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Texture Mapping
using Surface Flattening

via Multi-Dimensional Scaling
Gil Zigelman, Ron Kimmel and Nahum Kiryati

Abstract—We present a novel technique for texture map-
ping on arbitrary surfaces with minimal distortions, by pre-
serving the local and global structure of the texture. The
recent introduction of the fast marching method on trian-
gulated surfaces, made it possible to compute a geodesic
distance map from a given surface point in O(n lgn) opera-
tions, where n is the number of triangles that represent the
surface. We use this method to design a surface flattening
approach based on multi-dimensional scaling (MDS). MDS
is a family of methods that map a set of points into a finite
dimensional flat (Euclidean) domain, where the only given
data is the corresponding distances between every pair of
points. The MDS mapping yields minimal changes of the
distances between the corresponding points. We then solve
an ‘inverse’ problem and map a flat texture patch onto the
curved surface while preserving the structure of the texture.

Keywords— Texture mapping, multi-dimensional scaling,
fast marching method, Geodesic distance, Euclidean dis-
tance.

I. Introduction

The texture mapping problem is closely related to the
inverse problem of flattening a curved surface into a plane.
In the context of mapping the surface of the earth this is
known as the ‘map maker problem’. It has been shown
by Gauss in 1828 that an isometric mapping between two
surfaces of different intrinsic curvature is not possible. In
other words, it is impossible to map a convoluted surface
onto a plane or a sphere without introducing metric dis-
tortions because both surfaces differ with respect to their
Gaussian curvature. Thus, only approximate solutions are
possible. Therefore, flattening algorithms can only aim for
minimal geometric distortions but cannot prevent distor-
tions altogether.

The computer graphics community has made many at-
tempts to solve the problem of mapping flat texture images
onto curved surfaces. The main problems with most of the
existing methods are that they

• introduce large deformations and distortions to the orig-
inal texture, and
• involve high computational complexity.

Environment mapping [5], [14], is one technique that cre-
ates the effect of environment reflections on surfaces. It

G. Zigelman is with the Department of Computer Science, Tech-
nion, Haifa 32000, Israel, E-mail: zgil@cs.technion.ac.il
R. Kimmel is with the Department of Computer Science, Technion,

Haifa 32000, Israel, E-mail: ron@cs.technion.ac.il
N. Kiryati is with the Department of Electrical Engineering–

Systems, Tel Aviv University, Tel Aviv 69978, Israel, E-mail:
nk@eng.tau.ac.il

maps the original 2D texture to a sphere or a cube sur-
rounding the surface. Then, the surface normal at each
point is used to find the intersection of the reflected viewing
vector with the surrounding simple object, and assigns the
texture at that point to the corresponding surface point.
These methods do not preserve the local area of the tex-
ture and introduce local deformations. Moreover, mapping
the 2D texture onto a sphere causes distortions to begin
with. In order to minimize these artifacts, one has to dis-
tort the original flat texture image before mapping onto a
sphere.

Bier and Sloan [4] extended the environment mapping
idea and proposed a two step procedure. First, the tex-
ture is mapped onto a simple object (preferably preserving
the area) and then it is mapped from the simple object to
the given surface, using, for example, the surface normal’s
intersection with the simple object. This method also in-
troduces visible deformations, however, it can decrease the
distortions which exist in the previous methods.

Kurzion, Möller and Yagel [18] try to preserve area.
They use a cube as a simple surrounding object. For each
point they find two curvature values in specially selected
directions, and then change the density of the surrounding
image respectively. This method is area preserving, how-
ever, it creates shear effects. It is also limited to smooth
surfaces with C2 continuity.

Arad and Elber [1] preserve the local texture area by
finding, for a specific viewing direction, the four intersec-
tion curves (in the parametric space) between a swept rect-
angle in the viewing direction and the surface. Then, they
warp the square texture image to fit the four intersection
curves. The texture image is warped before mapping. This
method is useful in cases where one wants to map a texture
on a small portion of a surface.

Bennis, Vézien, and Iglésias [3] first piecewise flatten the
surface and then map the texture onto each flattened part.
The flattening of a region grows around an isoparametric
curve selected manually. They use a distortion metric as a
control and stop the growth when the accumulated distor-
tion exceeds a given threshold. They permit discontinuities
on the mapped texture in order to minimize distortions.

Floater [11], [12], presented a ‘shape preserving’ texture
mapping. He first limits the triangulated surface bound-
ary vertices to specific coordinates of a convex polygon in
R2. Then he solves a set of linear equations that force all
other interior vertices to be a convex combination of their
neighbors. He proves that this way there will be no self
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intersections of triangles on the flat texture plane. Since
the boundary texture coordinates are fixed, deformations
obviously occur, especially global ones.

Lévy and Mallet [19] extended Floater’s ideas by adding
flexibility to the scheme. Instead of solving a set of linear
equations, they minimize a global criterion in a least square
sense. This allows adding new measures in addition to
Floater’s linear equations. These measures try to preserve
the perpendicularity and constant spacing of isoparametric
curves traced on the surface. The constraints involve lo-
cal orthogonality of the chart, and local homogeneity in the
sense that isoparametric curves are restricted to be straight
between adjacent triangle. The constraints add freedom
to Floater model, yet require many iterations to converge,
with about 100 iterations for 3000 triangles taking about a
minute on SGI R4000 processor. The constraints also en-
able them to make the texture continuous through cuts on
the surface. In general, these local constraints can not be
satisfied, so the problem is redefined as a least square prob-
lem with control over the orthogonality and straightness of
the isoparametric curves of the chart. The constraints have
local influence, and the whole scheme depends mainly on
boundary conditions (otherwise the problem is ill-posed),
though boundary conditions can be given inside the domain
and in a sense work like an extrapolation.

In [2], Azariadis and Aspragathos proposed to minimize a
functional that combines a dissimilarity measure for neigh-
boring vertices and an area measure for the flattened tri-
angles. They also restrict two curves in their mapping to
have identical lengths as two selected curves on the surface.
Roughly speaking, this constraint can be considered as a
boundary condition for their problem. Their non-linear
optimization scheme handles in a few seconds about thou-
sand vertices. Actually, had they extended their length
term in their energy definition to non-neighboring vertices,
they would have been able to ignore both the boundary
constraint and the area terms, since these measures are
implicitly included within multi-dimensional scaling func-
tionals.

Neyret and Cani [21] dealt with any surface topology
by tiling together small textured patches with matching
boundaries. Their method is limited to textures with rela-
tively small details, as the tiles should be relatively small.
A solution to a similar problem was introduced by Praun,
Finkelstein and Hoppe in [22]. They detect features in a
small texture patch, and repeatedly paste them onto any
given surface until it is completely covered. These meth-
ods are not suitable for mapping an image onto a curved
domain.

The work of Wolfson and Schwartz [28], and Schwartz,
Shaw and Wolfson [25], introduced a clever flattening
method, the ingredients of which are revisited in this paper.
They first use a computationally intensive way for finding
the geodesic distance between pairs of points on the surface.
Then, they use a specific MDS (Multi-Dimensional Scal-
ing) approach to flatten the surface using these geodesic
distances, and by minimizing the functional presented by
Sammon in [24], which resembles the Stress-1 functional

[6]. Their method involves high computational complexity
and therefore is not practical.

Motivated by [28] we introduce a new efficient mapping
method that preserves both the local and the global struc-
ture of the texture, with minimal shearing effects. It en-
ables realistic texture mapping on any given surface which
is homeomorphic to a plane. Our method avoids the need
for an intermediate surface or boundary conditions and
does not require any smoothness condition on the surface.

Most of the previous flattening methods require bound-
ary conditions mainly due to the fact that they try to inte-
grate local measures. In the proposed method boundary
conditions are not required for a valid solution. More-
over, the structure preserved by the proposed scheme is
determined both by distances between close points on the
surface and between distant points, therefore, both the
‘local’ as well as the ‘global’ structure of the texture are
preserved. The method is based on two numerical tools
that replace the numerical machinery used in [28], namely,
the fast marching method on triangulated domains [15],
and classical multi-dimensional scaling [6], [7]. Section II
briefly reviews the fast marching method on triangulated
domains, which is used in order to calculate the geodesic
distances between points on the surface. In Section III we
discuss some matrix operations that are useful for the MDS
method presented in Section IV. Section V explains how to
perform the texture mapping. Section VI provides experi-
mental results and Section VII gives concluding remarks.

II. Finding Geodesic Distances

The first step in our flattening procedure is finding the
geodesic distances between pairs of points on the surface.
For this task we use the fast marching method on triangu-
lated domains, introduced by Kimmel and Sethian in [15].
This method is an extension to curved domains of Sethian’s
fast marching method [26], and Tsitsiklis Eikonal solvers
on flat domains [27]. An alternative method for finding
the geodesic distances, based on graph search and length
estimators, was presented by Kiryati and Székely [16].

Sethian’s idea of using the fast marching approach for
distance computation is to efficiently solve an Eikonal equa-
tion |∇T | = 1, anchored at the source point p, namely
T (p) = 0. The solution T is a distance function, and
its numerical solution is computed by a monotone update
scheme that is proven to converge to the ‘viscosity’ smooth
solution. The idea is to iteratively construct the distance
function by patching together small planes supported by
neighboring grid points with gradient 1, starting from the
source point and propagating outwards.

As we go to triangulated domains, we need to carefully
deal with the update step of one vertex in the triangle,
while the T values at the two other vertices are given.
Roughly speaking, all we need to do is to solve a quadratic
equation for the new vertex, and select the larger solu-
tion. This simple update approach would work after pre-
processing obtuse triangles, as explained in [15]. The ver-
tices are updated in an increasing T order, similar to the
classical Dijkstra graph search method, the only difference
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being the update step which now incorporates the under-
lying geometry of the problem.

The fast marching method on triangulated domains en-
ables us to compute geodesic distances in O(n lg n) where n
is the number of triangle vertices that represent the curved
surface. This means that we can calculate all the neces-
sary geodesic distances in O(n2 lg n). We show in Section
IV that we do not have to calculate the geodesic distances
for all pairs of vertices on the surface. We select a subset
of the vertices and thereby speed up the algorithm.

Let us give a simple explanation for the algorithm of
fast marching on triangulated domains. Given a point on
a triangulated surface, consider the problem of finding the
geodesic distance (the distance on the surface) from the
given point to the rest of the points on the surface. We
would like to be able to efficiently compute the values of
this function at each vertex on the triangulated surface.

Consider first the well known Dijkstra graph search algo-
rithm that can be used to find a rough approximate solu-
tion to the problem. The idea is to describe the surface as a
graph in which the edges of the triangles are non-directed
weighted edges in the graph connecting all the vertices,
where the weight w equals to the Euclidean distance,

w(evivj
) = d(vi, vj).

Here d(vi, vj) is the Euclidean distance between the two
vertices vi and vj , and evivj

is the edge connecting them.
The vertices can be dually represented as points in 3D.

The Dijkstra algorithm consists of the following steps,
Init : Let v0 be the source vertex. Set T (v0) = 0, and set
the rest of the vertices to T (v) =∞.
Step 1: Update all vertices vi which are connected through
one edge to v0 to

T (vi) = min(T (vi), T (v0) + w(ev0vi
)).

Step 2: Insert the new updated vertices to a min-heap data
structure. If the vertex is already in the heap, then just
update its value and location.
Step 3: If the heap is empty return, else remove the vertex
at the top of the min-heap structure, and name it v0.
Step 4: Go to Step 1.

A simple computational analysis shows that for graphs
with a small degree at each vertex, the computational com-
plexity for computing the shortest graph distance from one
selected vertex to the rest of the vertices in the graph takes
O(n lg n), where n is the total number of vertices in the
graph. The reason is that each vertex is selected once, and
each update of the heap takes at most lg n.

This could have been a perfect solution to our problem.
Unfortunately, any graph search based algorithm imposes
an artificial non-geometric metric while computing the dis-
tance. A simple 2D example is the L1 or Manhattan dis-
tance, also known as chess-board distance, in which the
path is restricted to vertical (south to north) and horizon-
tal (east to west) edges, like the streets in Manhattan. It
does not really matter how narrow and dense these streets
are, getting from the south-west corner to the north-east

corner of town will always have a distance that equals to
traveling from the south-west corner to the south-east cor-
ner, and then from the south east corner to the north east
corner, see Figure 1. This property is also known as met-
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Fig. 1. The length of the path P1 is equivalent to the length of the
path P2. As long as the path is restricted to horizontal and verti-
cal directions, the Euclidean shortest path can not be extracted.

rication error or numerical inconsistency. It means that a
graph search based method is not guaranteed to converge
to the continuous solution no matter how much one refines
the underlying graph.

We now look at a different alternative, one that incor-
porates the geometry of the problem into the solution. A
close observation of a distance function from a given point
in the plane shows that its slope equals one almost every-
where. We can construct the distance function, as a mono-
tonically increasing function defined over the domain with
a unit slope. The trick is to replace the update step (Step
2) in the Dijkstra algorithm such that instead of sensing
the distance through one edge T (v0) + w(ev0vi

), the new
update now attempts to sense the value of the distance by
considering two neighboring vertices of the same triangle,
and update the value of the vertex such that the slope of
the plane defined by the function over the triangle equals
one.

For example, assume v1, v2, and v3 are the vertices of one
triangle, and without loss of generality assume the three
are defined on the xy plane and therefore given by two
coordinates. Given T (v1) and T (v2), the question is how
to update T (v3).

Since we want to compute a distance map we would
like a gradient that equals to 1. In general we have
two possible solutions for T (v3), one with T (v3) smaller
than T (v2) and/or smaller than T (v1), and another with
T (v3) larger than T (v1) and T (v2). We would ob-
viously like to select the second solution. Formally,
the solution is a result of a quadratic equation that
defines the angle between the normal of the plane
{(v1, T (v1)), (v2, T (v2)), (v3, T (v3))} and the normal to the
plane {v1, v2, v3}, to be π/4. So, T (v3) is the larger solution
to the quadratic equation that defines the plane through
the points {(v1, T (v1)), (v2, T (v2)), (v3, T (v3))} that has a
unit gradient magnitude with respect to the coordinate
plane defined by the triangle {v1, v2, v3}, see Figure 2.
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Fig. 2. The value of T (v3) is set so that T (v3) > T (v1),
T (v3) > T (v2), and the gradient magnitude of the plane

{(v1, T (v1)), (v2, T (v2)), (v3, T (v3))} is 1, that is, N̂1 · N̂2 =
cos(π/4).

III. Matrix Properties

In this section we review some definitions and matrix
properties [17] that will help us explain the ‘classical scal-
ing’ method. We define the matrix Xn×m to represent
the coordinates of n points in an m dimensional Euclidean
space Rm. The square Euclidean distance between point i
and point j is defined as

d2
ij =

m
∑

a=1

(xia − xja)
2
.

Let the matrix E denote the square Euclidean distances
between each pair of points in X, that is Eij = d2

ij . Then,
E can be compactly written as

E = c1′ + 1c′ − 2XX′, (1)

where 1 is a vector of ones of length n, c is a vector of length
n in which ci =

∑m
a=1

x2
ia, and ′ denotes the transpose

operator.
Consider the translation of the coordinate origin of the

points defined by X to a new location. Define the location
to be an affine combination of the points themselves, i.e.,
s′ = w′X where

∑n
i=1

wi = 1, and for every i, wi ≥ 0.
Then, the coordinates with respect to the new origin, de-
noted by the matrix Xs, are given by

Xs = X− 1s′

= (I− 1w′)X

= PwX. (2)

Multiplying Pw by a vector of ones on either side yields a
vector of zeros,

Pw1 = (1′Pw)
′ = 0.

When choosing s to be the center of mass of the points, i.e.
by using

w =
1

n
1,

the corresponding Pw, denoted by J, and defined by

J = I−
1

n
11′, (3)

is called a centering matrix, since it sets the origin to be
the center of mass. If X is already column centered, i.e.,
the center of mass of the points defined by X is the origin
of their coordinates, then

JX = X. (4)

IV. The Flattening Approach

MDS (Multi-Dimensional Scaling) is a set of mathemat-
ical techniques used to uncover the “geometric structure”
of datasets, see e.g. [17]. For example, given a set of ob-
jects with proximity values amongst themselves, we can
use MDS to create a 2D map of these objects, that is eas-
ier to comprehend or analyze. Rubner and Tomasi [23] use
MDS for texture classification. They define metric percep-
tual similarities between textures, and use MDS in order
to visualize the metrics.

Here we use the MDS in a similar way. As proximity val-
ues we use the geodesic distances measured between every
two points on the surface, and the resulting map represents
the flattening of the curved surface.

The input to the MDS is an n×n symmetric matrixM.
The Mij element in the matrix M is the squared geodesic
distance between point i and point j, where n is the num-
ber of points on the surface. We calculate the geodesic
distances efficiently as mentioned in Section II.

Most MDS methods are based on finding the coordinates
xk, k ∈ [1, ...,m] wherem is the dimension we are interested
in, from the given distances. Our goal is to reconstruct the
n × 2 matrix X, containing 2D coordinates corresponding
to the surface points. Naturally, for surfaces with effective
Gaussian curvature it is impossible for the Euclidean dis-
tance between every pair of points on the flat domain (X)
to be identical to the geodesic distance between their corre-
sponding pair of points on the surface, see for example [9].
In the flattening problem, we try to map the surface points
to a plane such that the error between the corresponding
distances is as small as possible under some criterion.

Let M be an n × n matrix where each entry is defined
by Mij = T 2

vi
(vj), i.e. the square geodesic distances be-

tween the surface points defined by the vertices vi and vj .
One direct and simple multi-dimensional scaling approach
is known as ‘Classical Scaling’, see [6], [7]. The idea is to
approximate the matrixM of the square geodesic distances
between surface points by a matrix E that defines square
Euclidean distances between corresponding points given by
their coordinates X on the plane. Notice that rank(E)=2.
‘Classical Scaling’ is closely related to the singular value
decomposition (SVD) method, and involves the following
steps:
• Compute the n × n symmetric matrix M of the square
geodesic distances between surface points.
• Apply double centering and normalization to M:
B = − 1

2
JMJ, where J is an n × n centering matrix de-

fined in Equation (3). We want to approximate square
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geodesic distances by square Euclidean distances. There-
fore by rewriting M, as shown in Equation (1), assuming
that X is column centered, we have

B = −
1

2
J(c1′ + 1c′ − 2XX′)J

= −
1

2
Jc0′ −

1

2
0c′J+ JXX′J

= XX′. (5)

• Compute the spectral decomposition of B, B = QΛQ′.
We want to approximate B as well as possible (in the least
squares sense) by a matrix of rank two. From spectral
decomposition properties, we know that this can be ac-
complished by taking the two largest eigenvalues and their
corresponding eigenvectors. The ‘power method’ [17] is an
efficient numerical tool for finding these items. A rough
analysis of the power method computational complexity
is O(n2d) where d is the number of dimensions (number
of eigenvectors) one needs to extract, see [17]. In our 2D
case, we can consider this step as O(n2), where n is the
number of vertices selected as sparse key points that we
use for the flattening. A similar method with a somewhat
improved computational complexity is the Lanczos algo-
rithm with the Rayleigh-Ritz procedure, for further details
see [8], [13].
• Denote the 2× 2 diagonal matrix of the first two largest
positive eigenvalues as Λ+, and denote Q+ as the n × 2
matrix of their corresponding eigenvectors. The n × 2 co-
ordinate matrix of classical scaling is given by

X̂ = Q+Λ
1

2

+, (6)

in which row i contains the flattened coordinates of the
original surface point i. We thereby obtained a distance
preserving flattening of the surface.

In order to get a more intuitive understanding of the
classical scaling procedure, let us assume that the surface
is developable. That is, the surface can be perfectly flat-
tened. This means that the square geodesic distances ma-
trixM is identical to the square Euclidean distances matrix
E given in Equation (1). Moreover, the resulting multipli-
cation XX′ in Equation (5) is equal to X̂X̂′. Therefore,

B has only two eigenvalues, and X̂ is a perfect flattening.
General surfaces with effective Gaussian curvature are not
developable, see for example [9]. Therefore, the resulting
matrix B will have more than two non-zero eigenvalues. By
selecting the two largest eigenvalues and their correspond-
ing eigenvectors, we can approximate the matrix B. The
approximation error is determined by the rest of the eigen-
values that we ignore. Classical scaling approximates the
matrix B by a matrix of lower rank. X̂ can be computed
from the lower rank approximation of B. X̂ minimizes the
Strain loss function defined as

L(X̂) =

∥

∥

∥

∥

−
1

2
J (E−M)J

∥

∥

∥

∥

=
∥

∥

∥
X̂X̂

′
−B

∥

∥

∥
. (7)

We note that the general theory of multi-dimensional scal-
ing encompasses alternative loss functions and related flat-
tening procedures. Classical scaling uses a simple loss func-
tion that yields an efficient minimization procedure.

The classical scaling procedure is very simple to pro-
gram. For example, given the square geodesic distances
matrixM of dimensions n× n, a short and simple Matlab
implementation of the steps described above is given by

J = eye(n)− ones(n)./n;
B = −0.5 ∗ J ∗M ∗ J;

% Find largest eigenvalues+their eigenvectors:
[Q,L] = eigs(B, 2, ’LM’);

% Extract the coordinates:
newy = sqrt(L(1, 1)). ∗Q(:, 1);
newx = sqrt(L(2, 2)). ∗Q(:, 2);

The vectors newx and newy hold the flattened coordinates.
Computing the geodesic distances between every pair of

vertices in a complex triangulated surface, and the spec-
tral decomposition of the corresponding distance matrix is
computationally expensive. In practice we select a subset
of the vertices and apply the flattening procedure on this
subset. The geodesic distance between each pair of points
in this set is calculated using the complete surface model.
Thus, after proper flattening of the subset of anchor ver-
tices, we need to correctly interpolate the local coordinates
in order to find the local map of the rest of the vertices.

As an example, in Figure 3b we show the flattening of
a 3D object shown in Figure 3a. Figure 4 presents an-
other example, of flattening a cylinder, which is a devel-
opable surface. The flattened texture preserves both local
and global features of the surface texture. The surfaces
in Figures 3 and 4 include approximately 40,000 vertices.
25× 25 points were sampled uniformly on a regular grid in
the range-image domain, and the results were obtained in
about 30 seconds.

(a) (b)

Fig. 3. An example of a face flattening. (a) A 3D reconstruction of
a face. (b) The flattened texture image of the face.

Figure 5 compares the geodesic distance versus the Eu-
clidean distance of the flattened surface shown in Figure
3. The result approximates the diagonal line, which would
have been the (geometrically impossible) perfect flattening
outcome.
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(a) (b)

Fig. 4. An example of a cylinder flattening. (a) A 3D reconstruction
of a cylinder. (b) The flattened texture image of the cylinder.
Both the local and global features of the surface texture are pre-
served.
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Fig. 5. The geodesic distance on the surface versus the Euclidean
distance after flattening. The data corresponds to the face sur-
face shown in Figure 3. The result approximates the diagonal
line, which would have been the geometrically impossible perfect
flattening outcome.

V. Using MDS for Texture Mapping

Low distortion mapping of a curved surface onto the
plane is useful for mapping planar texture onto the surface.
After applying classical scaling to the measured geodesic
distances between the surface points, we get a 2D flattened
version of the surface. We now have the mapping of every
point on the 3D surface to its corresponding 2D flattened
point. Given a flat texture image we can easily map each
point from the 2D flattened map to a point on the texture
plane.

Next, we would like to map the texture back to the sur-
face. The technique is straightforward. For each vertex P
on the surface

• find the corresponding 2D point in the flattened map,
• translate the 2D coordinates to the texture image coor-
dinates,
• use this point’s color as texture.

If the triangulation of the surface is not dense enough, we
might encounter aliasing effects. These can be solved by se-
lectively subdividing large triangles into small ones as was
implemented in our experiments. Determining the texture
in the newly created vertices is done by applying the same
subdivision on the 2D corresponding triangle in the texture
image plane, and taking the proper interpolated colors from
the corresponding image points.

In order to map the texture onto the surface with mini-
mal distortions we take the following steps. First, we flat-
ten the surface by classical scaling applied to the geodesic
distances between the selected sub-grid vertices. The flat-
tening procedure gives us a simple mapping between the
plane and the surface. Since we consider only a subset of
the vertices we need to locally interpolate the map for the
rest of the vertices.

VI. Experimental Results

We tested our technique on surfaces obtained using a 3D
laser scanner developed in our laboratories. The scanner
creates a textured range image on a rectangular grid that
is considered as a parameterization plane. A set of ver-
tices in this range image is chosen as an input to the MDS
algorithm. After flattening using the selected vertices, as
shown in Figure 6, the planar coordinates for the vertices
that were not selected, are linearly interpolated using their
relative location in the initial parameterization plane.

z

y

x s

t

u

v

Fig. 6. Left: Given (u, v) parameterization plane. Middle: The sur-
face embedded in R3. Right: The flattening result as an (s, t)
parameterization. The locations of the decimated vertices within
each patch in the new (s, t) parameterization are bi-linearly in-
terpolated according to their locations in the given (u, v) param-
eterization.

For example, in our scanned objects, we associate each
bilinear patch defined between neighboring selected ver-
tices on the initial parametric plane (in the range image
of our experiments, PR

a , PR
b , PR

c , and PR
d in Figure 7) to

a bilinear patch defined by the corresponding vertices of
the flattened surface (PMDS

a , PMDS
b , PMDS

c , and PMDS
d

in Figure 7). We next apply a scan conversion procedure
to map the points within each MDS planar patch in the
(s, t) plane to a corresponding range image bilinear patch
in the (u, v) plane. For example, the point PMDS in Figure
7 is mapped to the point PR. Then, PR is a mapped from
the image plane to the surface point P S . Using this proce-
dure we can create a flat surface image, like those shown in
Figures 3b and 4b. In order to map texture from the plane
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to specific surface points, a reverse operation is performed.

t

s

z

y

x

v

u

b
MDS

PMDS

MDS

P

c

P

aP
P

c

R

PMDSMDS

P

Pd

R

S

R
aP

d
RP

b
RP

Fig. 7. A method for mapping between the surface and the flat plane.
In our experiments the surface is given as a range image, i.e. a
specific (u, v) parametric form. Left: The sub-grid rectangle‘s
vertices selected for the MDS procedure. Each vertex corresponds
to a surface point in 3D. Right: After flattening, we find four
corresponding points which are overlaid on the texture image.

For more complex surfaces, a general geometry sensitive
decimation-interpolation method is presented in [10]. It is
based on a simple iterative decimation technique, like the
sequential polygon reduction algorithm in [20]. First, we
flatten the subset vertices that survive the sequential deci-
mation procedure [20], using the unsampled surface for the
geodesic distance computation. Next, we plug back the
decimated vertices one by one, in a reverse order to their re-
moval sequence, while restricting them to the plane. Each
decimated vertex holds the relative distance to its neigh-
bors on the surface. That is, we keep the relationship in-
formation while decimating the mesh, and then plug back
vertex by vertex to the plane and get the desired interpo-
lation result for non-regular triangulations.

Figure 8 demonstrates a chess-board texture mapped to
the face surface with minimal distortions. Figures 9 and
10 present additional examples.

Figure 11 shows the result of a chess-board texture
mapped onto a synthetic (sinx sin y) graph surface. This
example shows the behavior near surface points with pos-
itive and negative Mean/Gaussian curvatures. Figure 12
demonstrates the ability of the method to handle (syn-
thetic) objects that are not restricted to be range images.
Again, the proposed geodesic distance preserving mapping
maintains the general structure of the texture.

Finally, in Figure 13 we compare our MDS texture map-
ping results with the shape preserving algorithm presented
by Floater [11], [12]. As can be seen, the proposed geodesic
distance preserving mapping reduces the deformations and
better preserves the local and global structure of the tex-
ture.

VII. Conclusions

We presented a simple and general structure preserving
texture mapping approach with minimal distortions. Us-
ing the fast marching method on triangulated domains we
efficiently calculate geodesic distances between pairs of sur-
face points. It enables us to achieve accurate measurements

Fig. 8. Chess board texture mapped onto the head object.

(a) (b)

Fig. 9. Texture mapped onto the head object via our global and
local structure preserving procedure.

that characterize the geometry of the surface, with a rea-
sonable computational complexity. Next, we used the sim-
plest MDS method, known as ‘classical scaling’, to flatten
the surface, and used the flattened surface to back project
a flat texture image onto the curved surface. The method
is computationally efficient, the surface does not have to
be smooth, and boundary conditions are not necessary. It
is unnecessary to apply any pre-warping or deformations
to the original texture image.
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(a) (b) (c)

(d) (e) (f)

Fig. 13. A comparison between Floater’s shape preserving mapping and the MDS mapping. Parametric coordinates and the corresponding
texture mapping for a face model created by the proposed method (a, b, c), and Floater’s shape preserving procedure (d, e, f).

Fig. 10. Texture mapping results: Left: The original objects. Right:
The objects textured using the algorithm proposed in this paper.
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