FAST MARCHING THE GLOBAL MINIMUM OF ACTIVE CONTOURS

Laurent D. COHEN

CEREMADE, U.R.A. CNRS 749
Université Paris 9 - Dauphine
75775 Paris cedex 16, France

cohen@ceremade.dauphine.fr

ABSTRACT

A new approach of edge integration for shape modeling
1s presented. It is used to find the global minimum of an
active contour model’s energy between two points. Ini-
tialization 1s made easier and the curve is not trapped
at a local minimum by spurious edges. We modify the
“snake” energy by including the internal reqularization
term in the external potential term. Qur method is
based on the interpretation of the snake as a path of
minimal length in a Riemannian metric, or as a path
of minimal weighted distance. We then make use of a
new numerical method to find the shortest path which
1s the global minimum of the energy among all paths
joining the two endpoints. We show examples of our
method applied to real aerial and medical images.

1. INTRODUCTION

Variations of the active contour model (‘snakes’) for
boundary integration and features extraction, intro-
duced in [1], have been considerably used and studied
during the last years. Although the smoothing effect
of the snakes may overcome small defaults in the data,
spurious edges generated by noise or in a complex im-
age may stop the evolution of the curve so that it might
be trapped by an insignificant local minimum of the
energy. The inflation or expansion force [2] helps to
overcome such difficulties.

In this paper we present some results on a new ap-
proach for finding the global minimum for energy min-
imizing curves. Only endpoints are needed as an easy
initialization and we are guaranteed that the global
minimum 1s found between these points and that spu-
rious edges cannot lead to a local minimum. The min-
imization problem we are trying to solve is slightly
different from the deformable models, though there is
much in common. Following [3], we modify the snake
energy in a way that makes it ‘intrinsic’ or free of the
parameterization. The modification we follow enables
us to include the internal regularization term in the
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external potential term in a natural way. The energy
E(C) of the new model has the following form:
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where P 1s the potential associated to the external
forces. Here C is in the space of all curves connecting
two given points (restricted by boundary conditions):
C(0) = po and C(L) = p1, where L is the length of the
curve. Contrary to the classical snake energy, here s
represents the arc-length parameter, which means that

||%(5)||2 = 1. The regularization term with w, now
exactly measures the length of the curve. We showed
some regularization properties of this parameter in [4].

2. PATHS OF MINIMAL ACTION

Motivated by an approach of minimal path estimation
on a surface [5], we use an evolution scheme that pro-
vides at each image pixel an output of the energy along
the path of minimal integrated energy joining that pixel
to the given start point. The search for a global min-
imum is then done efficiently. While this minimum is
restricted to start and end between two given points,
we also presented a topology—based saddle search that
helps in automatically closing contours by clicking on
a single point along the boundary [4].

Having the above minimization problem in mind,
we first search for the surface of minimal action U
starting at pp = C(0). At each point p of the image
plane, the value of this surface U corresponds to the
minimal energy integrated along a path starting at pg
and ending at p.
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2.1. Minimal Action Level Sets Evolution

In what follows, we assume that P > 0. Using the
definition of U to minimize our energy (1), it is possible
to formulate a partial differential evolution equation
describing the set of equal energy contours £ in ‘time’,
where ¢ 18 in fact the value of the energy. These are the



level sets of Uy defined by Eq. (2).  In the evolution
equation t represents the height of the level set of Upy:
LC(U,I?) = lﬁ(v,t), (3)
where P = P 4+ w and fi(v,t) is the normal to the
closed curve £(.,t) : S* — IR*. The motivation for this
evolution is that we need to propagate with a velocity
that is proportional to the inverse of the penalty. So
that at ‘low cost’ area the velocity is high while at a
‘high cost’ area the velocity is low.
The curve L(v,t) corresponds here to the set of
points p for which the minimal energy Up(p) is ¢:

{L(v,t),ve S} = {pe R | Uolp) =t} (4)

This evolution equation is initialized by a curve £(v,0)
which 1s a small circle around the point pg. It corre-
sponds to a null energy. It then evolves according to
Eq. (3), similar to a balloon evolution [2] with an in-
flation force depending on the potential.

It is possible to compute the surface U in several
ways. We describe three of them based on level-sets
and front propagation that are consistent with the con-
tinuous case while implemented on a rectangular grid.
Front Propagation Approach. Using the Fulerian
formulation [6], the evolution of L£(t) in Eq. (3) is re-
formulated into the evolution of an implicit represen-
tation of the curve defined by an evolving surface ¢ :
R*x[0,T) — IR, where for each value of ¢, £ = ¢=1(0).
This means that the curve £(t) is the zero level set of
é(t) : IR* — IR. The evolution rule of ¢ is then given
by:
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Shape from Shading Approach. The second ap-
proach is based on [7] and searches for the surface U
itself instead of tracking its level sets. Given U = 0
at the start point as boundary condition, ¢/ follows the
evolution equation:
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Then the solution U is the steady state of U (p, 7) when
7 is large. The limit value U = U is such that

VU = P, (7)

with obviously U = 0 at the start point.

2.2. The Fast Marching Method

In his recent report [8], Sethian presents a fast and
efficient method for solving Eq. (7). It is based on
a clever way for propagating the information on the
grid. Motivated by the two methods above, his method
uses the proposed numerical scheme in [6, 7]. However,
by marching in an ordered way, the problem is solved

Figure 1: Line image. Top: original and potential.
Bottom: level sets of U and minimal path.

after a finite number of steps. It 1s based on the fact
that information is propagating from the source point
‘outwards’. Following [8], the method goes as follows:
Initialization:
e For each point in the grid, let U; ; = oo (large
positive value). Label all points as far.
e Set the start point (4, ) = p to be zero: U, =0,
and label it as trial.
Marching Forward Loop:
® (4min, jmin) trial point with the smallest U value.
e Label the point (imsn, Jmin) as alive, and remove
it from the trial list.
e For each of the 4 neighboring grid points (k,{) of

(Zmzn ) ]mzn)
— If (k,1) is labeled far, then label it trial.

— If (k, ) is not alive, then compute Uy ; ac-
cording to Eq. (8), selecting the largest so-
lution to the quadratic equation, which is
the only valid solution. ¢.e. solve

(max{u — min{U_1 1, Up11.},01)" + (8)
(max{u — min{Us 1, U 141}, 0})* = P2,
and let Uy ; = w.

We refer to [8, 9, 10, 11, 4] for further details on the
above algorithm, as well as a proof of correct construc-
tion. Using a min-heap structure for the trial list,
the algorithm computational complexity is O(NlogN)
where N 1s the number of grid points.

A synthetic example is presented in Fig. 1. Ob-
serve the way the level curves propagate faster along
the path. In Fig. 2, we are interested in a road detec-
tion between two points. Road areas are lighter and
correspond to higher gray levels. The potential func-
tion P was thus selected to be the opposite of the gray
level image itself: P = —I. Our approach can be used



Figure 2: Path of minimal action connecting the two
black points. On the right, many paths are obtained
simultaneously.

Figure 3: Finding vessels in medical angiographic im-
age of the eye fundus. Right shows the level sets of
U.

for the minimization of many paths emerging from the
same point in one single calculation of the minimal ac-
tion. Given a start point in the upper left area, the
path achieving the global minimum of the energy is
found between this point and four other given points
to determine the roads graph in our previous image.
Fig. 3 shows a similar result on a medical image.

3. PARAMETERIZATION AND
CONVERGENCE

In several classical snakes applications the minimiza-
tion is similar to Eq. (1) yet the parameter is not the
arclength, i.e.

1
oC
£y = [ 15+ PCda o)
o g
for which the Euler equation is given by
o*C
— =VP/2. 10
=P (10)

Many applications make use of this simple linear equa-
tion. However, in order to avoid node concentration
and get better results, the ¢ parameter was changed
(reparametrized) into the arclength one every several
iterations of the numerical scheme in [2]. Although it

would appear that this was a way to obtain geomet-
rically meaningful results, we claim that in the limit,
this reparametrization leads to convergence to the in-
trinsic minimization only for special cases in which P
is constant along the final path.

a2C _
dg2

we have in the limit ¢ = s in (10).

Proof. Using reparametrization via arclength s:
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Now, from [3], the minimization of E, is equivalent to

the intrinsic one with [ \/Ey — P(C(s))ds, for which

the Euler equation is

o%C vP
8s2 ~ 2(Eo—P) (11)

FEy i1s an arbitrary constant that depends on the pa-
rameterization. In order for both (11) and (10) to hold
we need the three following conditions to be satisfied:

o (VP %) = 0 since (%, %) =0.
8%
dg?
o —VP/2Ey—P)=VP,ie P=1+E.

. =0, i.e. s = gxconstant.

The last condition indicates that P should be constant
along the solution. [ |
The above claim further supports our interest in geo-
metric models.

4. GRAPH SEARCH ALGORITHMS AND
METRICATION ERROR

The numerical schemes we propose are consistent with
the continuous propagation rule. The consistency con-
dition guarantees that the solution converges to the
true one as the grid is refined. This is known not to be
the case in general graph search algorithms that suf-
fer from digitization bias due to the metrication error
when implemented on a grid [12]. This gives a clear ad-
vantage to our method over minimal path estimation
using graph search.

Let us review some of the graph search based meth-
ods that try to minimize the energy given in (1). A
more complete survey and discussion can be found in
[4]. To evaluate and minimize the snake energy [1], the
“internal” terms can be evaluated only by using the
shape of the curve, leading to evolution schemes from
an initial curve. Based on the new energy definition (1),
we are able to compute the final path without evolv-
ing an initial contour, by using the surface of minimal
action. To find the surface of minimal action, graph
search and dynamic programming techniques were of-
ten used, considering the image pixels as vertices in a
graph [13, 14, 15].

A description of A* and F'* algorithms, applied to
road detection, can be found in [14]. The distance im-
age 1s initialized with value oo everywhere except at
a start point with value zero. At each iteration, the
A* algorithm expands to a neighbor pixel a previously



obtained minimal path ending at the vertex with small-
est current cost value. Since at each iteration one pixel
gets a final value, and a search for the minimal ver-
tex to update i1s performed, the algorithm complexity
is O(NlogN) where N is the number of pixels in the
image. Our approach solves a continuous version of the
problem. Fast marching method [8], described in sec-
tion 2.2, has a similar complexity, yet it is consistent!

The A* algorithm searches among all vertices the
one to expand at each iteration. This is why the F'*
algorithm [14] was preferred in several applications, us-
ing a sequential update of the pixels. Tt is similar in
spirit to the shape from shading approach used in Sec-
tion 2.1, except that the latter is again consistent. Us-
ing the F'* the global minimum is reached only after
the image 1s scanned iteratively top to bottom, row by
row, left to right followed by right to left, and then
bottom to top. The number of such passes depends on
the shape of the minimal path, which is unknown in
advance in general. This kind of approach was used
to compute distance maps in [16]. Tt was also used for
road detection in [17], using some improvements in the
potential definition. A simplified F™* algorithm is used
in [15] to minimize a snake energy.

One may argue that using previously mentioned
graph search algorithms like the A* | Dijkstra, or F™*
as proposed in [14] for road tracking, might be suffi-
cient. These algorithms are indeed efficient, yet suffer
from ‘metrication errors’. As an illustration, Fig. 4
shows the i1sodistance curves using a graph-search ap-
proach and the continuous level-set approach. When
the size of the grid is refined, these curves are always
squares in the first case, while in our case, the curves
are getting closer to a perfect circle.

Of course the result of the graph-search could be
improved by taking a larger neighborhood as structur-
ing element [16] or by modifying the weights [12, 18].
These give a different polygonal approximation of the
circle, but there will always be an error in some direc-
tion whatever the grid resolution.

Our philosophy here 1s different. We propose to
deal with the continuous problem as long as possible.
In that, we follow the numerical analysis community,
by first analyzing the underlying problem in the con-
tinuous domain. Then, at the last stage which involves
numerical implementation we consider the image given
as a grid of pixels, compute optimal paths and the sur-
face of minimum action efficiently, while enjoying the
‘consistency’ property of converging to the desired con-
tinuous solution as the grid is refined.
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