced. Using multidimensional scal-

ing (MDS) the points are embedded in R3, where they tend to form a

2-dimensional function. The face signature is then constructed from this

function. Because the geodesic distances are invariant to isometric defor-

mations, this signature is robust to such deformations, which are frequent

in face manifolds. For details on the quality and characteristics of this face

signature see [1, 2].
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Figure 11: Distance maps of a face manifold from various source points.

The level curves of the distance maps are drawn on the parameterization

plane.

18



8 Conclusions

A new efficient method for solving the Eikonal equation on parametric man-

ifolds was introduced. The method requires only the metric tensor at each

grid point in order to determine the numerical stencil and execute the nu-

merical scheme. This method enables a fast calculation of distances on

manifolds, needed in many applications.
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