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Figure 2: The reconstruction of the surface at
the upper left, from its shading image at the
upper right is shown at the bottom left. Bot-
tom right is the difference between the original
surface and its reconstruction.

5 Experimental Results

We tested the algorithm on a synthetic shad-
ing image of the simplest surface with the three
basic types of local extremum points: a maxi-
mum, a minimum, and a saddle. The oblique
light source is given by [ = (0.2,0,0.96). Ob-
serve that we do not deal here with self casting
shadows (see [14]), nor with solving the global
topological structure (see [11, 6, 2]).

The local extremum points cause singulari-
ties at the right hand side of the equation since
the intensity at their corresponding image lo-
cations is equal to zero. This fact should not
cause any problem to our numerical algorithm,
since one could set the intensity values that are
smaller than O(Az) to some O(Az) without re-
ducing the global order of accuracy. Where Ax
is the grid spacing (the distance between two
grid points). Figure 2 presents the surface, its
shading image, the reconstructed surface, and

the error, for the oblique light source case. The
surface is the solution to Eq. (4) and (5) with
a fixed value at the minimum point (one of the
singular points).

6 Conclusion

We presented an O(N log N) algorithm for sur-
face reconstruction from its shading image.
The computational complexity bound is data
independent (unlike other iterative methods
[1, 6]). It is the most efficient sequential al-
gorithm for Horn’s original formulation of the
shape from shading problem and a natural ex-
tension and application of the Fast Marching

Method.
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the (z,y) image plane, so that [ (0,1,0) = 0.
The shading image is then given by

I(z,y) = (11,0,15) - 7, (3)

where [# + 12 = 1. Eq. (3) involves the term
Zy. It requires some additional thought to con-
struct a monotonic approximation to this term
and an appropriate update rule.

Figure 1: In the oblique light source case, the
natural coordinate system is determined by the
light source [13].

If we would have had the brightness image
in the light source coordinates I(#), then the
problem would have become the vertical light
source case, which is given by the Eikonal equa-
tion

(4)

see Figure 1

Lee and Rosenfeld [13] suggested the light
source coordinates ‘to improve’ early shape
from shading algorithms. In fact adopting
this suggestion, it is simple to view the re-
flectance map ‘almost’ as an Eikonal equation
for which we can design a very efficient numeri-
cal method. In the light source coordinate sys-
tem, the equation to solve looks like the Eikonal

equation, yet the right hand side depends on
the surface itself via

That is, we need to evaluate the value of the
surface at a point in order to find the ‘bright-
ness’ and only then plug it to Eq. (5) and use
the Fast Marching Method to solve Eq. ( 4).

In order to overcome this dependence, we
use the directional propagation and ‘adopt’ the
smallest Z value from all the neighbors of the
updated grid point.
reads

The update step then

o Let z; = mln{éi_lm Z’H_L]‘}
and Zp = min{% ;_1, % ;41 13

o Let k= lg’t + ll min{él, 2’2}7
o I |2 — 23| < fi;

THEN 3, — 220200 —Gim2)”,

2 ’

ELSE z; = min{%, Z3} + fi;;

Where %; = z(IAZ,jAy), and fi; =
f(kAz, jAy). Again, without loss of general-
ity we assume Az = Ay = 1, and f(z,y) =
I(z,y)~% — 1. The numerical algorithm in this
case is still consistent, one pass since the small-
est Z neighbor will never change its value, and
is thus within the fast marching framework.
The map between the light source coordinates
(%,y, 2) and the image coordinates (z,y, z) is a
simple rotation given by

€T 13 0 ll x
y | = 0 1 0 Y
z —ll 0 13 Z

We have thereby extended the Fast March-
ing Method to the case of |Vz| = F(z) relevant
to the oblique light source shape from shading
problem. A consistent solution can be com-
puted with O(Nlog N), where N is the total
number of pixels (grid points).



information always flow form small to large val-
ues of the solution z. Therefore, the surface z
may be reconstructed by first setting all z val-
ues to oo, and the correct hight value at the
local minimum points. In case the hight values
at these locations are unknown, then a global
topology solver can be applied [11, 2].

Assume, for simplicity, that we deal with a
single known minimum point. An alternate
scanning directions of the numerical grid, while
solving the quadratic equation (1) for z; at
each visited grid point, would eventually con-
verge. Actually, the rate of convergence de-
pends on the complexity of the surface z;. If
we reconstruct a connected spirals like surface,
then there is a need for O(N) scans in the
worst case, that yields a total computational
complexity bound of O(N?%). Note again that
this is a worst case analysis. The main point is
that for alternating scanning directions based
methods the complexity is data dependent and
ranges between O(N) and O(N?). For simple
surfaces, convergence can be achieved in few
iterations.

Assume without loss of generality that Az =
Ay = 1, and set initially all z;; = oo besides
the minimum point that is set to zero. Then
the update step for z;; can be written as the
following simple procedure

o Let 2y = min{z_1j, 2i41,;}
and 2o = min{z; j_1, % j+1}3

o IF |21 — 2| < f;;

z14z9+4/2f2 —(21—22)2
THEN Zij: 1hz2t QJ;U (1 2) .

9

ELSE z;; = min{z1, 22} + fij;

The fast marching method introduces order
to the update steps. Points are updated and
accepted by their values from small to large.
The selection of the smallest point among the
set of candidate points and the update of its
neighboring grid points involves an O(log N)
worst case complexity, that yields a total of

O(N log N) worst case computational complex-
ity. The order of updates is similar to that of
Dijkstra’s graph search algorithm [5, 16], and
is based on a heap structure of the points at
the front. The main difference from Dijkstra’s
graph search method is the numerical update
step. Actually, one may use the finite numeri-
cal accuracy to avoid the ordering and reduce
the total complexity to O(N).

Our shading image is usually given on a rect-
angular pixels grid. Therefore, the Fast March-
ing Method can be directly applied to solve
the shape from shading problem with a ver-
tical light source. However, for the general
oblique light source, the model to be solved
reads |Vz(z,y)| = f(z,y,2(z,y)) as shown in
the following section. Observe that for this
more general case, the right hand side de-
pends on z(z,y). We will show how to include
this partial differential equation, which is not
an Eikonal equation anymore, within the Fast
Marching framework. Full details on the Fast
Marching Method are given in [18].

4 Shape from Shading:
Oblique Light Source

Let us focus on the oblique light source case in
which the light source direction is different than
Recall, that the shading
image for this Lambertian case is given by

that of the viewer.

I(ac,y):f-ﬁ,

where [ = ({1,13,13) is the light source direction,
and 7 the unit normal to the surface z(z,y)
that we want to reconstruct is given by

(_Zl’v_zyvl)
J14+ 22+ ZZ‘

We use our freedom to choose the coordinate
system so that [, = 0, this is done by rotating

n =

(2)



O(N log N) computational steps sequential al-
gorithm for solving the Eikonal equation on a
rectangular grid, where N is the total number
of grid points. This algorithm, known as the
‘Fast Marching Method,” relies on a system-
atic causality relationship based on upwinding,
coupled with a heap structure for efficiently or-
dering the updated points.

An important property of the solution that
distinguishes it from graph search based meth-
ods is its converges to the continuous physical
(viscosity) solution as the rectangular numeri-
cal grid is refined. Tsitsiklis, in [19], also solved
the Eikonal equation on a rectangular grid with
the same computational complexity, by itera-
tively solving a ‘cost to go’ optimization prob-
lem for the dynamically sorted grid points.

In this note we use Sethian’s Fast Marching
Method and modify it to construct a numerical
solution for the oblique light source shape from
shading problem.

2 Shape from Shading

Let us first review the shading image formation
model for a 3D Lambertian object. Assume,
that the object we try to reconstruct is given
as a function z(z,y) : R? — R, whose surface
normal at each point is given by 7i(z,y) : R* —
S2. Next, let the light source direction be given
by [ € 2. Then, the intensity image, I(z,y) :
R? — R, for an orthographic projection of the
object is given by the inner product of the light
source direction and the surface normal,

I(x,y) =1 @i(z,y).

For the simple vertical light source case [=
(0,0,1), in which the light source is located
near the viewer, the shading image is given by

1

1—|—z§,—|—22'
Y y

I(xvy) =

The problem in hand is the reconstruction of
z(x,y) from its gradient magnitude at each
point that is given by

(I(x,y)) 7" ~ L.

This equation is known as the Fikonal equa-
tion. See [20] for a ‘shading from shape’
Eikonal based technique. It was shown in [2]
for the three singular points case, and in [11]
for the more general case, that with a sim-
ple smoothness assumption, the reconstruction
problem can be solved for surfaces with compli-
cated topologies as long as the surface normals
are known to be pointing outwards along the
boundaries of a given domain (e.g. the image
boundaries). In the following sections we deal
with the problem of how to reconstruct a shape
from its shading image in a computationally ef-
ficient and numerically consistent way.

Vz(z,y)| =

3 Sethian’s
Method

Fast Marching

The Fast Marching Method is an O(N log N)
numerical algorithm for solving the Eikonal
equation, e.g. |Vz(z,y)| = f(z,y). The first
version of the algorithm is based on the fol-
lowing numerical approximation of the Eikonal
equation

2
(maX(Di_sz,—D;;l’zO)) +
2
(maX(Di_ij—D;;yZ,O)) = %, (1)

where z;; = z(iAw, jAy), and D"z = (2 —
zi—1;)/Az is the standard backwards deriva-
tive approximation, D;'fz = (zig1; — zij)/ Az
is the standard forward derivative approxima-
tion in the z direction, and similarly for the
y direction. This numerical approximation se-
lects the correct viscosity solution for the shape
from shading problem as proven by Rouy and
Tourin [15]. One important observation is that
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Abstract

An optimal numerical algorithm for the recon-
struction of a surface from its shading image is
presented. The algorithm solves the 3D recon-
struction from a single shading image problem.
The shading image is treated as a penalty func-
tion and the hight of the reconstructed surface
is a weighted distance. A first order numer-
tcal scheme based on Sethian’s Fast Marching
Method is used to compute the reconstructed
surface. The surface is a viscosity solution
of an Fikonal equation for the vertical light
source case. For the oblique light source case,
the surface is the viscosity solution to a differ-
ent partial differential equation. A modification
of the Fast Marching Method yields a numeri-
cally consistent, computationally optimal, and
practically fast algorithm for the classical shape
from shading problem.

1 Introduction

One of the earliest problems in the field of com-
puter vision is the reconstruction of a three
dimensional object from its single gray level
image.
fusive reflectance model of the surface, also

The problem, for the case of a dif-

known as Lambertian reflectance, is recognized
as the ‘shape from shading problem’ [7, 8]. Var-
ious numerical schemes were proposed over the
years, most of these methods were based on
variational principles that require an additional
smoothness or additional regularization terms
that introduce second order derivatives into the
minimization process. These terms yield an
over-smoothed reconstructions, see for exam-
ple the methods in [9]. Only two early direct
models for the shape from shading did not in-
corporate extra smoothness terms, the first is
the characteristic strips expansion method that
Horn used when he first introduced the prob-
lem [7], the second is Bruckstein’s equal hight
contours tracking model [3]. Unfortunately, the
first numerical implementations of these algo-
rithms suffered from numerical instabilities.

New numerical algorithms based on recent
results in curve evolution theory, control the-
ory, and the viscosity framework [4], were ap-
plied to the shape from shading problem in
[15, 6, 10, 12]. In these advanced numerical
algorithms the smoothness assumption is em-
bedded within the scheme without the need for
an extra smoothness as a penalty.

Recently, Sethian [18, 17] introduced an



