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10one dimensional curves as expected. The reason is our numerical approximationfor E. We use an edge image with the same resolution as that of the original im-age, adding central di�erence approximation yield the edge regions. One possiblesolution is to apply the re�ned numerical approximation to the edge map as in[15]. Finally, in Figure 4 we apply the segmentation function E in the embeddingspace, to a noisy image. The source of the noise comes from a digital cameracompression distortions, followed by a scanned version of a printout picture.
Fig. 4. The original noisy image is on the left, followed by the edge indicator �eld E,and the �nal result. Bottom line shows a zoom in on the original noisy on the left and�ltered image.6 Summary and ConclusionsWe presented a generalization of the Mumford-Shah enhancement and segmen-tation method. The generalization is in two aspects: Multi-channel images, i.e.color images are analyzed, and the L2 measure is replaced by the Polyakov ac-tion. The generalization is a natural application of the Beltrami framework thatrepresent images as an embedding map of the imagemanifold in a spatial-featurespace.



9

Fig. 3. Upper row, left to right: The original image, followed by the �nal edge indicatorfunction E, and the �nal image. At the bottom are zoom-in frames of a square sectioncropped from the initial and the �nal images.



85 Experimental results

Fig. 2. Upper row, left to right: The original noisy image, followed by the �nal edgeindicator function E, and the �nal image. At the bottom are zoom-in frames of a squaresection cropped from the initial and �nal images.We tested both cases, where the segmentation function E is de�ned on the imagemanifold and then on the embedding space. The time derivatives are approx-imated by an explicit forward numerical approximation (Euler scheme). Thespatial derivatives were taken �rst by forward followed by backwards approxi-mation, see [17]. This is a simple way to keep the numerical support tight andcentralized. The examples demonstrate color image enhancement for both noisyand clean images. In all examples we set � = 7 �10�2; � = 2 �10�4; c = 10�3. Wealso decreased the value of c along the iterations by setting cn+1 = cn=1:002. asproposed in [15].In Figure 2 we use the segmentation function E on the image at manifold.The embedding space was taken Euclidean in color space. Figure 3 tests the seg-mentation function E on the embedding space. This example takes a clean bench-mark image into a piecewise smooth one. Here the embedding space is based onHelmholtz's arclength in color ds2color = (d logR)2 + (d logG)2 + (d logB)2, seealso [5,22, 23, 20]. In some cases the edges appear as `edge regions' rather than



7where i = [R;G;B], and �g(X) = 1pg@�(pgg��@�X);is the Laplace-Beltrami operator on the image manifold. The factor 2 in the �rstterm of the equation for E comes from the choice of the metric as the inducedone given in Eq. (10). We �nd thatg��(@�Ii)(@�Ij)hij(X) = g��g�� = Tr(Id2�2) = 2: (18)The �rst term in the equation for I smoothes the function when E = 1 and isine�ective around an edge when E approaches zero. The second term sharpensgradients and create shocks. The last term pushes I towards I0.
E

I(x,y)

E

I(x,y)Fig. 1. Left is the edge indicator function E de�ned over the image plane fx; yg. Right:the edge indicator function E de�ned on the image surface manifold fx; y; I(x; y)g.4.2 Segmenting function on the embedding spaceThe metric is, as before, the induced metric but this time the Polyakov actionis used only for the feature coordinates. The segmenting function is de�ned overthe Euclidean spatial part of the embedding space and therefor it is smoothedusing the usual L2 norm. The functional, in this case, isFc[I1; I2; I3; E] = Z� d2�pg ��2 (Xi �Xi0)hij(X)(Xj �Xj0)+�2E(x; y)2g�� (@�Xi)(@�Xj )hij(X)�+ Z dxdy� c2 jrEj2+ (E � 1)24c � :(19)The gradient descent equations areIit = �E2�g(Ii) + �g�� (@�E)(@�Ii)� �(Ii � Ii0)Et = �2�pgE + 1�E2c + c�(E);where i=[R,G,B], and �(E) is the usual Laplacian. The �rst term in the equa-tion for E decreases the values of E for large g. The second term of the equationpushes the values of E toward 1, as c approaches zero. The last term is a smooth-ing term.



6spatial-color Riemannianmanifold.The coordinates of the two-dimensionalman-ifold are (�1; �2), and those of the �ve-dimensional one are (X1; X2; X3; X3; X4; X5).The embedding map isfX1 = �1; X2 = �2; X3 = R(�1; �2); X4 = G(�1; �2); X5 = B(�1; �2)g: (15)We identify X1 with x and X2 with y and by abuse of notations we writefx; y;R(x; y); G(x; y); B(x; y)g. We also use below the notation Ii for i =r,g,b todenote the di�erent color channels.The metric of the embedding space isds2 = dx2 + dy2 + ds2color ; (16)where the metric in the color space is model dependent, see [23] for a generaldiscussion and [20,21] for the analysis of di�erent color models in the Beltramiframework. We choose, for sake of simplicity, to adopt a Euclidean metric forthe color space, see [24] for a related e�ort.Two di�erent approaches are possible in the treatment of the segmentingfunction. We can think of it as a function on the image manifold or as a functionon the spatial part of the embedding space. The two approaches lead to some-what di�erent equations even though the spatial part and the image manifoldcoordinates are identi�ed in the embedding map.4.1 Segmenting function on the image manifoldThe metric in the image manifold is given by the induced metric (see Eq.(10)). We assume further that the segmenting function is de�ned over the two-dimensional image manifold, see Figure 1. We use the Polyakov action as anadaptive smoothing metric for both the color coordinates and the segmentingfunction. The functional we propose readsFc[I1; I2; I3; E] = Z� d2�pg ��2 (Xi �Xi0)hij(X)(Xj �Xj0)+�2E(�1; �2)2g��(@�Xi)(@�Xj)hij(X) + c2g��(@�E)(@�E) + (E � 1)24c � :(17)We take the color metric to be the unit matrix hij = �ij from now on. Weminimize this functional by the gradient descent method. Formally, the equationsare Iit � @Ii@t = � 1pg �F�IiEt � @E@t = ��F�E :The functional variations yield the following explicit partial di�erential equa-tions Iit = �E2�g(Ii) + �g�� (@�E)(@�Ii)� �(Ii � Ii0)Et = �pg�2�E � 1�E2c � c�g(E)�



5Using standard methods in variation calculus, the Euler-Lagrange (EL) equa-tions with respect to the embedding are (see [18] for derivation)� 12pghil �F�X l = �gXi + � ijk(@�Xj )(@�Xk)g�� ; (11)where the operator that is acting on Xi in the �rst term is the natural gener-alization of the Laplacian from at spaces to manifolds and is called the secondorder di�erential parameter of Beltrami [10], or in short Beltrami operator. It isgiven in term of the metric as�gXi = 1pg@�(pgg��@�Xi): (12)In the second term of Eq. (11), the � ijk are the Levi-Civita connection's coe�-cients with respect to the metric hij that describes the geometry of the embed-ding space [23] � ijk = 12hil(@jhlk + @khjl � @lhjk): (13)This term is in particular important in color image analysis and processing sincesome of the models of color perception assume non-Euclidean color space.We view scale-space as the gradient descent,Xit � @Xi@t = � 12pghil �F�Xl : (14)Notice that we used our freedom to multiply the Euler-Lagrange equations bya strictly positive function and a positive de�nite matrix. This factor is thesimplest one that does not change the minimization solution while giving areparameterization invariant expression. This choice guarantees that the ow isgeometric and does not depend on the parameterization.Choosing the induced metric and minimizing the feature coordinates resultsin a system of coupled partial di�erential equations that describe the ow ofthe image surface inside the spatial-feature space. This ow has the e�ect ofsmoothing more rapidly areas between edges than the edges themselves. Thise�ect is achieved by the projection of the mean curvature vector to the featurespace. Since normals to the surface at an edge lie almost entirely in the spatialspace, their projection to the feature space is small and does not change thevalue or location of an edge.This technique was used to denoise and enhance a variety of gray-level, color,3D images, like movies, and volumetric medical images, and texture [7, 19, 18].Next, we show that it is a useful measure in color image segmentation.4 Color Segmentation FunctionalAccording to the Beltrami framework [19], a color image is represented as anembedding map of a two-dimensional Riemannianmanifold in a �ve-dimensional



4where a, b, c and f are functions of x and y, and f is positive de�nite. Theinterpretation of this generalization is geometric. Images are viewed as embed-ding maps. Let us consider the important example X : � ! IR3. Denote thelocal coordinates on the two-dimensional manifold� by (�1; �2), these are anal-ogous to arc-length for the one-dimensional manifold, i.e. a curve. The map Xis explicitly given by(X1(�1; �2) = �1; X2(�1; �2) = �2; X3(�1; �2) = I(�1; �2)): (6)Since the local coordinates �i are curvilinear, the squared distance is given bya positive de�nite symmetric bilinear form called the metric whose componentsare denoted by g��(�1; �2),ds2 = g��d��d�� � g11(d�1)2 + 2g12d�1d�2 + g22(d�2)2; (7)where we used Einstein summation convention in the second equality; identicalindices that appear one up and one down are summed over, see [4, 18] for a shortintroduction to tensor calculus and covariance in the context of image analysis.We denote the inverse of the metric by (g��), and its determinant by g.The Polyakov action is a generalization of L2. It depends on both the imagemanifold and the embedding space. Denote by (�; (g��)) the image manifoldand its metric and by (M; (hij)) the space-feature manifold and its metric. Wechoose �(jsj) = s � s � sisjhij, then the map X : � ! M has the followingweight [13] F [Xi; g��; hij] = Z dm�pgg��(@�Xi)(@�Xj)hij(X); (8)where m is the dimension of � and the range of indices is �; � = 1; : : : ; dim�,and i; j = 1; : : : ; dimM . In the above expression dm�pg is a volume element ofthe image manifold. The rest, i.e. g��(@�Xi)(@�Xj)hij(X), is a generalization ofL2. It is important to note that this expression, as well as the volume element,do not depend on the local coordinates one chooses.For our example in Eq. (6), we assume a diagonal form for the embeddingspace, i.e. hij(x; y; I) = fi(x; y; I)�ij (no summation over indices here). We getthe following functionalF [I; g��] = Z dxdypg �g11f1 + g22f2 + (g11I2x + 2g12IxIy + g22I2y )f3� (9)which is reduced, up to terms independent of I, to the form of the functional inEq. (5) when the fi's are constants.The minimization of F with respect to the metric can be solved analyticly,for two-dimensional manifolds. The minimizing metric is the induced metric ofthe isometric embedding. Explicitly, it is given in terms of the embedding mapand the metric of the embedding space,g��(�1; �2) = hij(X)(@�Xi)(@�Xj): (10)



3total length of the discontinuity set. The implicit assumption that underliesthis functional is that an image is a piecewise smooth function. The �rst termpenalizes a function that di�ers from the observed one, the second term penalizeslarge gradients, and the last term penalizes excessive use of segmentation curves.The minimizer places the segmenting curves along the most signi�cant gradientsand tries to smooth the function everywhere else without diverting too muchfrom the original image. The parameters � and � control the relative weight ofthe three terms.It is di�cult to minimize this functional numerically because of the largenumber of possibilities of placing the set of boundaries K inside 
. In order tohave a better control of the problem, both mathematically and numerically, itis convenient to approximate the functional. In the � -convergence framework, anew functional is proposed [2] in the formFc[I; E] = Z
 ��(I � I0)2 + �E2jrIj2 + cjrEj2 +  c(E)� dxdy; (2)where, ideally the function E(x; y) is an edge indicator, such that E(x0; y0) = 0when an edge passes through (x0; y0) and E(x; y) = 1 otherwise. In this case, thesecond term in the approximating functional is identical to the second term inthe Mumford-Shah functional. In fact, we demand that the segmenting functionE is a smooth function and use the L2 norm to penalize discontinuities in E.The last term is constructed in such a way that it forces E to behave as anedge indicator, i.e. it pushes E to 1 far from an edge. In the vicinity of an edge,the term E2jrIj2 pushes E to zero. Explicitly, Ambrosio and Tortorelly havechosen:Fc[I; E] = Z
 ��(I � I0)2 + �E2jrIj2 + cjrEj2+ (E � 1)24c � dxdy: (3)One can show that in the limit as c! 0, the functional Fc[I; E] approachesF [I;K] such that the minimizers of Fc converge to the minimizer of F .One can naturally envisage using a di�erent norm, i.e. L1 norm for the gra-dients of the denoised image and the segmenting function. The question is howto extend this idea for a color image.3 The Polyakov actionLet us introduce a geometric viewpoint that enables us to generalize an adaptivesmoothing algorithm to a higher dimensional and codimensional images.There is an extensive literature on functionals of the typeF [I] = Z dxdy�(jrIj) = Z dxdy��qI2x + I2y � ; (4)where �(s) is a function which has a lower bound. We suggest to generalize it inthe following way:F [I; a; b; c] = Z dxdyf(a; b; c)��qaI2x + 2bIxIy + cI2y � ; (5)



2around the edges. The degree of smoothness depends on the approximation pa-rameter, and the function approaches a Dirac delta function for the edges, asthe approximation parameter approaches zero.In this study we address the question of the generalization of this approach tocolor images. Methods that disregard the coupling between the spectral channelsgive up important information given by the correlation between the color chan-nels. Moreover, there is an underlying assumption in the Mumford-Shah modelof the smoothness of the image in the non-boundary regions, which is formulatedthrough an L2 measure. It is known, though, that the L1 performs better as anadaptive smoothing measure [17]. It is desirable, therefor, to incorporate the L1norm or another adaptive smoothing scheme in the Mumford-Shah formulationfor the segmentation problem. Recently, it was shown [19] that the Beltramiframework provides a proper generalization of the L1 norm from gray-level tocolor images.In the Beltrami framework, an image is treated as a two-dimensional Rieman-nian surface, restricted as a graph, embedded in a higher dimensional spatial-feature space. A grey-level image is embedded in IR3 whose coordinates are(x; y; I) and it is simply the graph of the intensity function I(x; y). Similarly,a color image is embedded in a �ve-dimensional space whose coordinates are(x; y;R;G;B). The induced metric of these surfaces is easily extracted and ameasure, known as the Polyakov action in high-energy physics, is used as ageneralization of the L2 norm to any dimension and codimension, and for anygeometry of the surface and of the embedding space. We and others have shownthat this \geometric L2" norm interpolates via a scaling parameter between theconventional, i.e. at L1 and L2 norms for gray level images. It interpolates, forcolor images, between the at L2 and a di�erent norm, which is interpreted asthe proper generalization of the Euclidean L1 norm for color images [9,6].Our current study merges the � -convergence technique and the Beltramiframework for color images to yield a color and smoothing generalization for theMumford-Shah segmentation functional.The paper is organized as follows: In Section 2 we briey review the � -convergence and its application for the gray-level image segmentation. Section 3reviews the Beltrami framework.We present, in Section 4, our color segmentationfunctional and derive a non-linear coupled Partial Di�erential Equations (PDE)as gradient descent equations for this functional. Results are presented in Section5, and we summaries and conclude in Section 6.2 � -Convergence FormulationThe Mumford-Shah functional includes three terms: A �delity term, a smoothingterm, and a penalty on the total length of the discontinuities. LetF [I;K] = Z
nK ��(I � I0)2 + �jrIj2� dxdy +H(K) (1)where I0 is the observed image, I is the denoised image,
 is the images domain,and K is the set of discontinuities. The Hausdor� measure H(K), measures the



Geometric-Variational Approach for ColorImage Enhancement and SegmentationRon Kimmel1 and Nir A. Sochen21 CS Department, Technion - Israel Institute of TechnologyTechnion City, Haifa 32000, ISRAELron@cs.technion.ac.il,WWW home page: http://www.cs.technion.ac.il/�ron2 EE Department, Technion - Israel Institute of TechnologyTechnion City, Haifa 32000, ISRAELsochen@ee.technion.ac.ilAbstract. We merge techniques developed in the Beltrami framework todeal with multi-channel, i.e. color images, and the Mumford-Shah func-tional for segmentation. The result is a color image enhancement andsegmentation algorithm. The generalization of the Mumford-Shah ideaincludes a higher dimension and codimension and a novel smoothingmea-sure for the color components and for the segmenting function which isintroduced via the � -convergence approach. We use the � -convergencetechnique to derive, through the gradient descent method, a system ofcoupled PDEs for the color coordinates and for the segmenting function.1 IntroductionSegmentation is one of the important tasks of image analysis and much e�ortshave been consecrated to solve it. One can roughly classify the segmentationmethods into two classes: 1) Global, i.e. histogram based techniques, and 2) Lo-cal, i.e. edge based techniques. In the second class it was shown that a largenumber of algorithms, including di�erent region growing methods coupled withedge detection based techniques, are closely related to the Mumford-Shah func-tional minimization [11]. This functional involves an interplay between an image,which is a two dimensional object, and the contours that surround the objects inthe image, which are one-dimensional curves. This functional was �rst suggestedand analyzed by Mumford and Shah for gray-level images in [12]. It was laterextensively studied, see e.g. [11] for an overview.In particular, the � -convergence framework [1{3,15] was invented to over-come the problem of dealing with objects with di�erent dimensionalities in thesame functional. In the � -convergence framework, one replaces the functionalby a di�erent, parameter dependent, functional. The parameter controls the de-gree of approximation, such that the approximating functional is equal to theMumford-Shah functional in the limit, as the parameter goes to zero. In theapproximating functional, the edge contours are replaced by a two-dimensionalfunction which is close in shape to an edge indicator with certain smoothness


