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100Figure 2: The reconstruction of the surface atthe upper left, from its shading image at theupper right is shown at the bottom left. Bot-tom right is the di�erence between the originalsurface and its reconstruction.5 Experimental ResultsWe tested the algorithm on a synthetic shad-ing image of the simplest surface with the threebasic types of local extremum points: a maxi-mum, a minimum, and a saddle. The obliquelight source is given by ~l = (0:2; 0; 0:96). Ob-serve that we do not deal here with self castingshadows (see [14]), nor with solving the globaltopological structure (see [11, 6, 2]).The local extremum points cause singulari-ties at the right hand side of the equation sincethe intensity at their corresponding image lo-cations is equal to zero. This fact should notcause any problem to our numerical algorithm,since one could set the intensity values that aresmaller than O(�x) to someO(�x) without re-ducing the global order of accuracy. Where �xis the grid spacing (the distance between twogrid points). Figure 2 presents the surface, itsshading image, the reconstructed surface, and

the error, for the oblique light source case. Thesurface is the solution to Eq. (4) and (5) witha �xed value at the minimum point (one of thesingular points).6 ConclusionWe presented an O(N logN) algorithm for sur-face reconstruction from its shading image.The computational complexity bound is dataindependent (unlike other iterative methods[1, 6]). It is the most e�cient sequential al-gorithm for Horn's original formulation of theshape from shading problem and a natural ex-tension and application of the Fast MarchingMethod.References[1] M Bichsel and A P Pentland. A sim-ple algorithm for shape from shading. InProceedings IEEE CVPR, pages 459{465,Champaign, Illinois, May 1992.[2] M J Brooks and W Chojnacki. direct com-putation of shape from shading. In Pro-ceedings of ICPR, International Confer-ence of Pattern Recognition, pages 114{119, Jerusalem, Israel, October 1994.[3] A M Bruckstein. On shape from shading.Comput. Vision Graphics Image Process.,44:139{154, 1988.[4] M G Crandall, H Ishii, and P L Lions.User's guide to viscosity solutions of sec-ond order partial linear di�erential equa-tions. Bulletin of the American Math. So-ciety, 27:1{67, 1992.[5] E W Dijkstra. A note on two problemsin connection with graphs. NumerischeMathematic, 1:269{271, 1959.



the (x; y) image plane, so that ~l � (0; 1; 0) = 0.The shading image is then given byI(x; y) = (l1; 0; l3) � ~n; (3)where l21 + l23 = 1. Eq. (3) involves the termzx. It requires some additional thought to con-struct a monotonic approximation to this termand an appropriate update rule.
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Figure 1: In the oblique light source case, thenatural coordinate system is determined by thelight source [13].If we would have had the brightness imagein the light source coordinates ~I(~x), then theproblem would have become the vertical lightsource case, which is given by the Eikonal equa-tion ~z2~x + ~z2y = 1~I(~x; y)2 � 1; (4)see Figure 1Lee and Rosenfeld [13] suggested the lightsource coordinates `to improve' early shapefrom shading algorithms. In fact adoptingthis suggestion, it is simple to view the re-
ectance map `almost' as an Eikonal equationfor which we can design a very e�cient numeri-cal method. In the light source coordinate sys-tem, the equation to solve looks like the Eikonal

equation, yet the right hand side depends onthe surface itself via~I(~x; y) = I(l3~x+ l1~z; y): (5)That is, we need to evaluate the value of thesurface at a point in order to �nd the `bright-ness' and only then plug it to Eq. (5) and usethe Fast Marching Method to solve Eq. ( 4).In order to overcome this dependence, weuse the directional propagation and `adopt' thesmallest ~z value from all the neighbors of theupdated grid point. The update step thenreads� Let ~z1 = minf~zi�1;j ; ~zi+1;jgand ~z2 = minf~zi;j�1; ~zi;j+1g;� Let k = l3i+ l1minf~z1; ~z2g;� IF j~z1 � ~z2j < fkjTHEN ~zij = ~z1+~z2+p2f2kj�(~z1�~z2)22 ;ELSE ~zij = minf~z1; ~z2g+ fkj ;Where ~zij = z(i�~x; j�y), and fkj =f(k�x; j�y). Again, without loss of general-ity we assume �~x = �y = 1, and f(x; y) =I(x; y)�2� 1. The numerical algorithm in thiscase is still consistent, one pass since the small-est ~z neighbor will never change its value, andis thus within the fast marching framework.The map between the light source coordinates(~x; y; ~z) and the image coordinates (x; y; z) is asimple rotation given by0B@ xyz 1CA = 0B@ l3 0 l10 1 0�l1 0 l3 1CA0B@ ~xy~z 1CA :We have thereby extended the Fast March-ing Method to the case of jrzj = F (z) relevantto the oblique light source shape from shadingproblem. A consistent solution can be com-puted with O(N logN), where N is the totalnumber of pixels (grid points).



information always 
ow form small to large val-ues of the solution z. Therefore, the surface zmay be reconstructed by �rst setting all z val-ues to 1, and the correct hight value at thelocal minimum points. In case the hight valuesat these locations are unknown, then a globaltopology solver can be applied [11, 2].Assume, for simplicity, that we deal with asingle known minimum point. An alternatescanning directions of the numerical grid, whilesolving the quadratic equation (1) for zij ateach visited grid point, would eventually con-verge. Actually, the rate of convergence de-pends on the complexity of the surface zij . Ifwe reconstruct a connected spirals like surface,then there is a need for O(N) scans in theworst case, that yields a total computationalcomplexity bound of O(N2). Note again thatthis is a worst case analysis. The main point isthat for alternating scanning directions basedmethods the complexity is data dependent andranges between O(N) and O(N2). For simplesurfaces, convergence can be achieved in fewiterations.Assume without loss of generality that �x =�y = 1, and set initially all zij = 1 besidesthe minimum point that is set to zero. Thenthe update step for zij can be written as thefollowing simple procedure� Let z1 = minfzi�1;j ; zi+1;jgand z2 = minfzi;j�1; zi;j+1g;� IF jz1 � z2j < fijTHEN zij = z1+z2+p2f2ij�(z1�z2)22 ;ELSE zij = minfz1; z2g+ fij ;The fast marching method introduces orderto the update steps. Points are updated andaccepted by their values from small to large.The selection of the smallest point among theset of candidate points and the update of itsneighboring grid points involves an O(logN)worst case complexity, that yields a total of

O(N logN) worst case computational complex-ity. The order of updates is similar to that ofDijkstra's graph search algorithm [5, 16], andis based on a heap structure of the points atthe front. The main di�erence from Dijkstra'sgraph search method is the numerical updatestep. Actually, one may use the �nite numeri-cal accuracy to avoid the ordering and reducethe total complexity to O(N).Our shading image is usually given on a rect-angular pixels grid. Therefore, the Fast March-ing Method can be directly applied to solvethe shape from shading problem with a ver-tical light source. However, for the generaloblique light source, the model to be solvedreads jrz(x; y)j = f(x; y; z(x; y)) as shown inthe following section. Observe that for thismore general case, the right hand side de-pends on z(x; y). We will show how to includethis partial di�erential equation, which is notan Eikonal equation anymore, within the FastMarching framework. Full details on the FastMarching Method are given in [18].4 Shape from Shading:Oblique Light SourceLet us focus on the oblique light source case inwhich the light source direction is di�erent thanthat of the viewer. Recall, that the shadingimage for this Lambertian case is given byI(x; y) = ~l � ~n;where ~l = (l1; l2; l3) is the light source direction,and ~n the unit normal to the surface z(x; y)that we want to reconstruct is given by~n = (�zx;�zy; 1)q1 + z2x + z2y : (2)We use our freedom to choose the coordinatesystem so that l2 = 0, this is done by rotating



O(N logN) computational steps sequential al-gorithm for solving the Eikonal equation on arectangular grid, where N is the total numberof grid points. This algorithm, known as the`Fast Marching Method,' relies on a system-atic causality relationship based on upwinding,coupled with a heap structure for e�ciently or-dering the updated points.An important property of the solution thatdistinguishes it from graph search based meth-ods is its converges to the continuous physical(viscosity) solution as the rectangular numeri-cal grid is re�ned. Tsitsiklis, in [19], also solvedthe Eikonal equation on a rectangular grid withthe same computational complexity, by itera-tively solving a `cost to go' optimization prob-lem for the dynamically sorted grid points.In this note we use Sethian's Fast MarchingMethod and modify it to construct a numericalsolution for the oblique light source shape fromshading problem.2 Shape from ShadingLet us �rst review the shading image formationmodel for a 3D Lambertian object. Assume,that the object we try to reconstruct is givenas a function z(x; y) : R2 ! R, whose surfacenormal at each point is given by ~n(x; y) : R2 !S2. Next, let the light source direction be givenby ~l 2 S2. Then, the intensity image, I(x; y) :R2 ! R, for an orthographic projection of theobject is given by the inner product of the lightsource direction and the surface normal,I(x; y) = ~l � ~n(x; y):For the simple vertical light source case ~l =(0; 0; 1), in which the light source is locatednear the viewer, the shading image is given byI(x; y) = 1q1 + z2x + z2y :

The problem in hand is the reconstruction ofz(x; y) from its gradient magnitude at eachpoint that is given byjrz(x; y)j= q(I(x; y))�2 � 1:This equation is known as the Eikonal equa-tion. See [20] for a `shading from shape'Eikonal based technique. It was shown in [2]for the three singular points case, and in [11]for the more general case, that with a sim-ple smoothness assumption, the reconstructionproblem can be solved for surfaces with compli-cated topologies as long as the surface normalsare known to be pointing outwards along theboundaries of a given domain (e.g. the imageboundaries). In the following sections we dealwith the problem of how to reconstruct a shapefrom its shading image in a computationally ef-�cient and numerically consistent way.3 Sethian's Fast MarchingMethodThe Fast Marching Method is an O(N logN)numerical algorithm for solving the Eikonalequation, e.g. jrz(x; y)j = f(x; y). The �rstversion of the algorithm is based on the fol-lowing numerical approximation of the Eikonalequation�max(D�xij z;�D+xij z; 0)�2+�max(D�yij z;�D+yij z; 0)�2 = f2ij ; (1)where zij = z(i�x; j�y), and D�xij z = (zij �zi�1;j)=�x is the standard backwards deriva-tive approximation, D+xij z = (zi+1;j � zij)=�xis the standard forward derivative approxima-tion in the x direction, and similarly for they direction. This numerical approximation se-lects the correct viscosity solution for the shapefrom shading problem as proven by Rouy andTourin [15]. One important observation is that



Optimal Algorithm for Shape from ShadingRon KimmelComputer Science Department,Technion, Israel Institute of Technology, Haifa 32000, IsraelEmail: ron@cs.technion.ac.ilJames A. SethianDepartment of Mathematicsand Lawrence Berkeley National Laboratory,University of California, Berkeley, CA 94720Email: sethian@math.berkeley.eduAbstractAn optimal numerical algorithm for the recon-struction of a surface from its shading image ispresented. The algorithm solves the 3D recon-struction from a single shading image problem.The shading image is treated as a penalty func-tion and the hight of the reconstructed surfaceis a weighted distance. A �rst order numer-ical scheme based on Sethian's Fast MarchingMethod is used to compute the reconstructedsurface. The surface is a viscosity solutionof an Eikonal equation for the vertical lightsource case. For the oblique light source case,the surface is the viscosity solution to a di�er-ent partial di�erential equation. A modi�cationof the Fast Marching Method yields a numeri-cally consistent, computationally optimal, andpractically fast algorithm for the classical shapefrom shading problem.1 IntroductionOne of the earliest problems in the �eld of com-puter vision is the reconstruction of a threedimensional object from its single gray levelimage. The problem, for the case of a dif-fusive re
ectance model of the surface, also

known as Lambertian re
ectance, is recognizedas the `shape from shading problem' [7, 8]. Var-ious numerical schemes were proposed over theyears, most of these methods were based onvariational principles that require an additionalsmoothness or additional regularization termsthat introduce second order derivatives into theminimization process. These terms yield anover-smoothed reconstructions, see for exam-ple the methods in [9]. Only two early directmodels for the shape from shading did not in-corporate extra smoothness terms, the �rst isthe characteristic strips expansion method thatHorn used when he �rst introduced the prob-lem [7], the second is Bruckstein's equal hightcontours tracking model [3]. Unfortunately, the�rst numerical implementations of these algo-rithms su�ered from numerical instabilities.New numerical algorithms based on recentresults in curve evolution theory, control the-ory, and the viscosity framework [4], were ap-plied to the shape from shading problem in[15, 6, 10, 12]. In these advanced numericalalgorithms the smoothness assumption is em-bedded within the scheme without the need foran extra smoothness as a penalty.Recently, Sethian [18, 17] introduced an


