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Segmentation of Thin Structures in Volumetric
Medical Images

Michal Holtzman-Gazit, Ron Kimmel, Nathan Peled, Dorith Goldsher

Abstract— We present a new segmentation method for
extracting thin structures embedded in 3D medical images
based on modern variational principles. We demonstrate
the importance of the edge alignment and homogeneity
terms in the segmentation of blood vessels and vascular
trees. For that goal the Chan-Vese minimal variance
method is combined with the boundary alignment, and
the geodesic active surface models. An efficient numerical
scheme is proposed. In order to simultaneously detect a
number of different objects in the image, a hierarchal
approach is applied.

Index Terms— image segmentation, active contours, de-
formable models, energy minimization, level sets, varia-
tional principle

I. I NTRODUCTION

M EDICAL ‘volumetric images’ are 3D images
that contain several anatomical structures. These

structures are analyzed by trained personnel - radiolo-
gists. Two different modes are applied in order to allow
accurate interpretation and planning of diagnostic and
therapeutic interventional procedures: 1)Analysis of a
single object while ignoring its surrounding. 2)Analysis
of an object as part of the whole picture, while keeping
the surrounding visible.

In this paper we deal with blood vessels captured
by computerized tomography (CT), a procedure known
as‘CT angiography’ (CTA). CTA imaging is performed
using a radio-opaque contrast material, injected in-
travenously. This procedure significantly increases the
density of the blood within the vessels compared to
the surrounding tissues, thereby increasing the contrast
between the two. Intracranial blood vessels are a special
challenge, due to their anatomy and anatomical relations:
They enter the skull, through foramens located in its
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base, tapering distally within the skull, as crowded and,
at times, tortuous, multiple threadlike elements.

The CTA images are produced when an organ is
scanned at different layers and then the resulting two-
dimensional slices are successively stacked one on top
of the other. When viewed separately, one slice at a
time, one dimension is ‘lost’. Exploring the planar slices,
radiologists may find it difficult interpret the geometry
of the organ. A simple procedure that tries to capture the
geometric structure in a single image is MIP (Maximal
Intensity Projection). In this approach, the projection
value is given by the maximal pixel intensity along the
projection line. However, using MIP, thin vessels may
be occluded by highly saturated bones.

Our goal is to automatically extract the blood vessels
contained in volumetric images, and enable radiologists
to view vascular trees as separate 3D objects. Bones
are also extracted, allowing visualization of the inter-
action between bones and vessels. Traditional threshold
methods [23] often fail in segmenting two adjacent
objects with similar gray values. In this paper we couple
variational measures that allow us to overcome some of
these problems.

One of the main difficulties encountered in analyzing
CTA images is that both bones and blood vessels appear
with similar density compared to brain parenchyma. In
other words, they both have similar gray values. When
thresholding an image that includes both enhanced blood
vessels and dense bones, they might be extracted as a
single object. We thus apply a hierarchical segmentation
method using variational tools that enable us to accu-
rately extract bones and blood vessels as two separate
3D objects.

II. PREVIOUS WORK

In this section we review previous segmentation meth-
ods and focus on deformable models. In 2D, a simple
curve defines the object boundaries. A given initial curve
can evolve according to its geometry and the information
in the image. The evolution is a result of minimizing an
energy functional – a cost function – which is influenced



by image information along the curve and the intrinsic
geometry of the curve. Minimization of such a measure
leads to a curve that should coincide with the boundary
of the object. The first variation of the functional is
used to evolve a given curve towards a significant local
minimum of the functional, by applying a gradient
descent flow.

The first deformable model for image segmentation,
known as the ‘snakes’ model was introduced in [27].
This deformable contour minimizes an energy functional
along a curve, which is influenced by ‘internal’ and ‘ex-
ternal’ terms. The internal term controls the smoothness
and linear elasticity of the curve, while the external part
directs the curve to the locations of high image gradients.

The model is simple and linear, yet, the linearity of the
‘snake’ model causes different parameterizations of the
same initial curve to converge to different minimizers.
That is, the same initial trajectory may end up at different
final trajectories. This undesired property is the outcome
of the fact that the snake model minimizes a non-
geometric measure.

In order to overcome these difficulties, Casseles et al.
[5] and Malladi et al. [38] introduced a curve evolution
equation based on geometric quantities. They propagated
a curve subject to image-based forces coupled with
geometric smoothing forces. The curve evolution is
formulated by the Osher-Sethian level set method [46],
in order to handle topological changes of the curve and
overcome numerical difficulties. The basic flow includes
a constant inflation force, coupled with geometric forces
such as the curvature vector.

Later, the geodesic active contour model was proposed
by Casseles et al. in [7] as a geometric-variational
alternative for ‘snakes’. The idea, similar to the ‘snake’
model, is a minimization of a functional that inte-
grates over an edge indicator function along a contour.
However, the arbitrary parametrization in the ‘snake’ is
replaced with the curve’s arclength. The edge indicator
function obtains low values in image locations where
the gradient is high. The geometric energy functional is
given by,

EGAC =
∫

g(C(s))ds,

whereC is the evolving curve,g is the edge indicator
function ands is the Euclidean arc length. Specifically,
g(x, y) : R2 7→ R+ is an inverse edge indicator
that yields low values near edges (high image gradient
magnitude) and high values elsewhere. The first variation
used as a curve evolution gradient descent process is
given by

Ct = (κg − 〈∇g, ~n〉)~n,

where κ is the Euclidean curvature and~n is the unit
normal to the curve. It is also implemented via the
level set framework that restricts the processing to a
regular grid and allows numerical stability. In order to
prevent the curve from shrinking to a point, a constant
velocity term that penalizes small area can be added.
This constant term was first introduced by Cohen in
[13] as the ‘balloon force’. The geodesic active contour
method was extended to handle surfaces in 3D in [6]
and was accelerated by Goldenberg et al. [22], [21]
by coupling with a narrow band approach [11], and an
efficient numerical scheme called AOS [36], [37], [54]
for cortex segmentation.

Apparently, the gradient magnitude edge indicator was
not enough for capturing thin structures. The additional
important information that was so far neglected was the
orientation of the image gradients. In [53] Vasilevskiy
and Siddiqi used maximization of the inner product
between a vector field and the surface normal in order
to construct an evolution that is used for segmentation
of thin structures. If this vector field is the image
gradient, the maximization yields a flow according to the
Laplacian of the image in the direction of the normal, as
shown by Kimmel and Bruckstein in [30]. This term is
a reliable edge indicator for relatively low noise levels.
In the case of high noise levels, additional regularization
techniques are required.

At the other end, Chan and Vese in [8], [9], used inte-
gral region descriptors in their ‘active contours without
edges’ model, which is a minimal variance criterion for
cortex segmentation. Their model is a simplified version
of the Mumford-Shah [44] piecewise constant model,
which limits the number of regions. As before, it evolves
a contour in the image plane, or a surface in volumetric
data in order to detect objects with relatively similar
intensity levels in the image. A related approach is [45]
where a 3D directional edge term is coupled with a
smoothing term in order to segment a single object from
multiple non-uniform volume data sets.

Here, we integrate the better qualities of the above
geometric methods in order to segment thin structures in
volumetric medical images. We combine the Chan-Vese
minimal variance model with a geometric edge align-
ment measure and the geodesic active surface model.
Then, for the implementation we apply an efficient
numerical scheme based on [21], [28], [54]. Finally,
we explore a hierarchical approach that allows us to
efficiently detect numerous objects in the image.
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A. Other Thin Structure Segmentation Methods

Lorigo et al. [35] used codimension-two geodesic
active contours for segmentation of tubular structures
according to the theory developed in [2]. Their approach
allows the flow of a geodesic active curve in 3D. It
evolves a curve as a thin tube ofε-radius around it. This
idea was implemented for segmentation of blood vessels
in MRA (Magnetic Resonance Angiography) images.

In [16] Deschamps and Cohen introduced a method
based on the Zhu-Yuille region competition model [55].
They used a functional that combines an integral over re-
gion descriptor measures and the geodesic active contour
functional [7].

Following Cohen and Kimmel [14], Deschamps and
Cohen [17] presented a segmentation method based on
Sethian’s fast marching method [50], see [52] for a
related fast Eikonal solver. Given a potential fieldg with
lower values near the edges, the fast marching method
is designed to find an image-dependant distance from
a seed point that is located at the root of the anatomic
tree structure. The equivalence between this measure and
the geodesic active contour was shown in [14], [29].
The motion of a propagating weighted distance wave
at points that are located along the boundary is slower
compared to the rest of the propagating front, and for
better stability, these points were virtually ‘frozen’ in
[17].

In [42] McInerney and Terzopoulos used topology
adaptive deformable snakes, T-snakes, for segmentation
of medical images. The T-snake is a discrete form of
a parametric deformable curve that moves according to
the influence of internal and external forces. The grid
points inside the curve are assumed to be ‘on’ (positive)
and the points outside the curve are assumed to be ‘off’
(negative). As the curve moves, once a grid point is
turned ‘on’, it cannot be turned ‘off’ again. The snake
is periodically re-parameterized in order to maintain
numerical stability. This method was extended to 3D (T-
surface) in [43]. It is an interesting combination of the
level set concept for preserving the topology by a regular
supporting grid and a non-geometric parametric model.

In [33] Leventon et al. used a probabilistic approach
in order to introduce shape information into the image
segmentation process. In order to build a shape model,
each curve is represented using a signed distance map.
Then, a shape model is generated by defining a probabil-
ity density function over the variances of a set of training
shapes. In each step of the curve evolution, the shape and
pose parameters of the final curve are estimated using a
maximum a posteriori approach. The evolution of the
curve is computed as a weighted sum of a ‘shape force’

and the geodesic active contour force.

B. Recent Medical Images Segmentation Techniques

Recent segmentation techniques for thin structures
include [18], where ‘medial atoms’ are used to segment
branching tubular structures, a user-defined B-spline
template snakes that initialize a segmentation process
[41], and active shape model for segmenting abdominal
aortic aneurysms, where a set of landmark points that
denote the same anatomical points are matched [15].
Often, similar to [21], [22], several resolution levels
enable more efficient coarse to fine fitting.

When the fully automatic model fails, interactive
models are used. Such an approach was introduced by
Paragios [47] who added user constrained active contour
coupled with shape priors.

Local pattern matching was used in [19] in order
to segment brain tumors from MR images. High order
Gibbs prior model was coupled by Chen et al. [10] with
Marching Cubes to initialize a deformable model.

Hernandez et al. [26], used the geodesic active contour
model with non-parametric statistical information, to
segment aneurysms in brain CTA images. As in [16],
the region descriptors are the logarithm of the probability
model, yet in this case the distribution is not Gaussian.
The method was applied to detect aneurysms in the
Circle of Willis.

In [25], another histogram based statistical approach
was used to segment blood vessels from MRA images.
The vessels intensity is modelled by a normal distribu-
tion. The parameters of the distributions are modelled by
the EM (Expectation Maximization) algorithm.

In the next section we present our segmentation tech-
nique. Its main advantage over most existing methods
is its ability to automatically segment thin structures in
volumetric data. We use a variational geometric model
that integrates the nice properties of existing techniques
with new ones. A useful term is our extension of the
Haralick/Canny edge detector that we introduce in a vari-
ational setting. We present an efficient numerical scheme
for fast convergence. In addition, we apply a hierarchical
method in order to efficiently detect multiple different
anatomical structures with similar relative intensities.

III. 3D I MAGE VARIATIONAL SEGMENTATION

Our method is based on geometric active surfaces
that evolve according to geometric partial differential
equations until they stop at the boundaries of the objects.
We use a weighted sum of three integral measures, an
alignment term that leads the evolving surface to the
edges of the desired object, a minimal variance term that
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measures the homogeneity inside and outside the object,
and a geodesic active surface term that is used mainly
for regularization. In the following sections we motivate
each term of our functional.

A. Edge-Based Techniques in 2D

Zero crossings of the second order derivative along
the gradient direction were introduced by Haralik [24]
and then used by Canny [4] as 2D edge detectors.
Haralik observed that using only the gradient direction
component of the Laplacian yields better edges than
those produced by the zero crossing of the Laplacian
(known as the Marr-Hildreth [40] edge detector). Based
on the ‘Haralik edge detector’, Kimmel and Bruckstein
[31], [32] developed a new edge integration scheme. The
curve evolves along the second order derivative in the
direction of the image gradient.

Consider a gray level imageI(x, y) : R2 → [0, 1],
where Ix and Iy are the first order derivatives in the
horizontal and vertical directions, respectively. We define
the gradient direction vector field

~ξ(x, y) =
∇I

|∇I| =
{Ix, Iy}√
I2
x + I2

y

, (1)

and the orthogonal vector field

~η(x, y) =
∇̄I

|∇I| =
{−Iy, Ix}√

I2
x + I2

y

. (2)

Hence〈~ξ, ~η〉 = 0. The Haralik edge detector finds the
image locations where both|∇I| is greater than some
threshold andIξξ = 0, whereIξξ is the second derivative
of I in the gradient direction.

Fig. 1. The result of
∫∫

Iηηdxdy is 2πh.

We would like to propagate an initial contourC
that would stop as close as possible to our object’s
boundaries. For that end, we use an energy functional
– a cost function – which we derive using calculus of
variations in order to find its extremum. Its derivative
is an Euler-Lagrange (EL) equation that we use via the
gradient descent flow in order to evolve our initial curve.
Therefore, we need a geometric functional that would

yield Iξξ~n = 0 as an EL (Euler-Lagrange) equation,
where~n is the unit normal to the curve. In [31], [32]
the authors use the fact thatIξξ = ∆I − Iηη to show
that the maximization of the functional,

∫

C

〈∇I, ~n〉ds−
∫∫

ΩC

κI |∇I|dxdy, (3)

yields Iξξ~n = 0 as the EL equation. Here,κI is the
curvature of the level set of the image (equi-intensity
contours or ‘isophotes’ in the image), andΩC is the
area inside the curveC. We have that,

Iηη =
∫∫

ΩC

κI |∇I|dxdy =
∫

R

∫

I−1(u)∩ΩC

κIdsdu, (4)

wheres is a level set contour arclength andu represents
the gray levels of the image. The integral

∫
κIds along

a closed curve is2π [32]. Therefore, the integral over
Iηη inside the curve measures the topological complexity
of the image – the variability of gray levels – inside
that curve. Thereby, the above functional maximizes
the alignment between the image gradient and the edge
normals while minimizing the topological complexity of
the image inside the curve; see Figure 1.
Extension to 3D:Let us extend the scheme used in [31],
[32] to 3D. In this case, the 3D image is defined as
I(x, y, z) : R→ [0, 1]. For this goal we first prove that,

Iξξ = ∆I −HI |∇I|, (5)

whereHI is the mean curvature of the level set surfaces
of the volumetric image. In this case, the level sets are
surfaces in the volumetric image data.

Lemma:The ‘Haralick-Canny-like’ edge detector in 3D
is given by

Iξξ = ∆I −HI |∇I|.
Proof:

Iξξ ≡ 〈∇〈∇I, ξ〉, ξ〉 = 〈∇ (Ixξ1 + Iyξ2 + Izξ3) , ξ〉
= Ixxξ2

1 + Ixyξ1ξ2 + Ixzξ1ξ3 + Iyyξ2
2 + Ixyξ1ξ2

+Iyzξ2ξ3 + Izzξ
2
3 + Izyξ3ξ2 + Ixzξ1ξ3

=
I2
xIxx + I2

yIyy + I2
z Izz

|∇I|2

+
2(IxIyIxy + IxIzIxz + IyIzIyz)

|∇I|2

= ∆I − div

( ∇I

|∇I|
)
|∇I| = ∆I −HI |∇I|

The functional that yieldsIξξ~n = 0 as an EL equation
in 3D has two parts:
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1. Maximizing the geometric integral measure∫∫

S

〈∇I, ~n〉da, (6)

whereS is the evolving surface,da is the surface area
element and~n is the unit normal to the surface. The EL
equations of this functional are

∆I~n = 0. (7)

2. Minimizing the functional
∫∫∫

ΩS
HI |∇I|dxdydz,

whereΩS is the volume enclosed by the surfaceS. The
EL equations are

HI |∇I|~n = 0. (8)

This functional is equal to∫

R

∫∫

I−1(u)∩ΩS

HIdadu. (9)

Here, da is the surface area element representing the
image level sets, andu = I(x, y, z) represents their
gray values. This is a measure for uniformity inside the
surfaceS.

Therefore, the energy functional that yieldsIξξ~n = 0,
is given by

EEDGE(S) =
∫∫

S

〈∇I, ~n〉da

−
∫∫∫

Ωs

HI |∇I|dxdydz. (10)

This measure tracks edges of objects with low contrast
compared to their background which is important for
finding edges of thin structures in volumetric medical
images. However, this term alone is insufficient for
integrating all the edges. If the surface used as an initial
guess is far from the object boundaries, it may fail to lock
onto its edges. Therefore, another ‘force’ that pushes our
surface toward the edges of the object is required.

B. Minimal Variance

The second measure we use is the minimal variance
term proposed by Chan and Vese [8]. It penalizes lack of
homogeneity inside and outside the evolving surface. In
[8], the image is divided into two segments, the interior
and exterior of a closed surface. This model minimizes
the variance in each segment. The model was generalized
in [9] to piecewise constant segmentation of more than
two segments.

Given a 2D gray level imageI(x, y) : Ω → R+, Chan
and Vese proposed to use a minimal variance criterion
given by the functional,

EMV(C, c1, c2) =
∫∫

ΩC

(I − c1)2dxdy

+
∫∫

Ω\ΩC

(I − c2)2dxdy

+ν

∫

C

ds, (11)

whereC is the contour separating the two regions,ΩC

is the interior of the contourC = ∂ΩC , and
∫

C
ds

measures the length of the separating contour, where
ν is a constant that determines the regularization level.
While minimizing this functional,c1 and c2 obtain the
mean intensity values of the image in the interior and
the exterior ofC, respectively. The optimal curve would
separate the interior and the exterior with respect to their
relative expected values.

C. Geodesic Active Surface

Consider the functional
∫∫

S
da, whereda is a surface

area element. This functional measures the surface area.
Minimization of this functional yields an EL equation
which defines a minimal surface for which the mean
curvature is equal to zero. Hence, mean curvature flow
is used for regularization in many schemes.

The geodesic active surface model [6], [7] is defined
by the functional

EGAC(S) =
∫∫

g(S)da, (12)

where da is the surface area element andg(x, y, z) is
again an edge indicator function, given, for example, by
g(x, y, z) = 1/(1 + |∇I

α |2).
The parameterα is used to normalize the gradient.

It is chosen such thatg gets close to zero along the
edges of our object and higher values elsewhere. When
minimizing this functional [7], the result is a surface
along whichg obtains the smallest possible values. The
EL equation for this functional is(gH−〈∇g, ~n〉)~n = 0.
Here, H is the mean curvature of the surfaceS, and
~n is the normal to the surface. To learn more about
the difference between this term and the edge alignment
term, we refer the reader to [32], [29].

The regularization function that is used in our scheme
is the geodesic active surface. Its added value over the
area minimization via the mean curvature flow is its
sensitivity to the actual data via the functiong, which
guides the evolving surface toward the desired object’s
boundaries.

D. The Proposed Functional

The proposed functional is a weighted sum of the
terms discussed in the previous subsections.

ET = −EEDGE + βEMV + γEGAC, (13)
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Fig. 2. Implicit representation of a curve given by a signed distance
map. The curve is defined by the intersection of the plane{x, y, z =
0} and functionΦ(x, y).

whereβ, γ are positive constants that are chosen empiri-
cally. The geodesic active surface is used for regulariza-
tion, thusγ is much smaller thanβ. These parameters
were modified for different types of images (brain CTA,
lung CT, MRI [Magnetic Resonance Imaging] etc.) but
for a certain type of images we used the same set of
parameters. Our rule of thumb for determining the best
coefficients is that, when the image has a large amount
of noise, β should be large, else it should be small.
Moreover, when the variance of gray scales inside the
object is large,β should be small.

The surface evolution toward an extremum derived
from this functional is given by

St = {−Iξξ − β[(I − c1)2 − (I − c2)2]
+γ(gH − 〈∇g, ~n〉)}~n. (14)

Our method integrates three ‘forces’: a Haralick align-
ment term that orients the evolving surface to align along
the edges of the desired object, a homogeneity term
based on the Chan-Vese functional, and a geodesic active
surface term which is used for regularization. In the next
section we discuss the numerical implementation using
level set formulation and a semi-implicit scheme.

IV. N UMERICAL IMPLEMENTATION

A. Level Set Formulation

A curve can be represented by embedding it as an
equal height contour of a certain function. This way
the intersection between the function and, for example,
the zero plane yields the curve. The curve is thereby
represented implicitly by a higher dimensional function.
We embed the curveC in as a functionΦ(x, y) so that
C = {{x, y}|Φ(x, y) = 0} is its zero level set. An
example is shown in Figure 2. When curve evolution is
written in terms of its implicit representation, a formula-
tion known as the Osher-Sethian level set method [46]),
the result is a stable numerical scheme that naturally
handles topological changes. An example is given in
Figure 3. Similarly in 3D, we embed a closed surface

Fig. 3. Two simple curves (left) can be represented as a level set of
a single function (right).

in a higher dimensionalΦ(x, y, z) function, which im-
plicitly represents the surfaceS as a zero level set,
i.e. S = {{x, y, z}|Φ(x, y, z) = 0}. According to the
Osher-Sethian level set formulation [46], given a surface
evolutionSt = Vn~n, its corresponding implicit level set
evolution readsΦt = Vn|∇Φ|. The termVn represents
the ‘speed’ of the evolving surface in the direction of
the normal to the surface. In our case,

Vn = −Iξξ − β((I − c1)2 − (I − c2)2)
+γ(gH − 〈∇g, ~n〉). (15)

The level set formulation of our surface evolution equa-
tion is thereby

Φt = {−Iξξ − β[(I − c1)2 − (I − c2)2]

+γ

[
div

(
g
∇Φ
|∇Φ|

)]
}|∇Φ|. (16)

B. Numerical Scheme

We setΦ(x, y, z; t) to be a signed distance function
of the surfaceS(t) (positive values inside and negative
values outside the surface). SinceΦ is a distance map,
we can write theshort timeevolution equation for which
|∇Φ| is approximately equal to1 near the zero level set
surface, and we thereby simplify the short time evolution
equation by replacing|∇Φ| with 1. Again, as our focus
is the geometric behavior of the zero set surface rather
than its implicit representation, this assumption does not
violate the numerical consistency of the surface evolution
PDE.

Nevertheless, the evolving surface may have singu-
larities of its curvature. As those singularity sets are
curves in 3D, the unit magnitude assumption is the
best numerical approximation for|∇Φ| at the numerical
grid points. An explicit up-wind scheme without re-
initialization during the last iterations eliminates all
minor inaccuracies and better fits the surface to the exact
boundary location.

Re-initialization of Φ to a signed distance map can
be done by a fast Eikonal solver [49], [52]. In order to
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reduce the computational complexity we apply a narrow
band approach [1], [11], [48]. Here,Φ has a volume
similar to that of the original image. After each iteration
we compute the distance only at grid points ofΦ, that
are close to the zero set. This way we have an efficient
explicit scheme. However, explicit schemes are restricted
by small time steps due to stability issues. The time step
is a global parameter that determines the distance that
the evolving surface is allowed to move at each iteration.
Our explicit scheme is,

Φk+1 = Φk + τ(γdiv
[
g∇(Φk)

]
+Iξξ + β

[
(I − c1)2 − (I − c2)2

]
) (17)

whereτ is the time step,k is the iteration number, andΦ
is initialized to be a distance function at each iteration.

In order to construct an unconditionally stable scheme
we use a locally one-dimensional (LOD) scheme [39]
suggested in [28]. Thediv(g∇(Φ)) operator can be
written as a sum of matrix operators,

div(g∇(Φ)) =
∂

∂x

(
g

∂

∂x
Φ

)
+

∂

∂y

(
g

∂

∂y
Φ

)

+
∂

∂z

(
g

∂

∂z
Φ

)
=

∑

l=x,y,z

Al(Φ). (18)

EachAl is a tri-diagonal matrix operator, which repre-
sents a one-dimensional operator given byAl = ∂

∂lg
∂
∂l ,

wherel = x, y, z. Next, we use the approximation

(1− τA)−1 = 1 + τA + O(τ2) ≈ 1 + τA. (19)

Our first order numerical scheme reads as follows

Φk+1 =
3∏

l=1

(I − τγAl)−1(Φk + τf), (20)

where,f = −{β[(I−c1)2− (I−c2)2]+Iξξ}. HereI is
the identity matrix. This allows us to successively solve
three one-dimensional problems.

According to [54], a simple discretization forAx is

∂

∂x
g

∂

∂x
Φi ≈

∑

j∈N(i)

gj + gi

2h2
x

(Φj − Φi), (21)

whereN(i) are indices of the two horizontal neighbors
of pixel i: {i − 1, i + 1}, andhx is the space between
neighboring pixels. In order to invert these tri-diagonal
matrices the Thomas algorithm [3] is used.

The LOD scheme [39] is an unconditionally stable
scheme that allows a time step of any size. LetBl =
I−τγAl. Bl is strictly diagonally dominant (i.e.bl

ii > 0
andbl

ij < 0 for i 6= j). Therefore,B−1
l is nonnegative in

all its arguments. In addition, the row sums ofBl are all
1. These attributes imply that the LOD scheme computes
Φn+1 from convex combinations of the elements ofΦn.

Therefore, the discrete minimum-maximum principle is
guaranteed

min
j

Φn
j ≤ Φn+1

i ≤ max
j

Φn
j ∀i, (22)

and the scheme is stable in the maximum norm for any
size ofτ .

The LOD scheme is used in order to accelerate the
propagation of the surface in a stable way. A large time
step is used, and the scheme converges efficiently. For
the final few iterations we apply an explicit scheme as
a ‘final touch’ for better accuracy. For an image of size
1003 voxels, the program runs a couple of minutes on a
Pentium IV PC using double precision.

V. EXTRACTION OF MULTIPLE OBJECTS

In most cases, medical images contain a number of
objects that need to be extracted in order to analyze
an object and its environment. Here we propose a
hierarchical approach for extracting multiple objects. The
Chan-Vese multi-level set approach [9], uses several
functions to form different binary codes that describe
multiple regions. Each binary code tags a given region,
andn different regions, requirelg n functions. For better
efficiency, here we first separate between similar looking
objects and their background using a single function,
and only then focus on segmenting between the objects
themselves. This way we deal with one function at a
time, and reduce the domain of the problem at each
segmentation step.

A. Hierarchical Approach

In order to extract several different types of anatomical
structures from the image, we use a hierarchical method
that is conceptually similar to single node splitting in tree
structured vector quantization (TSVQ) [20]. In TSVQ
the image is quantized into2m regions by applying the
following algorithm. First, the image is divided into two
regions by using the generalized Lloyd algorithm [34].
Next, the data is split into two subsets, and a codebook
of size two is generated using the generalized Lloyd
algorithm on each subset. This process is repeated until
level m− 1 is reached. At the end of this algorithm we
have a tree of codewords (each word represents a region)
in which the leaves form the final codebook.

A different method for finding the TSVQ is to use
single node splitting [20]. This way, after the first
quantization step, only one subset of the data is split into
two new subsets. In each step, only one node in the tree
is chosen for further splitting. One way of choosing the
next segment to split, is by selecting the one that has the
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greatest inhomogeneity. Our hierarchical segmentation
method is designed in a similar way. At each stage we
choose one subregion that includes more than one object,
and split it into two subregions.

For a given image, we first apply the segmentation
algorithm described in the previous sections. The result
is a surface that describes the boundary of the segmented
object. If there is a need for further segmentation, we
apply our segmentation algorithm again, only to one of
the regions generated from the previous step. This way,
we can focus our segmentation algorithm on processing
only the significant parts of the image. Moreover, since
in the second step, the algorithm works only on part of
the image, its computational complexity is significantly
reduced.

A similar hierarchical approach was used in [51],
where Tsai et al. used the piecewise smooth Mumford-
Shah functional [44], for both smoothing and segmen-
tation. Here, we use the hierarchical method with the
alignment term, region homogeneity, and boundary reg-
ularity, which generalizes existing methods. Specifically,
it enables us to handle the delicate task of thin structure
segmentation in 3D.

VI. EXPERIMENTAL RESULTS

Next, we present the segmentation results of our algo-
rithm using the hierarchical approach. Figure 5 shows a
3D hierarchical segmentation of CT angiography images
of the brain. We applied the first step of our algorithm
to part of the whole CTA volumetric image. The MIP
(maximal intensity projection) of this image is shown
in Figure 4 on the left and a 2D slice of this image
is shown on the right. In this image the vessels appear
in light gray while the bones appear in white. We
initialized the surface as a small balloon inside one of
the blood vessels and allowed it to grow toward the
boundaries. In this experimentβ = 0.4 and γ = 0.01.
These coefficients were used for all our experiments with
brain CTA images. The result of the first step of the
segmentation is shown in Figure 5 left. See Figure 6 for
another view. The algorithm captured the bright parts of
the image, which include both the bones and the blood
vessels. In order to distinguish between the two objects
we applied the second step of the algorithm only to the
region segmented during the first step. The results are
shown in Figure 5 right.

Another example is an aneurysm in the brain. An
aneurysm, especially when small, might be difficult to
detect even by an expert looking at the 2D slices.
However, when viewed as a geometric structure it can
be seen clearly. Results are shown in Figure 7.

Fig. 4. Left: Maximal intensity projection (MIP) of a1003 volume
of a CTA image of the brain. Right: A1002 part of a 2D CTA image
of the brain. The bones adjacent to the brain appear in high density as
white, and the blood vessels appear in lower density as light gray.

Fig. 5. Left: The result of the first phase of the segmentation algorithm
on the CTA image. Right: Results of the hierarchical segmentation on
the CTA image of the head. The yellow surface demonstrates the bone
and the red surface represents the blood vessels.

Fig. 6. Left: The hierarchical algorithm applied to a 3D CT image
of the brain. The yellow surface depicts the bone data while the red
surface depicts the vessels. Right: A 2D slice of the CT data of the brain
showing the contours of the two objects generated by our segmentation
algorithm.

When dealing with MRI of the brain, we have a
similar problem of segmenting the gray matter and the
white matter as two different objects. Figure 8 shows the
segmentation result of the hierarchical segmentation for
a 3D MRI image generated by the BrainWeb [12]. In
this image we usedβ = 0.5 andγ = 0.01. Figure 8 also
shows a perspective view of the gray and white matter
generated by our segmentation algorithm.

We applied our algorithm to CT image of one of
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Fig. 7. The hierarchical segmentation result of a part of a CTA of the
brain with an aneurysm. The aneurysm is pointed to with the arrow.
The bones are depicted in yellow while the vessels appear in red.

m

Fig. 8. Results of the hierarchical segmentation. Left: The result of the
first phase is the red contour. The second phase yields the blue contour.
Middle and right are gray and white matter surfaces respectively.

the saccular thoracic organs. In this image, as for the
brain, it is important to track vessels with small caliber
in order to determine if there are pathological lesions
around them. In this case the alignment term is amplified
in order to detect the edges of these fine vessels. The
results of our algorithm with different weights on the
alignment terms are shown in Figure 9. When comparing
the segmented result of the minimal variance term alone
(see Figure 9(c)) to the segmentation results using the
minimal variance term together with the alignment term,
we see that these fine vessels are detected when the
alignment term has a larger influence (see Figures 9(a)
and 9(b)). This variational measure is indeed helpful in
finding the edges of thin structures with low contrast.

VII. C ONCLUSIONS ANDDISCUSSION

We presented a new segmentation method of 3D
medical images. The method is based on a weighted
sum of three integral measures that account for the min-
imal variance within each region, the alignment of the
boundary with the change of intensity, and the weighted
arclength for regularization. The importance of the new
alignment term in the segmentation of thin structures
in volumetric medical images was demonstrated. An
efficient numerical scheme for the proposed method was
introduced in order to accelerate its convergence. Next,
an hierarchical approach was applied to efficiently seg-
ment several different anatomical structures with similar
intensity values.

The numerical scheme accelerated the convergence of
the segmentation. However, our system still does not
work in real time. The bottleneck is the double precision
calculations. In order to shorten the running time a fixed
point strategy should be considered. There is still a need
to examine the resolution of the fixed point for each
part of the scheme in order to maintain its accuracy and
convergence.

The functionals we dealt with are not convex. There-
fore, gradient descent processes stop at local minima.
One challenge is tracking down the significant minimum.
This is realized, for example, by initializing the surface
inside the object of interest, within the basin of attraction
of the significant minimum, such as a small sphere at one
of the main arteries in the brain. Nevertheless, there are
obvious cases where the segmentation process fails to
find the entire structure. In some cases the vessels are
so thin (less than the sampling rate) and of low contrast,
so that the evolving surface splits, leaving two parts of
the same blood vessel as disconnected components. One
remedy is to apply a topology preserving scheme, which
tracks the topology of the surface. Yet, another option
is to incorporate priors. Shape priors could be integrated
and used for known structures such as bones. This way,
the partition between blood vessels and bones could be
improved in the second stage of our algorithm. However,
prior based methods are somewhat dangerous in medical
data analysis. Probably the most promising direction is
user guided segmentation. Such a procedure would allow
the user to interactively correct segmentation results of
problematic regions where the fully automatic segmen-
tation fails.
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