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Abstract

We show how periodic motions can be represented by a small number of eigenshapes that capture the whole dynamic mech-
anism of the motion. Spectral decomposition of a silhouette of a moving object serves as a basis for behavior classification
by principle component analysis. The boundary contour of the walking dog, for example, is first computed efficiently and
accurately. After normalization, the implicit representation of a sequence of silhouette contours given by their corresponding
binary images, is used for generating eigenshapes for the given motion. Singular value decomposition produces these eigen-
shapes that are then used to analyze the sequence. We show examples of object as well as behavior classification based on
the eigendecomposition of the binary silhouette sequence.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Futurism is a movement in art, music, and literature that
began in Italy at about 1909 and marked especially by an
effort to give formal expression to the dynamic energy and
movement of mechanical processes.A typical example is the
‘Dynamism of a Dog on a Leash’ by Giacomo Balla, who
lived during the years 1871–1958 in Italy, seeFig. 1 [1]. In
this painting one could see how the artist captures in one
still image the periodic walking motion of a dog on a leash.
Following a similar philosophy, we show how periodic mo-
tions can be represented by a small number of eigenshapes
that capture the whole dynamic mechanism of periodic mo-
tions. Singular value decomposition of a silhouette of an ob-
ject serves as a basis for behavior classification by principle
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component analysis.Fig. 2 present a running horse video
sequence and its eigenshape decomposition. One can see the
similarity between the first eigenshapes—Fig.2(c and d),
and another futurism style painting “The Red Horseman”
by Carlo Carra[1]—Fig. 2(e). The boundary contour of the
moving non-rigid object is computed efficiently and accu-
rately by the fast geodesic active contours[2]. After normal-
ization, the implicit representation of a sequence of silhou-
ette contours given by their corresponding binary images, is
used for generating eigenshapes for the given motion. Sin-
gular value decomposition produces the eigenshapes that are
used to analyze the sequence. We show examples of object
as well as behavior classification based on the eigendecom-
position of the sequence.

2. Related work

Motion-based recognition received a lot of attention in
the field of image analysis. The main reason is that direct
usage of temporal data can improve our ability to solve a
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number of basic computer vision problems. Examples are
image segmentation, tracking, object classification, etc.

In general, when analyzing a moving object, one can use
two main sources of information: changes of the moving
object position (and orientation) in space, and the object’s
deformations.

Object position is an easy-to-get characteristic, applica-
ble both for rigid and non-rigid bodies. It is provided by
most of existing target detection and tracking systems. A
number of techniques[3–6] were proposed for the detection
of motion events and recognition of various types of mo-
tions based on the analysis of the moving object trajectory
and its derivatives. Detecting object orientation is a more
challenging problem. It is usually solved by fitting a model
that may vary from a simple ellipsoid[6] to a complex 3-D
vehicle model[7] or a specific aircraft-class model adapted
for noisy radar images as in Ref.[8].

Fig. 1. ‘Dynamism of a Dog on a Leash’ 1912, by Giacomo Balla,
Albright-Knox Art Gallery, Buffalo.

Fig. 2. (a) Running horse video sequence, (b) first 10 eigenshapes, (c,d) first and second eigenshapes enlarged, (e) ‘The Red Horseman’,
1914, by Carlo Carra, Civico Museo d’Arte Contemporanea, Milan.

While object orientation characteristic is more applicable
for rigid objects, it is object deformation that contains the
most essential information about the nature of the non-rigid
body motion. This is especially true for natural non-rigid ob-
jects in locomotion that exhibit substantial changes in their
apparent view. In this case the motion itself is caused by
these deformations, e.g. walking, running, hopping, crawl-
ing, flying, etc.

There exists a large number of papers dealing with the
classification of moving non-rigid objects and their motions,
based on their appearance. Lipton et al. describe a method
for moving target classification based on their static appear-
ance[9] and using their skeletons[10]. Polana and Nelson
[11] used local motion statistics computed for image grid
cells to classify various types of activities. An approach
using the temporal templates and motion history images
(MHI) for action representation and classification was sug-
gested by Davis and Bobick in Ref.[12]. Cutler and Davis
[13] describe a system for real-time moving object classifi-
cation based on periodicity analysis. Describing the whole
spectrum of papers published in this field is beyond the
scope of this paper, and we refer the reader to the surveys
[14–16].

Related to our approach are the works of Yacoob and
Black [17] and Murase and Sakai[18]. In Ref. [17], human
activities are recognized using a parameterized representa-
tion of measurements collected during one motion period.
The measurements are eight motion parameters tracked for
five body parts (arm, torso, thigh, calf and foot).

Murase and Sakai[18] describe a method for moving
object recognition for gait analysis and lip reading. Their
method is based on parametric eigenspace representation of
the object silhouettes. Moving object segmentation is per-
formed by using simple background subtraction. The eigen-
basis is computed for one class of objects. Murase and Sakai
used an optimization technique for finding the shift and scale
parameters which is not trivial to implement.
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In this paper we concentrate on the analysis of defor-
mations of moving non-rigid bodies. We thereby attempt
to extract characteristics that allow us to distinguish be-
tween different types of motions and different classes of
objects.

Essentially we build our method based on approaches
suggested in Refs.[18,17]by revisiting and improving some
of the components. Unlike previous related methods, we
first introduce an advanced variational model for accurate
segmentation and tracking. The proposed segmentation and
tracking method allows extraction of moving object con-
tours with high accuracy and, yet, is computationally effi-
cient enough to be implemented in a real time system. The
algorithm analyzing high-precision object contours achieves
better classification results and can be easier adopted to var-
ious object classes than the methods based on control points
tracking[17] or background subtraction[18].
We then compute eigenbasis for several classes of objects

(e.g. humans and animals). Moreover, at this first stage we
select the right class by comparing the distance to the right
feature space in each of the eigenbases. Next, we create a
principle basis not only for static object view (single frames),
but also for the whole period subsequences. For example, we
create a principle basis for one human motion step and then
project every period onto this basis. Unlike[18], we are not
trying to build a separate basis for every motion type, but
instead, build a common basis for the whole human motion
class. Different types of human motions are then detected
by looking at the projections of motion samples onto this
basis. Apparently, this type of analysis can only be possible
due to the high quality of segmentation and tracking results.
We propose an explicit temporal alignment process for

finding the shift and scale. Finally, we use a simple clas-
sification approach to demonstrate the performances of
our framework and test it on various classes of moving
objects.

3. Our approach

Our basic assumption is that for any given class of moving
objects, like humans, dogs, cats, and birds, the apparent
object view in every phase of its motion can be encoded as a
combination of several basic body views or configurations.
Assuming that a living creature exhibits a pseudo-periodic
motion, one motion period can be used as a comparable
information unit. The basic views are then extracted from
a large training set. An observed sequence of object views
collected from onemotion period is projected onto this basis.
This forms a parameterized representation of the object’s
motion that can be used for classification.

Unlike [17] we do not assume an initial segmentation of
the body into parts and do not explicitly measure the motion
parameters. Instead, we work with the changing apparent
view of deformable objects and use the parameterization
induced by their form variability.

In what follows we describe the main steps of the process
that include,

• Segmentation and tracking of the moving object that yield
an accurate external object boundary in every frame.

• Periodicity analysis, in which we estimate the frequency
of the pseudo-periodic motion and split the video se-
quence into single-period intervals.

• Frame sequence alignment that brings the single-period
sequences to a standardized form by compensating for
temporal shift, speed variations, different object sizes and
imaging conditions.

• Parameterization by building an eigenshape basis from a
training set of possible object views and projecting the
apparent view of a moving body onto this basis.

3.1. Segmentation and tracking

Our approach is based on the analysis of deformations of
themoving body. Therefore the accuracy of the segmentation
and tracking algorithm in finding the target outline is crucial
for the quality of the final result. This rules out a number
of available or easy-to-build tracking systems that provide
only a center of mass or a bounding box around the target
and calls for more precise and usually more sophisticated
solutions.

Therefore, we decided to use the geodesic active contour
approach[19] and specifically the ‘fast geodesic active con-
tour’ method described in Ref.[2]. The segmentation prob-
lem is expressed as a geometric energy minimization. We
search for a curveC that minimizes the functional

S[C] =
∫ L(C)

0
g(C)ds,

where ds is the Euclidean arclength,L(C) is the total Eu-
clidean length of the curve, andg is a positive edge indi-
cator function in a 3-D hybrid spatial-temporal space that
depends on the pair of consecutive framesI t−1(x, y) and
I t (x, y), whereI t (x, y) : � ⊂ R2 × [0, T ] → R+. It gets
small values along the spatial-temporal edges, i.e. moving
object boundaries, and higher values elsewhere.

In addition to the scheme described in Ref.[2], we also
use the background information whenever a static back-
ground assumption is valid and a background imageB(x, y)

is available. In the active contours framework this can be
achieved either by modifying theg function to reflect the
edges in the difference imageD(x, y)=|B(x, y)−I t (x, y)|,
or by introducing additional area integration terms to the
functionalS(C):

S[C] =
∫ L(C)

0
g(C)ds + �1

∫
�C

|D(x, y) − c1|2 da

+ �2

∫
�\�C

|D(x, y) − c2|2 da,
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Fig. 3. Non-rigid moving object segmentation and tracking.

where�C is the area inside the contourC, �1 and�2 are
fixed parameters andc1, c2 are given by

c1 = average�C
[D(x, y)],

c2 = average�\�C
[D(x, y)].

The latter approach is inspired by the ‘active contours with-
out edges’ model proposed by Chan and Vese[20]. It forces
the curveC to close on a region whose interior and exte-
rior have approximately uniformD(x, y) values. A different
approach to utilize the region information by coupling be-
tween the motion estimation and the tracking problem was
suggested by Paragios and Deriche in Ref.[21].

Fig. 3shows some results of moving object segmentation
and tracking using the proposed method.

Contours can be represented in various ways. Here, in or-
der to have a unified coordinate system and be able to apply
a simple algebraic tool, we use the implicit representation
of a simple closed curve as its binary image. That is, the
contour is given by an image for which the exterior of the
contour is black while its interior is white.

3.2. Periodicity analysis

Here we assume that the majority of non-rigid moving
objects are self-propelled alive creatures, whose motion is
almost periodic. Thus, one motion period, like a step of a
walking man or a rabbit hop, can be used as a natural unit of
motion. Extracted motion characteristics can by normalized
by the period size.

The problem of detection and characterization of periodic
activities was addressed by several research groups and the

prevailing technique for periodicity detection and measure-
ments is the analysis of the changing 1-D intensity signals
along spatio-temporal curves associated with a moving ob-
ject or the curvature analysis of feature point trajectories
[22–25]. Here we address the problem using global charac-
teristics of motion such as moving object contour deforma-
tions and the trajectory of the center of mass.

By running frequency analysis e.g. Refs.[13,26]on such
1-D contour metrics as the contour area, velocity of the cen-
ter of mass, principal axes orientation, etc. we can detect
the basic period of the motion.Figs. 4and5 present global
motion characteristics derived from segmented moving ob-
jects in two sequences. One can clearly observe the common
dominant frequency in all three graphs.

The period can also be estimated in a straightforward
manner by looking for the frame where the external object
contour best matches the object contour in the current frame.
Fig. 6 shows the deformations of a walking man contour
during one motion period (step). Samples from two different
steps are presented and each vertical pair of frames is phase
synchronized. One can clearly see the similarity between
the corresponding contours.An automated contour matching
can be performed in a number of ways, e.g. by comparing
contour signatures or by looking at the correlation between
the object silhouettes in different frames as we chose to do in
our work.Fig. 7shows four graphs of inter-frame silhouette
correlation valuesmeasured for four different starting frames
taken within one motion period. It is clearly visible that
all four graphs nearly coincide and the local maxima peaks
are approximately evenly spaced. The period, therefore, was
estimated as the average distance between the neighboring
peaks.
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Fig. 4. Global motion characteristics measured for walking man sequence.

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

ra
d

0 20 40 60 80 100 120
7000

7500

8000

8500

sq
. p

ix
el

s

0 20 40 60 80 100 120
 -2

 -1

0

1

2

pi
xe

ls
/fr

am
e

frame number

Walking cat − global motion parameters 

Principal axis inclination angle

Contour area 

Center of mass − vertical velocity 

Fig. 5. Global motion characteristics measured for walking cat sequence.
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Fig. 6. Deformations of a walking man contour during one motion period (step). Two steps synchronized in phase are shown. One can see
the similarity between contours in corresponding phases.
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Fig. 7. Inter-frame correlation between object silhouettes. Four
graphs show the correlation measured for four initial frames.

3.3. Frame sequence alignment

One of the most desirable features of any classification
system is the invariance to a set of possible input transfor-
mations. As the input in our case is not a static image, but
a sequence of images, the system should be robust to both
spatial and temporal variations. In the section below we de-
scribe the methods for spatial and temporal alignment of
input video sequence bringing it to a canonical, comparable
form allowing later classification.

3.3.1. Spatial alignment
We want to compare every object to a single pattern re-

gardless of its size, viewing distance and other imaging con-
ditions. This is achieved by cropping a square bounding box
around the center of mass of the tracked target silhouette and
re-scaling it to a predefined size (seeFig. 8). Note that this
is not a scale invariant transformation unlike other reported
normalization techniques e.g. Ref.[27].

Fig. 8. Scale alignment. A minimal square bounding box around
the center of the segmented object silhouette (a) is cropped and
re-scaled to form a 50× 50 binary image (b).

One way to have orientation invariance is to keep a col-
lection of motion samples for a wide range of possible
motion directions and then look for the best match. This
approach was used by Yacoob and Black in Ref.[17] to
distinguish between different walking directions. Although
here we experiment only with motions nearly parallel to the
image plane, the system proved to be robust to small vari-
ations in orientation. Since we do not want to keep models
for both left-to-right and right-to-left motion directions, the
right-to-left moving sequences are converted to left-to-right
by horizontal mirror flip.

3.3.2. Temporal alignment
A good estimate of the motion period allows us to com-

pensate for motion speed variations by re-sampling each
period subsequence to a predefined duration. This can be
done by interpolation between the binary silhouette im-
ages themselves or between their parameterized represen-
tation as explained below.Fig. 9 presents an original and
re-sampled one-period subsequence after scaling from 11 to
10 frames.

Temporal shift is another issue that has to be addressed
in order to align the phase of the observed one-cycle sample
and the models stored in the training base. In Ref.[17] it
was done by solving a minimization problem of finding the
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Fig. 9. Temporal alignment. Top: original 11 frames of one period subsequence. Bottom: re-sampled 10 frames sequence.

Fig. 10. Temporal shift alignment: (a) average starting frame of all the training set sequences, (b) temporally shifted single-cycle test
sequence, (c) correlation between the reference starting frame and the test sequence frames.

optimal parameters of temporal scaling and time shift trans-
formations so that the observed sequence is best matched
to the training samples. Polana and Nelson[11] handled
this problem by matching the test one-period subsequence
to reference template at all possible temporal translations.
Murase and Sakai[18] used an optimization technique for
finding the shift and scale parameters. Here we propose an
explicit temporal alignment process.

Let us assume that in the training set all the sequences
are accurately aligned. Then we find the temporal shift of
a test sequence by looking for the starting frame that best
matches the generalized (averaged) starting frame of the
training samples, as they all look alike.Fig. 10shows (a) the
reference starting frame taken as an average over the tem-
porally aligned training set, (b) a re-sampled single-period
test sequence and, (c) the correlation between the reference
starting frame and the test sequence frames. The maximal
correlation is achieved at the seventh frame, therefore the

test sequence is aligned by cyclically shifting it 7 frames to
the left.

3.4. Parameterization

In order to reduce the dimensionality of the problem we
first project the object image in every frame onto a low-
dimensional base. The base is chosen to represent all pos-
sible appearances of objects that belong to a certain class,
like humans, four-leg animals, etc.

Let n be number of frames in the training base of a certain
class of objects andM be a training samples matrix, where
each column corresponds to a spatially aligned image of a
moving object written as a binary vector. In our experiments
we use 50×50 normalized images, therefore,M is a 2500×n

matrix. The correlation matrixMMT is decomposed using
Singular Value Decomposition asMMT =U�V T, whereU
is an orthogonal matrix of principal directions and the� is
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Fig. 11. The principal basis for the ‘dogs and cats’ training set
formed of 20 first principal component vectors.

a diagonal matrix of singular values. In practice, the decom-
position is performed onMTM, which is computationally
more efficient[28]. The principal basis{Ui, i=1, . . . , k} for
the training set is then taken ask columns ofU correspond-
ing to the largest singular values in�. Fig. 11 presents a
principal basis for the training set formed of 800 sample im-
ages collected from more than 60 sequences showing dogs
and cats in motion. The basis is built by taking thek = 20
first principal component vectors.
We build such representative bases for every class of

objects. Then, we can distinguish between various object
classes by finding the basis that best represents a given ob-
ject image in the distance to the feature space (DTFS) sense.
Fig. 12shows the distances frommore than 1000 various im-
ages of people, dogs and cats to the feature space of people
and to that of dogs and cats. In all cases, images of people
were closer to the people feature space than to the animals’
feature space and vise a versa. This allows us to distinguish
between these two classes. A similar approach was used in
Ref. [29] for the detection of pedestrians in traffic scenes.

If the object class is known (e.g. we know that the object
is a dog), we can parameterize the moving object silhouette
imageI in every frame by projecting it onto the class basis.
Let B be the basis matrix formed from the basis vectors
{Ui, i = 1, . . . , k}. Then, the parameterized representation
of the object imageI is given by the vectorp of lengthk as
p = BTvI , wherevI is the imageI written as a vector.

The idea of using a parameterized representation in
motion-based recognition context is certainly not a new
one. To name a few examples we mention again the works
of Yacoob and Black[17], and of Murase and Sakai[18].
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Fig. 12. Distances to the ‘people’ and ‘dogs and cats’ feature spaces
from more than 1000 various images of people, dogs and cats.

Cootes et al.[30] used similar technique for describing fea-
ture point locations by a reduced parameter set. Baumberg
and Hogg[31] used PCA to describe a set of admissible
B-spline models for deformable object tracking. Chomat
and Crowley[32] used PCA-based spatio-temporal filter
for human motion recognition.

Fig. 13shows several normalized moving object images
from the original sequence and their reconstruction from a
parameterized representation by back-projection to the im-
age space. The numbers below are the norms of differences
between the original and the back-projected images. These
norms can be used as the DTFS estimation.

Now, we can use these parameterized representations to
distinguish between different types of motion. The refer-
ence base for the activity recognition consists of temporally
aligned one-period subsequences. The moving object sil-
houette in every frame of these subsequences is represented
by its projection to the principal basis. More formally, let
{If : f =1, . . . , T } be a one-period, temporally aligned set
of normalized object images, andpf , f = 1, . . . , T a pro-
jection of the imageIf onto the principal basisB of size
k. Then, the vectorP of lengthkT formed by concatenation
of all the vectorspf , f = 1, . . . , T , represent a one-period
subsequence. By choosing a basis of sizek=20 and the nor-
malized duration of one-period subsequence to beT = 10
frames, every single-period subsequence is represented by
a feature point in a 200-dimensional feature space.

In the following experiment we processed a number of
sequences of dogs and cats in various types of locomotion.
From these sequences we extracted 33 samples of walking
dogs, 9 samples of running dogs, 9 samples with gallop-
ing dogs and 14 samples of walking cats. LetS200×m be
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Fig. 13. Image sequence parameterization. Top: 11 normalized target images of the original sequence. Bottom: the same images after the
parameterization using the principal basis and back-projecting to the image basis. The numbers are the norms of the differences between
the original and the back-projected images.

dog walking  
dog running  
dog galloping
cat walking  

Fig. 14. Feature points extracted from the sequences with walking,
running and galloping dogs and walking cats and projected to the
3D space for visualization.

the matrix of projected single-period subsequences, where
m is the number of samples and the SVD of the correla-
tion matrix is given bySST = US�SV S . In Fig. 14we de-
pict the resulting feature points projected for visualization
to the 3-D space using the three first principal directions
{US

i
: i =1, . . . ,3}, taken as the column vectors ofUS cor-

responding to the three largest eigen-values in�S . One can
easily observe four separable clusters corresponding to the
four groups.
Another experiment was done over the ‘people’ class

of images.Fig. 15 presents feature points corresponding
to several sequences showing people walking and running
parallel to the image plane and running at oblique angle
to the camera. Again, all three groups lie in separable
clusters.

The classification can be performed, for example, using
the k-nearest-neighbor algorithm. We conducted the ‘leave
one out’ test for the dogs set above, classifying every sample
by taking them out from the training set one at a time. The
three-nearest-neighbors strategy resulted in 100% success
rate.

walking   
running   
running−45

Fig. 15. Feature points extracted from the sequences showing peo-
ple walking and running parallel to the image plane and at 45◦
angle to the camera. Feature points are projected to the 3-D space
for visualization.

Another option is to further reduce the dimensionality of
the feature space by projecting the 200-dimensional feature
vectors inS to some principal basis. This can be done using
a basis of any size, exactly as we did in 3-D for visualiza-
tion. Fig. 16presents learning curves for both animals and
people data sets. The curves show how the classification er-
ror rate achieved by one-nearest-neighbor classifier changes
as a function of principal basis size. The curves are obtained
by averaging over a hundred iterations when the data set is
randomly split into training and testing sets. The principal
basis is built on the training set and the testing is performed
using the ‘leave one out’ strategy on the testing set.

4. Concluding remarks

We presented a new framework for motion-based clas-
sification of moving non-rigid objects. The technique is
based on the analysis of changing appearance of moving ob-
jects and is heavily relying on high accuracy results of seg-
mentation and tracking by using the fast geodesic contour
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Fig. 16. Learning curves for (a) dogs and cats data set and (b) people data set. One-nearest-neighbor classification error rate as a function
of the number of eigenvectors in the projection basis.

approach. The periodicity analysis is then performed based
on the global properties of the extracted moving object con-
tours, followed by video sequence spatial and temporal nor-
malization. Normalized one-period subsequences are param-
eterized by projection onto a principal basis extracted from
a training set of images for a given class of objects. A num-
ber of experiments show the ability of the system to ana-
lyze motions of humans and animals, to distinguish between
these two classes based on object appearance, and to classify
various type of activities within a class, such as walking,
running, galloping. The ‘dogs and cats’ experiment demon-
strate the ability of the system to discriminate between these
two very similar by appearance classes by analyzing their
locomotion.
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