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A new approach for the reconstruction of a smooth three-
dimensional object from its two-dimensional gray-level image
is presented. An algorithm based on topological properties of
simple smooth surfaces is provided to solve the problem of
global reconstruction. Classifying singular points in the shading
image as maxima, minima, and two kinds of saddle points
serves as the key to the solution of the problem. The global
reconstruction procedure, being deterministic and using topo-
logical properties of the surface, performs beiter than other
approaches proposed so far that are based on classification of
singular points according to the behavior of characteristics in
their neighborhood. The proposed algorithm is simple and easy
to implement and lends itself to a parallel imple-
mentation. © 1995 Academic Press, Inc.

1. INTRODUCTION

The problem of reconstructing the three-dimensional
shape of an object from its shading (gray-level) image
was and still is of great interest to the computer vision
community. Horn [7] formulated the problem as a first-
order nounlinear partial differential equation and attempted
to solve it using the classical characteristic-strip expansion
miethod. This direct approach sufiers from the numerical
diflicultics of inaccuracy and instability due to its loacal
nature, The search for better approaches led (o the devel-
opmenl of a series of algorithms that solve regularized
versions of the problem (see [8, 9], which represent only
a few of the many published works concerning such ap-
proaches.) Direct iterative procedures were recently pre-
sented in {21, 18], followed by [1, 4], where the problem
is reformulated to yield iterative numerical schemes that
could be proved to converge to the “correct” solution.
However, these algorithms were aimed at solving the local
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problem, and some exiernal information, like the nature
of singular points, was necessary in order to pateh the local
solutions together.

The shaded image induces a relation between surface
normals and the light source direction. According to the
so-called Lambertian shading rule, the image, i.e., the
two-dimensional acrray of gray levels at each pixel in the
image, maps the cosine of the angle between the light
source direction and the surface normal. The shape from
shading problem is the inverse problem of reconstructing
the 3D surface from these data. In order to resolve
ambiguities, smoothness assumptions were explored, as
well as other clues in the image such as apparent contours,
grazing light edges, self shadow edges [16], and (last but
most important for our discussion) the nature of singular
points, Singular points are those points in the image
where there is no ambiguity in the normal direction.
The normal of the surface at a singular point is known
to be in the direction of the light source. These brightest
points are the local minima, local maxima, and saddle
points (with respect to the light source direction) of the
surface. Horn [7] suggested the use of small circles
around singular points as initial conditions for the charac-
teristic strip expansion method., Some atlempts to use
those points as a key to glebal reconstruction were made
in |5, 19]. where the behavior of characteristics around
a singular point is used to determine the nature of that
point. The local solution to the shape [rom shading
problem is extended from maxima to minima and so
forth, based on that classification procedure. This method
requires choosing a singular point that is known not to
be a saddle. Extending the solution involves the inspec-
tion and classification of singular points on the boundary
of the area of attraction of a singular point. These
operations make no use of global topological propertlies
of the surface and may therefore lead to mistakes.

In this paper we address the problem of global shape
from shading, where no boundary or initial conditions
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are assumed other than the shading image itself, based
on the topological properties of simple smooth Morse
functions. We rely on the theory of differential topology
to classify the singular points. The cofrect solution is
selected from all possible solutions as the one that satisfies
the global topological properties and agrees with the
local shading equation. There is no need to classify any
of the singular points, and all those points take part in
the process of merging areas until all possible solutions
are found.

The structure of this paper is as follows. In Section
2, a local shape from shading via level set algorithm
based on [3, 10, 11, 13] is briefly referred to. It was
shown in {12, 13, 21] that the local shape from shading
problem is similar to the weighted distance transform.
Starting from all the singular points we calculate the
weighted distance transform for each of those points.
Section 3 briefly reviews the topological properties of
simple smooth surfaces. Those properties are used in
Section 4 to formulate the global shape from shading
algorithm. The algorithm implements a logical combina-
tion of the weighted distance transtorms of all the singular
points. Some examples that clarify the algorithm are
presented in Sections 5, followed by some remarks on
the complexity of the algorithm in Section 6.

2. LOCAL SHAPE FROM SHADING

We have chosen to use the simple case where the light
source and the viewer are located at the same place. Con-
sider a smooth surface z(x, ¥). According to the Lam-
bertian shading rule, the brightness map (shading image)
E{x, ¥} is equal to the inner product of the light source
direction [ = (0,0, 1) and the normal N(x, y) to the surface.
This relation is known as the irradiance equation and may
be written as

E(x,y)=R(p,q) =1 K= —12—2

V1 +pit g

where p = dz/0x and ¢ = 9z/dy are the partial derivatives
of the surface. The extension to the oblique light source
becomes simple, considering light source coordinates as
was done in [12]; see also [5] and [15].

Starting from a sinall circle around a singular point one
may extend the solution by using the equal height contour
evolution as suggested by Bruckstein [3]. Bruckstein ob-
served that an equal height contour %(s) : $' — R? may
serve as the initial condition, 6 (s, 0) = €(s), for the curve
evolution equation

d3€6(s,t) __ E 7
at V1-ET

(1)
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where 7 is the planar normal of the evolving curve. The
evolving curve tracks the equal height contours of the
surface and thereby reconstructs the surface. The time, ¢,
in the evolution equation represents the height. This direct
shape from shading method was recently reformulated via
level sets propagation and was numerically implemented
by the Osher—Sethian algorithm [20, 22] in [10, 12]. In [10]
the equal height contour propagation via level sets was
introduced and compared to other shape from shading
algorithms, see also [14]. The algorithm was applied to real
images and its performance under different types of noise
was demonstrated. The numerical implementation intro-
duced in [10] is consistent with the continuous case and
therefore does not suffer from metrication errors. This is
an important property in the construction of numerical
schemes that is overlooked in some shape from shading
numerical algorithms.

Recently it was also shown that the local shape from
shading problem is equivalent to the problem of computing
the weighted distance transform [11, 13; see also 16, 18,
21]. Equation (1) describes the propagation of an equal
cost contour where the cost function, defined over the

image domain ) € R?, is given as a function of the bright-
ness by f(x, y) = VI/E*(x,y) — 1.

Having only one singular point that is known to be a
minimum m € R?, the surface may be reconstructed by
calculating the weighted distance map from that singular
point. In this case, the problem may be solved by the level
sets propagation algorithm. The reconstructed surface is
the weighted distance transform of the minimum point.
The height (weighted distance)} at each point x € R? is
determined by [21]

200 = inf, { [! paes)yy as- ‘2;' =1, 0)=x,
1) = m},

where L is the set of all curves connecting point x to the
given minimum point m.

Other nondirect (iterative)} methods that solve this local
shape from shading problem were recently presented (see,
e.z., [1, 21, 5]) and may replace our core level-set-based
procedure that solves the local problem. The basis for our
global algorithm is the knowledge of how to combine the
local solutions together.

3. TOPOLOGICAL PROPERTIES OF SMOOTH
SURFACES

Our basic assumption is that the object we try to recon-
struct has a simple and smooth surface described by a
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FIG. 1. A pathological case of a singular point known as the monkey
saddle (left) and it equal height contours painted on a gray-tevel map
which represents the heights (right).

Morse function formally defined in [2]. Such a surface
is assumed to have no pathological singularities like the
monkey saddle, see Fig. 1. All singular points of a Morse
function may be locally described, up to a mere change of
coordinates in the plane [2], by

d + x? = y?

where d is some constant. This local behavior in the neigh-
borhood of singular points yields three local types of sur-
faces, as presented in Fig. 2. Being able to classify the
singular points greatly helps solve the global shape from
shading problem. In fact, given the height of all minimum
potnts {z(m) | m is a minimum}, the global solution is given
by [21]
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The three types of singular points that characterize the Morse
functien are the minimum, the saddle, and the maximum points. The
lower frames display the equal height contours painted on a gray-level
image that represents the heights.

FiG. 2.
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2(®) = inf{z(m) + [ (1)) ds (5) € L,
’g_i =1, [(0)=x, {({{[) =m, misaminimum},

where L, is the set of all planar curves starting at x and
ending at m, see also [18].

Propagating from an assumed local minimum singular
point, the evolving contour meets several kinds of singular
points. There are only three types of such singularities
that are of interest to us. Accerding to the mountaineers
theorem [6, 17], the number of extrema located within a
closed equal-height contour of a smooth surface exceeds
by one the number of saddle points within that contour.
Therefore, when tracking an equal-height contour that
starts as a small circle around a minimum, the first singular
point that the propagating contour meets must be a saddle
point. There are two possible ways for the contour to reach
a saddle point. The first one is when the saddle is reached
from two opposite sides (see Fig. 3, upper row). In this case
the propagation may proceed with no difficulties. After
encountering such a saddle point the contour splits into
two separale curves and the internal curve may encounter
a maximum point while propagating inward and vanish at
that point without violating any of the topology conditions.
We shall refer to such a saddle as the “saddle of the
first type.”

In the second case (see Fig. 3, lower row), the saddle
poeint is touched from one side only. In this case a topology-
based procedure is needed to correct the contour propaga-
tion to cause the interior to obey the mountaineers theo-
rem. Propagating the contour beyond that point will cause
that point to become a shoulder (inflection), a pathological
phenomenon not permitted in Morse functions. However,
note that propagating beyond that point causes false results
only in a well-defined area which is a subset of the region
swept by the propagating equal-height contour. The rest
of the contour is not affected and can still be used in the
reconstruction process. This fact helps us in producing the
global algorithm while keeping the calculation efforts low.
We shall refer to such a saddle as the “saddle of the inflec-
tion type.”

Starting from singular points as sources of propagating
equal distance contours, the merging points of the propa-
gating contours should be saddies of the inflection type.
A rule for the merging of the contours should be devised.
In the sequel a rule that leads to a global shape from
shading algorithm is presented.

4. THE GLOBAL SHAPE FROM SHADING
ALGORITHM

As mentioned before, the main problems are to classify
the singular points, propagate from the minimum points,
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(Left column} the shading images; (middle column) the equal height contours; (right column) the 3D surface. (Upper row) Starting the

propagation of the equal height contour at the upper right singular (brightest} point, the propagating equal height contour reaches the saddle (the
lowest left singular point) from two opposite sides, splits into two contours, and the mountaineers theorem remains valid when the propagation
continues. (Middle row) The shading image, the equal height conturs of the original surface, and the original surface itsel are shown. (Lower row)
(saddle of inflection type) Starting the propagation at the upper right singular point, the propagating equal height contour reaches the saddle {that
corresponds to the middle singular point) from only one side. Continuing the propagation will cause that saddle to appear as a higher order local
extrema that looks like a shoulder, which is forbidden according to our smoothness assumptiens.

and use the inflection-type saddle points as merging
points. The solution to this three-phase problem seems
impossible when one tries to break it into sequential
parts, as was traditionally done. Considering the global
problem at hand we must use a global approach and
the smoothness conditions (the surface being a Morse
function) as the key to the solution. The algorithm has
two main steps.

Step 1. For each singular point m; (i € {1, ..., N},
where N is the number of singular points), calculate the
weighted distance transform

D,-(x):uigfb{ ! f(l(s))ds:‘g—i =1, K0)=x,
IWD_M}

in all of the image domain (! € R% This transform is the
correct solution in the case of a single singular point known
to be a minimum (the maximum is the dual case}.

The first singular point, mg (# m,;), which is identified
as a saddle of the inflection type (Fig. 3, lower row) ac-
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cording to the minimal distance in D), is labeled P; = my,
its corresponding distance being H;;

H; = {D{(m,) | m, is an inflection-type saddle in D;}.

Step 2. An iterative search for the proper solution that
satisfies the smoothness demands is performed. A merge
of two distance transforms is performed if the following
conditions are satisfied:

» The two distance maps have the same singular point
as the minimal distance inflection-type saddle (P; = F;).

» The equal-height contours, which correspond to the
height defined by the inflection-type saddle (D{(x) = H;
and D;(x) = H,), osculate only at the singular point and
do not cut or touch each other elsewhere; i.e.,

Ix:D;\(H) = D;'(H)} = P(= P).

When those two conditions are satisfied, a merge or logical
combination of the two distance maps is performed as
follows:

D,(x) = min{Di(x), D,(x) + H, — H}}.

The map D, and its minimal distance inflection-type saddle,
if encountered, P, (of height H,) are added to the array
of distance maps. The merging steps are repeated until a
map for which there are no inflection-type saddle points
is obtained. This map will be a “legal” solution to the
reconstruction problem. However, it is possible to continue
the merging process until there are no more connections
(inflection-type saddle points) between any of the entries
in the array. All the legal maps corresponding to the data
will be found this way.

The second step of the algorithm finds all possible solu-
tions to the given shape from shading problem, solutions
that obey the Morse conditions at singular points.

The algorithm was implemented on a grid of pixels. The
weighted distance map from each of the singular points
was calculated using the equal-height contour evolution via
level sets implemented on the grid. In [10], the numerical
properties of the level-set algorithm, like accuracy, stabil-
ity, noise effects, efficiency, and performance on real im-
ages, were explored. The singular points were determined
by considering the grid point of highest intensity (the
brightest point) within a connected area of pixels, these
white areas being isolated by thresholding the shading
image.

Given a weighted distance transform of a singular point,
the first saddle point of the inflection type should be lo-
cated. Consider a small simple closed curve around each
of the singular points. The number of zero crossings of the
reconstructed surface along that curve, where zero is the
height of that singular point, classify that point. For a
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FIG, 4, The number of crossings of the reconstructed surface with a
planar circle, hovering at the singular point’s height, classify that point.
For a saddle of the inflection type that generates an inflection point there
are 1wo crossings {upper left). A first type of saddie yiclds four crossings
(upper right). Maximum and minimum points do not intersect the curve
at ali.

saddle of the first type four zero crossings will occur, for
a maximum point there are no zero crossings, whereas for
a saddle of the inflection type there are two zero crossings,
see Fig. 4. On the grid, the zero crossings were searched
along a cyclic chain code representation of a square bound-
ary around each singular point.

Once the weighted distance and the first saddle of the
inflection type for each of the singular points is obtained
the merging process begins. The procedure Merge(k, [, Nt)
checks for possible merging of the map & and the map /.
Ititis possible to merge the two maps, a new map is created
and its inflection-type saddle is located. The index variable
Ny is incremented by one and assigned as a label to the
new map. in case the two maps are merged and an inflec-
tion-type saddle is not detected, the merge of the two maps
is a legal solution.

Let N be the number of singular points; then the follow-
ing simple procedure reconstructs the surface:

NT =N
fork=2te N
for/=1tok — 1
Merge(k, I, Nr)
fork=N+1to Ny
for /[ =1 te Ny
if (k and ! were not Merged before) Merge(k. I, Ny)
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(Upper row) The original surface and its shading image. The equal height contours of the original object are drawn on the shading

image. (Lower row)} The result of the algorithm and the error surface obtained by subtracting the solution from the original object.

Note that the end-of-loop variable, N, in the second k-
loop may change due to merging.

In order to better understand the merging algorithm
consider the following simple example. Let the original
object be composed of a maximum surrounded by four
minimas, see Fig. 5.

After the local shape from shading problem was soived
for each of the nine singular (maxima, minima, and saddle)
points, the merging process went as follows, see Fig. 6 D,
and Dy merged into Dy, via point 7. D; and Dy merged
into Dy, via point 8, D; and Dy merged into Dy; via point
2, and Dy, and Di; merged into D3 via point 4, resulting
in the first legal solution, where there are no points of the
second-saddle type.

It is possible that mergings that do not lead to any solu-
tion are performed (e.g., 4 and 8 resulting in 10), however,
the final result of the algorithm is always a legal solution
that satisfies the topology restrictions and the irradiance
equation. We can let the merging process go on after the

first legal solution is obtained and thereby detect all possi-
ble solutions (in cases where there are more than one).

5. EXAMPLES

In the following examples the shape from shading via
level set algorithm [10] was used as the basic procedure
that calculates the weighted distance transform from each
singular point. Any other local shape from shading algo-
rithm or weighted distance transform may be used for the
same purpose at the first step of the algorithm. The shading
images are given as 64 X 64 gray-level pixel arrays.

Figure 7 presents a volcano surface (upside down). In
this example it is enough to start from the global minimum
point (the “top” of the upside-down volcano) in order to
reconstruct the surface without any merging steps. When
the propagation starts from the global minimum peint, the
saddle topology is of the first type, see Fig. 3, upper row,
and there is no need to perform any topological corrections
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FIG.7. A shading image (upper right) of an upside-down volcano model (upper left), is given as an input to the global algorithm. The reconstructed
surface (lower left), is the weighted distance transform of the global minimum point. Observe that the saddle is of the first type in this distance
map. The other maps on the lower row (middle and right) do not centribute 1o the global reconstruction process in this case.

in the reconstruction procedure. The weighted distance
transform is the desired surface.

In the following examples the surfaces are shown upside
down, making it easier to understand the reconstruction
process and the surface structure.

Figure 8 presents a simple surface containing two maxi-

FIG. 8.

mum points and a saddle between them. The upper row
displays the surface and its shading image. The three
weighted distance maps from each of the singular points
are then computed and presented in the middle row of
Fig. 8. The logical combination, as previously defined, of
the two minimal points yields the surface in the lower row
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(Upper row) The original surface and the shading image. (Middle row) The weighted distance transform from each of the singular points

{from the two maxima! points and the saddle point). (Lower row) The “logical combination” of the distance maps from the two maximal poinis

and the saddle as the merging points.
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FIG. 9. (Upper row) A complicated surface and its shading image (under a Lambertain shading rule). (Lower row) The logical combination,
which is a “correct” result, and the error when subtracting the reconstructed surface form the original one.

of Fig. 8. This surface is the logical combination of the left
and right surfaces in the middle row which share the same
saddle point.

The last example deals with a more complicated surface,
with 11 singular points of all possible types. Figure 9 (upper
row on the left) presents the original surface and its shading
image (the upper row on the right). The final reconstructed
surface and the error are displayed in the lower row.

6. CONCLUDING REMARKS

We have presented a new approach to solving the global
shape from shading problem. The topological properties
of simple smooth surfaces were used to construct an algo-
rithm that uses a logical combination of the weighted dis-
tance transforms which are calculated from each of the
singular points.

It is possible to implement the first step of the algorithm
in parallel. The calculation efforts in computing the
weighted distance transform of each of the singular points
is determined by the maximal weighted distance from the

singular point to the image boundary 4} &€ R2, Define this
maximal distance as g = sup;e;r. a{Z:(X) : X € 302}

The second step may also be performed in parallel. The
computational complexity in this case is in the order of
the number of merging steps that should be performed
until the desired result is obtained. The number of itera-
tions in the second step is therefore bounded by the num-
ber of saddle points, and according to the mountaineers
theorem this number is given by (N — 1)/2.

The total calculation complexity for a parallel machine
is of order G(g + (N — 1)/2). The memory involved in the
solution should be at least of order O(QON), and its upper
bound is determined by the number of possible merging
steps.
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