Geodesic Curvature Flow on Parametric Surfaces

Alon Spira and Ron Kimmel

Abstract. The motion of curves and images in IR? has been re-
searched extensively. The curvature flow, which is a geometric heat
equation for planar curves, is among the classical ones. In this paper
we present a numerical scheme to extend the planar curvature flow
to the geodesic curvature flow on parametric surfaces. The flow is
implemented by back projecting the flow on the parametric surface to
the parameterization plane, calculating the flow on the plane by the
level sets method and then mapping it back to the manifold. This
approach enables a more general and efficient solution of the problem
than previous methods.

§1. Introduction

The motion of curves and images in IR? has been researched extensively.
There are many applications in image processing and computer vision,
such as scale space by linear and nonlinear diffusion, image enhancement
through anisotropic diffusion, and image segmentation by snakes. The
level sets formulation [9] has provided good means to implement these
flows. Extending these motions to manifolds embedded in spaces of higher
dimensions can be beneficial in computer graphics, computer vision, and
image processing.

In this paper we demonstrate a numerical scheme to extend the cur-
vature flow on the plane [4] to the geodesic curvature flow on parametric
surfaces. The flow is implemented by back projecting the flow on the para-
metric surface to the parameterization plane, calculating the flow on the
plane by the level sets method, and then mapping it back to the manifold.
This technique has been used before for manifolds that are graphs of func-
tions ({z,y, z(z,y)}) in order to find shortest paths [7,8], and to construct
an intrinsic scale space for images on surfaces [6]. A similar approach was
used for manifolds constructed from patches homeomorphic to R? [2].
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Fig. 1. The curve C(s) on the manifold X (U) and its origin C(3) on the param-
eterization plane U.

A different approach has been previously used for general manifolds
[1]. It consisted of implicitly representing both the manifold and the curve
on it as level sets of functions in IRY (IV - the dimension of the embedding
space). This approach has several drawbacks, which are alleviated by our
method. Unlike that method, our method does not require the extension
of the manifold and the curve or data on it to functions in R"™. The
calculations are done implicitly on the parameterization plane and not
in RY, which might be computationally prohibitive for N > 3. Finally,
our method is not restricted to manifolds that can be represented by a
level set, and we can thereby handle more general manifolds, such as self
intersecting ones.

§2. Definitions and Motivation

We consider a parameterization plane U = {u!,u?} € IR2. This plane
is mapped by X : R? — RY to the parameterized surface X U) =
{z'(u!,u?), 22t u?),...,zV¥ (', u?)} € RY. Any curve C(s) € X(U)
has an origin C(3) € U, i.e., each point p € C(s) is a mapping of a
corresponding point p € C’(§) by p = X(p). s and § are the arc length

parameterizations of the curves C' and C respectively. The derivatives of
X with respect to u® are defined as X; = %. See Figure 1.

According to the above definitions, the derivative of C(s) with respect
to its arc length is C's, which is the tangent to the curve C. Similarly, we
have Cj, which is the tangent to C(5). We denote by A the normal to the

plane tangent to the surface X (U) and in the direction of X7 x X,. N is
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Fig. 2. The curvature has two orthogonal components: the normal curvature
and the geodesic curvature.

the unit vector normal to the curve C(s) lying in that plane. N represents
the normal to C; in the plane U.

Any geometric flow of the curve C(s) of the form C; = FN has a
corresponding geometric flow on U of the form C; = FN. If we can find
F as a function of F and the mapping X, we can simplify the calculation
of the flow on X(U) by performing the flow on U, and then mapping
the result onto X(U). To enable this, we represent vectors in the N-
dimensional space according to the basis { X1, X5}. The other components
of the vectors, which are perpendicular to X; and X5, do not affect the
flow of the curve C(s) on the surface X (U).

§3. Projecting the Flow on the Parameterization Plane

The geodesic curvature flow of C(s) is
Ot = kgN = Oy — (Cos, NN (1)

This is the flow of the curve C(s) according to the component of its cur-
vature, tangent to the surface X (U). Taking only this component of the
curvature keeps the curve on the manifold. See Figure 2.

The representation of C according to the basis { X, X2, N} is C5 =
ul X; (We use Einstein’s summation convention in this expression and in
the rest of the paper). By differentiating this expression with respect to
s, we get

Cys = uiin + uiX”ug = uiin —+ U,i. (F%Xk + b”./\/') uf;,

with Ffj being Christoffel’s symbols and b;; the coefficients of the second

fundamental form [3]. x,N is the component of C, in the plane tangent
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to X (U), i.e., the covariant derivative of Cs. We get it by discarding the
component of C; in the direction of N/

~ DCs (s)

RN = == = ul X+ T Xyufud = (uf, + Dulud) Xy (2)

J 17 's™'s

If C(s) is a geodesic, then by definition D((’;Z(S) = 0, and (1) becomes

Cy = 0. This is the stopping point of the geodesic curvature flow.
We use the chain rule to compute

Cy = % (C’) = Xkuf.

Combining this result with (1) and (2) yields

k_ k k,i,3
U = Ugg +Fijusug7
or
N A 1,%,,7 12,,%,7
Ct - Css + {Fijususa Fzgus’u’g} (3)

In order to write this equation as a function of § instead of s, we use

- 0s _ i—
s:/|Cg\ds = q5£=|0§| b= X

N[=

1
Y S A
= (923“5“5) )

where we replaced X;X; in ¢ with g;;, which are the components of the
covariant metric tensor. We get

= (Xinu§u§> -

and
i i i i 2
Ugy = (sUz + qUz, = qsUz + q" Uz;.

Using these relations in (3) yields
Cy = ¢sCs + ¢° (ng + {Tubud, F?j“?“@) ;

but the geometric flow depends only on the component of C, in the direc-
tion of NV, i.e.,

~ 1,400 T2,,4.J0 A
&+ ({Lusug, T ubug}, N)
. : )
1) 'S Ts g'LJu%u%

(Co, Ny = ¢ (n + ({Thutud, T2 uiul}, N)) _
(4)
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where % is the curvature of C.
We can compare this result with the result in [6] by defining X =
{z,y, z(z,y)}. We calculate I‘fj in this case by

1‘;3. = X;; X",

where X* is the contravariant version of the covariant vector Xy, calcu-
lated by '
Xk — gkj X]a

where ¢*/ are the components of the contravariant metric tensor. This

results in vz
ry = =%, (g = det (gi5)) -

Inserting this expression for I‘fj in (4) yields

<5t,N> = k+ <%U§ug{z1,Z2}’N>,

nyigd
GijUzUs

which can be easily shown to be equivalent to the expression in [6].

§4. Level Sets Representation of the Flow

We can convert the flow equation we got in the previous section into a
level sets equation. This formulation enjoys many numerical advantages.

This means converting (4) into a level sets formulation. We assume
that C(3) = {u'(3),u?(5)} is the zero set of I(u',u?) . This means

R+ ({TLuiul, T2uiul}, N
po = B UL D) ) 5
gijuzuy

To develop the expressions in the right hand side of (5) as functions
of I, X, and their spatial derivatives, we use

~ \v2i
—2 411 = =
{-uz,u;} =N T = U

- 1 u

I2 g _Il
2+ ° (I2+13):

W=

and

F— di VI . 112[22 — 2[1[2112 +I22[11
K = atv |VI| = 3 .
(I +13)°

After some work we get

(_1)(i_j)IinI(3—i)(3—j) (—1)(i_j)rij(B—i)I(s—j)Ik

I —
g g|Vul|? g|Vul|?

(8)
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with Christoffel’s symbols calculated by derivatives of the first fundamen-
tal form

1
k _
If the surface is a plane, we expect that the geodesic curvature flow
would become the curvature flow. In this case, g11 = g2 = 1, g12 = 0 and
I‘fj =0, Vi,7,k, and we get

g™ (Digij + 0;9u — O1gij) -

_ I}Isy — 211 115 + 1314,

I
! I? + I3 ’

which is the level sets formulation of the curvature flow.

§5. The Numerical Scheme for the Level Sets Equation

An appropriate numerical scheme should be found for the implementation
of (8). The first term on the right hand side of this equation is diffusive
and can be implemented with central differences. The second term is a
non-convex hyperbolic term and needs a special numerical scheme.

We used a fifth order Weighted Essentially Non-Oscillatory (WENO)
scheme with a global Lax-Friedrichs (LF) flux in space [5] and a third or-
der Total Variation Diminishing Runge-Kutta (TVD-RK) scheme in time.
Non-periodic boundary conditions were used.

A re-distancing of the level sets function was activated every few
iterations, as a regularizing process. The re-distancing was accomplished
by the Sussman-Fatemi method [11]. This method uses the equation

¢¢ = sign (o) (1 = [V¢])

to transform the level sets function ¢y into a distance map. Also this
equation is implemented by a fifth order WENO-LF, third order TVD-
RK numerical scheme. The zero set of ¢y is maintained by applying a
volume conserving condition of the form

(9t/QH(¢)=0,

with H the Heaviside function and €2 a fixed domain. The condition is
applied by using a gradient projection step.

The fast marching algorithm [10] was also tested as a re-distancing
method, but it lacks the necessary accuracy. This is due to the first
order approximation method used to reconstruct the zero set of the level
set function. The Sussman-Fatemi method, as opposed to fast marching,
does not need to reconstruct the zero set, and can maintain its high order
of accuracy.
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Fig. 3. Geodesic curvature flow on a Klein bottle. Time advances from left to
right. Bottom row shows the flow on the parameterization plane.

§6. Simulations and Results

A curve evolution by geodesic curvature flow was implemented on a Klein
bottle, see Figure 3. This manifold has high curvature and is self inter-
secting. The high order numerical scheme, combined with the regularizing
process, yields a flow without topological changes of the curve.

The geodesic curvature flow can be applied to images painted on
manifolds too. This creates an intrinsic scale space for the images on the
manifolds [6]. Here we applied it to the image of the face of a mannequin
painted on the mannequin’s face manifold, see Figure 4. The face manifold
was originally a triangulated manifold, generated by a laser scanner [12].
In order to transform the manifold into a parametric surface, the met-
ric tensor has been approximated from the triangulated manifold. The
approximation consisted of matching a second order polynomial patch at
every grid point. The matching was done using Singular Value Decompo-
sition (SVD).
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(b)

(d)

Fig. 4. Geodesic curvature flow of the face image on the face manifold.

§7. Conclusions

We implemented the geodesic curvature flow on manifolds as a flow on
the parameterization plane. This approach has several advantages over
implementing the flow in the N-dimensional space. An appropriate nu-
merical scheme was devised for implementing this flow with the level sets
formulation. The flow of curves and images was demonstrated on a variety
of parametric surfaces.
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