
FAST MARCHING THE GLOBAL MINIMUM OF ACTIVE CONTOURSLaurent D. COHENCEREMADE, U.R.A. CNRS 749Universit�e Paris 9 - Dauphine75775 Paris cedex 16, Francecohen@ceremade.dauphine.fr Ron KIMMELLawrence Berkeley LaboratoryUniversity of CaliforniaBerkeley California 94720, USAron@csr.lbl.govABSTRACTA new approach of edge integration for shape modelingis presented. It is used to �nd the global minimum of anactive contour model's energy between two points. Ini-tialization is made easier and the curve is not trappedat a local minimum by spurious edges. We modify the\snake" energy by including the internal regularizationterm in the external potential term. Our method isbased on the interpretation of the snake as a path ofminimal length in a Riemannian metric, or as a pathof minimal weighted distance. We then make use of anew numerical method to �nd the shortest path whichis the global minimum of the energy among all pathsjoining the two endpoints. We show examples of ourmethod applied to real aerial and medical images.1. INTRODUCTIONVariations of the active contour model (`snakes') forboundary integration and features extraction, intro-duced in [1], have been considerably used and studiedduring the last years. Although the smoothing e�ectof the snakes may overcome small defaults in the data,spurious edges generated by noise or in a complex im-age may stop the evolution of the curve so that it mightbe trapped by an insigni�cant local minimum of theenergy. The in
ation or expansion force [2] helps toovercome such di�culties.In this paper we present some results on a new ap-proach for �nding the global minimum for energy min-imizing curves. Only endpoints are needed as an easyinitialization and we are guaranteed that the globalminimum is found between these points and that spu-rious edges cannot lead to a local minimum. The min-imization problem we are trying to solve is slightlydi�erent from the deformable models, though there ismuch in common. Following [3], we modify the snakeenergy in a way that makes it `intrinsic' or free of theparameterization. The modi�cation we follow enablesus to include the internal regularization term in theThis work was supported in part by the Applied Mathe-matics Subprogram of the O�ce of Energy Research under DE-AC03-76SFOOO98, and ONR grant under NOOO14-96-1-0381.

external potential term in a natural way. The energyE(C) of the new model has the following form:Z
wk@C@s k2+P (C)ds = Z
 ~P (C)ds = wL+Z
 P (C)ds(1)where P is the potential associated to the externalforces. Here C is in the space of all curves connectingtwo given points (restricted by boundary conditions):C(0) = p0 and C(L) = p1, where L is the length of thecurve. Contrary to the classical snake energy, here srepresents the arc-length parameter, which means thatk@C@s (s)k2 = 1. The regularization term with w, nowexactly measures the length of the curve. We showedsome regularization properties of this parameter in [4].2. PATHS OF MINIMAL ACTIONMotivated by an approach of minimal path estimationon a surface [5], we use an evolution scheme that pro-vides at each image pixel an output of the energy alongthe path of minimal integrated energy joining that pixelto the given start point. The search for a global min-imum is then done e�ciently. While this minimum isrestricted to start and end between two given points,we also presented a topology{based saddle search thathelps in automatically closing contours by clicking ona single point along the boundary [4].Having the above minimization problem in mind,we �rst search for the surface of minimal action Ustarting at p0 = C(0). At each point p of the imageplane, the value of this surface U corresponds to theminimal energy integrated along a path starting at p0and ending at p.U (p) = infC(L)=p�ZC ~Pds� (2)2.1. Minimal Action Level Sets EvolutionIn what follows, we assume that P � 0. Using thede�nition of U to minimize our energy (1), it is possibleto formulate a partial di�erential evolution equationdescribing the set of equal energy contours L in `time',where t is in fact the value of the energy. These are the



level sets of U0 de�ned by Eq. (2). In the evolutionequation t represents the height of the level set of U0:@L(v; t)@t = 1~P ~n(v; t); (3)where ~P = P + w and ~n(v; t) is the normal to theclosed curve L(:; t) : S1 ! IR2. The motivation for thisevolution is that we need to propagate with a velocitythat is proportional to the inverse of the penalty. Sothat at `low cost' area the velocity is high while at a`high cost' area the velocity is low.The curve L(v; t) corresponds here to the set ofpoints p for which the minimal energy U0(p) is t:fL(v; t); v 2 S1g = fp 2 IR2 j U0(p) = tg (4)This evolution equation is initialized by a curve L(v; 0)which is a small circle around the point p0. It corre-sponds to a null energy. It then evolves according toEq. (3), similar to a balloon evolution [2] with an in-
ation force depending on the potential.It is possible to compute the surface U in severalways. We describe three of them based on level-setsand front propagation that are consistent with the con-tinuous case while implemented on a rectangular grid.Front Propagation Approach. Using the Eulerianformulation [6], the evolution of L(t) in Eq. (3) is re-formulated into the evolution of an implicit represen-tation of the curve de�ned by an evolving surface � :IR2�[0; T )! IR, where for each value of t, L = ��1(0).This means that the curve L(t) is the zero level set of�(t) : IR2 ! IR. The evolution rule of � is then givenby: @�@t = � 1~P kr�k: (5)Shape from Shading Approach. The second ap-proach is based on [7] and searches for the surface Uitself instead of tracking its level sets. Given U = 0at the start point as boundary condition, U follows theevolution equation:@U@� = ~P � krUk: (6)Then the solution U is the steady state of U(p; � ) when� is large. The limit value U = U1 is such thatkrUk = ~P ; (7)with obviously U = 0 at the start point.2.2. The Fast Marching MethodIn his recent report [8], Sethian presents a fast ande�cient method for solving Eq. (7). It is based ona clever way for propagating the information on thegrid. Motivated by the two methods above, his methoduses the proposed numerical scheme in [6, 7]. However,by marching in an ordered way, the problem is solved

Figure 1: Line image. Top: original and potential.Bottom: level sets of U and minimal path.after a �nite number of steps. It is based on the factthat information is propagating from the source point`outwards'. Following [8], the method goes as follows:Initialization:� For each point in the grid, let Ui;j = 1 (largepositive value). Label all points as far.� Set the start point (i; j) = p to be zero: Up = 0,and label it as trial.Marching Forward Loop:� (imin; jmin) trial point with the smallest U value.� Label the point (imin; jmin) as alive, and removeit from the trial list.� For each of the 4 neighboring grid points (k; l) of(imin; jmin):{ If (k; l) is labeled far, then label it trial.{ If (k; l) is not alive, then compute Uk;l ac-cording to Eq. (8), selecting the largest so-lution to the quadratic equation, which isthe only valid solution. i.e. solve(maxfu�minfUk�1;l; Uk+1;lg; 0g)2 + (8)(maxfu�minfUk;l�1; Uk;l+1g; 0g)2 = P 2k;l;and let Uk;l = u.We refer to [8, 9, 10, 11, 4] for further details on theabove algorithm, as well as a proof of correct construc-tion. Using a min-heap structure for the trial list,the algorithm computational complexity is O(NlogN )where N is the number of grid points.A synthetic example is presented in Fig. 1. Ob-serve the way the level curves propagate faster alongthe path. In Fig. 2, we are interested in a road detec-tion between two points. Road areas are lighter andcorrespond to higher gray levels. The potential func-tion P was thus selected to be the opposite of the graylevel image itself: P = �I. Our approach can be used



Figure 2: Path of minimal action connecting the twoblack points. On the right, many paths are obtainedsimultaneously.
Figure 3: Finding vessels in medical angiographic im-age of the eye fundus. Right shows the level sets ofU .for the minimization of many paths emerging from thesame point in one single calculation of the minimal ac-tion. Given a start point in the upper left area, thepath achieving the global minimum of the energy isfound between this point and four other given pointsto determine the roads graph in our previous image.Fig. 3 shows a similar result on a medical image.3. PARAMETERIZATION ANDCONVERGENCEIn several classical snakes applications the minimiza-tion is similar to Eq. (1) yet the parameter is not thearclength, i.e.Eq = Z 10 k@C@q k2 + P (C)dq; (9)for which the Euler equation is given by@2C@q2 = rP=2: (10)Many applications make use of this simple linear equa-tion. However, in order to avoid node concentrationand get better results, the q parameter was changed(reparametrized) into the arclength one every severaliterations of the numerical scheme in [2]. Although it

would appear that this was a way to obtain geomet-rically meaningful results, we claim that in the limit,this reparametrization leads to convergence to the in-trinsic minimization only for special cases in which Pis constant along the �nal path.Proof. Using reparametrization via arclength s: @2C@q2 =@2C@s2 (@s@q )2 + @C@s @2s@q2 , we have in the limit q = s in (10).Now, from [3], the minimization of Eq is equivalent tothe intrinsic one with R pE0 � P (C(s))ds, for whichthe Euler equation is@2C@s2 = � rP2(E0 � P ) : (11)E0 is an arbitrary constant that depends on the pa-rameterization. In order for both (11) and (10) to holdwe need the three following conditions to be satis�ed:� hrP; @C@s i = 0 since h@2C@s2 ; @C@s i = 0.� @2s@q2 = 0, i.e. s = q�constant.� �rP=2(E0 � P ) = rP , i.e. P = 1 +E0.The last condition indicates that P should be constantalong the solution.The above claim further supports our interest in geo-metric models.4. GRAPH SEARCH ALGORITHMS ANDMETRICATION ERRORThe numerical schemes we propose are consistent withthe continuous propagation rule. The consistency con-dition guarantees that the solution converges to thetrue one as the grid is re�ned. This is known not to bethe case in general graph search algorithms that suf-fer from digitization bias due to the metrication errorwhen implemented on a grid [12]. This gives a clear ad-vantage to our method over minimal path estimationusing graph search.Let us review some of the graph search based meth-ods that try to minimize the energy given in (1). Amore complete survey and discussion can be found in[4]. To evaluate and minimize the snake energy [1], the\internal" terms can be evaluated only by using theshape of the curve, leading to evolution schemes froman initial curve. Based on the new energy de�nition (1),we are able to compute the �nal path without evolv-ing an initial contour, by using the surface of minimalaction. To �nd the surface of minimal action, graphsearch and dynamic programming techniques were of-ten used, considering the image pixels as vertices in agraph [13, 14, 15].A description of A� and F � algorithms, applied toroad detection, can be found in [14]. The distance im-age is initialized with value 1 everywhere except ata start point with value zero. At each iteration, theA� algorithm expands to a neighbor pixel a previously



obtained minimal path ending at the vertex with small-est current cost value. Since at each iteration one pixelgets a �nal value, and a search for the minimal ver-tex to update is performed, the algorithm complexityis O(NlogN ) where N is the number of pixels in theimage. Our approach solves a continuous version of theproblem. Fast marching method [8], described in sec-tion 2.2, has a similar complexity, yet it is consistent!The A� algorithm searches among all vertices theone to expand at each iteration. This is why the F �algorithm [14] was preferred in several applications, us-ing a sequential update of the pixels. It is similar inspirit to the shape from shading approach used in Sec-tion 2.1, except that the latter is again consistent. Us-ing the F �, the global minimum is reached only afterthe image is scanned iteratively top to bottom, row byrow, left to right followed by right to left, and thenbottom to top. The number of such passes depends onthe shape of the minimal path, which is unknown inadvance in general. This kind of approach was usedto compute distance maps in [16]. It was also used forroad detection in [17], using some improvements in thepotential de�nition. A simpli�ed F � algorithm is usedin [15] to minimize a snake energy.One may argue that using previously mentionedgraph search algorithms like the A�, Dijkstra, or F �as proposed in [14] for road tracking, might be su�-cient. These algorithms are indeed e�cient, yet su�erfrom `metrication errors'. As an illustration, Fig. 4shows the isodistance curves using a graph-search ap-proach and the continuous level-set approach. Whenthe size of the grid is re�ned, these curves are alwayssquares in the �rst case, while in our case, the curvesare getting closer to a perfect circle.Of course the result of the graph-search could beimproved by taking a larger neighborhood as structur-ing element [16] or by modifying the weights [12, 18].These give a di�erent polygonal approximation of thecircle, but there will always be an error in some direc-tion whatever the grid resolution.Our philosophy here is di�erent. We propose todeal with the continuous problem as long as possible.In that, we follow the numerical analysis community,by �rst analyzing the underlying problem in the con-tinuous domain. Then, at the last stage which involvesnumerical implementation we consider the image givenas a grid of pixels, compute optimal paths and the sur-face of minimum action e�ciently, while enjoying the`consistency' property of converging to the desired con-tinuous solution as the grid is re�ned.References[1] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-tive contour models. IJCV, 1(4):321{331, 1988.[2] Laurent D. Cohen. On active contour models and bal-loons. CVGIP:IU, 53(2):211{218, March 1991.[3] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic ac-tive contours. In ICCV'95, pages 694{699, Cambridge,USA, June 1995. to appear in IJCV.
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