
Fast Geodesic Active ContoursRoman Goldenberg, Ron Kimmel,Ehud Rivlin, and Michael RudzskyComputer Science Department, Technion|Israel Institute of TechnologyTechnion City, Haifa 32000, ISRAELromang/ron/ehudr/rudzsky@cs.technion.ac.il,WWW home page: http://www.cs.technion.ac.il/�ronAbstract. We use an unconditionally stable numerical scheme to im-plement a fast version of the geodesic active contour model. The proposedscheme is useful for object segmentation in images, like tracking movingobjects in a sequence of images. The method is based on the Weickert-Romeney-Viergever [33] AOS scheme. It is applied at small regions, mo-tivated by Adalsteinsson-Sethian [1] level set narrow band approach, anduses Sethian's fast marching method [26] for re-initialization. Experimen-tal results demonstrate the power of the new method for tracking in colormovies.1 IntroductionAn important problem in image analysis is object segmentation. It involves theisolation of a single object from the rest of the image that may include otherobjects and a background. Here, we focus on boundary detection of one or severalobjects by a dynamic model known as the `geodesic active contour' introducedin [4{7], see also [18,28].Geodesic active contours were introduced as a geometric alternative for `snakes'[30,17]. Snakes are deformable models that are based on minimizing an energyalong a curve. The curve, or snake, deforms its shape so as to minimize an`internal' and `external' energies along its boundary. The internal part causesthe boundary curve to become smooth, while the external part leads the curvetowards the edges of the object in the image.In [2, 21], a geometric alternative for the snake model was introduced, inwhich an evolving curve was formulated by the Osher-Sethian level set method[22]. The method works on a �xed grid, usually the image pixels grid, and auto-matically handles changes in the topology of the evolving contour.The geodesic active contour model was born latter. It is both a geometricmodel as well as energy functional minimization. In [4,5], it was shown that thegeodesic active contour model is related to the classical snake model. Actually, asimpli�ed snake model yields the same result as that of a geodesic active contourmodel, up to an arbitrary constant that depends on the initial parameterization.Unknown constants are an undesirable property in most automated models.Although the geodesic active contour model has many advantages over thesnake, its main drawback is its non-linearity that results in ine�cient imple-mentations. For example, explicit Euler schemes for the geodesic active contour



2limit the numerical step for stability. In order to overcome these limitations, amulti-resolution approach was used in [32], and coupled with some additionalheuristic steps, as in [23], like computationally preferring areas of high energy.In this paper we introduce a new method that maintains the numerical con-sistency and makes the geodesic active contour model computationally e�cient.The e�ciency is achieved by canceling the limitation on the time step in thenumerical scheme, by limiting the computations to a narrow band around thethe active contour, and by applying an e�cient re-initialization technique.2 From snakes to geodesic active contoursSnakes were introduced in [17,30] as an active contour model for boundary seg-mentation. The model is derived by a variational principle from a non-geometricmeasure. The model starts from an energy functional that includes `internal' and`external' terms that are integrated along a curve.Let the curve C(p) = fx(p); y(p)g, where p 2 [0; 1] is an arbitrary parameter-ization. The snake model is de�ned by the energy functionalS[C] = Z 10 �jCpj2 + �jCppj2 + 2�g(C)� dp;where Cp � f@px(p); @py(p)g, and � and � are positive constants.The last term represents an external energy, where g() is a positive edgeindicator function that depends on the image, it gets small values along the edgesand higher values elsewhere. Taking the variational derivative with respect tothe curve, �S[C]=�C, we obtain the Euler Lagrange equationsCpp � �Cpppp � �rg = 0:One may start with a curve that is close to a signi�cant local minimum of S[C],and use the Euler Lagrange equations as a gradient descent process that leadsthe curve to its proper position. Formally, we add a time variable t, and writethe gradient descent process as @tC = �S[C]=�C, or explicitlydCdt = Cpp � �Cpppp � �rg:The snake model is a linear model, and thus an e�cient and powerful tool forobject segmentation and edge integration, especially when there is a rough ap-proximation of the boundary location. There is however an undesirable propertythat characterizes this model. It depends on the parameterization. The model isnot geometric.Motivated by the theory of curve evolution, Caselles et al. [2] and Malladiet al. [21] introduced a geometric ow that includes an internal and externalgeometric measures. Given an initial curve C0, the geometric ow is given by theplanar curve evolution equation Ct = g(C)(� � v)N , where, N is the normal tothe curve, �N is the curvature vector, v is an arbitrary constant, and g(), as



3before, is an edge indication scalar function. This is a geometric ow, that is, freeof the parameterization. Yet, as long as g does not vanish along the boundary, thecurve continues its propagation and may skip its desired location. One remedy,proposed in [21], is a control procedure that monitors the propagation and setsg to zero as the curve gets closer to the edge.The geodesic active contour model was introduced in [4{7], see also [18, 28],as a geometric alternative for the snakes. The model is derived from a geomet-ric functional, where the arbitrary parameter p is replaced with a Euclideanarclength ds = jCpjdp. The functional readsS[C] = Z 10 (�+ ~g(C)) jCpjdp:It may be shown to be equivalent to the arclength parameterized functionalS[C] = Z L(C)0 ~g(C)ds+ �L(C);where L(C) is the total Euclidean length of the curve. One may equivalentlyde�ne g(x; y) = ~g(x; y) + �, in which caseS[C] = Z L(C)0 g(C)ds;i.e. minimization of the modulated arclength g(C)ds. The Euler Lagrange equa-tions as a gradient descent process isdCdt = (g(C)� � hrg;N i)N :Again, internal and external forces are coupled together, yet this time in a waythat leads towards a meaningful minimum, which is the minimum of the func-tional. One may add an additional force that comes from an area minimizationterm, and known as the balloon force [10]. This way, the contour may be directedto propagate outwards by minimization of the exterior. The functional with theadditional area term readsS[C] = Z L(C)0 g(C)ds + � ZC da;where da is an area element, for example, RC da = R L(C)0 N � Cds. The EulerLagrange as steepest descent isdCdt = (g(C)� � hrg;N i � �)N :We can use our freedom of parameterization in the gradient descent ow andmultiply the right hand side again by an edge indicator, e.g. g. The geodesic



4active contour model with area as a balloon force modulated by an edge indicatoris dCdt = (g(C)� � hrg;N i � �) g(C)N :The connection between classical snakes, and the geodesic active contourmodel was established in [5] via Maupertuis' Principle of least action [12]. ByFermat's Principle, the �nal geodesic active contours are geodesics in an isotropicnon-homogeneous medium.Recent applications of the geodesic active contours include 3D shape frommultiple views, also known as shape from stereo [13], segmentation in 3D movies[19], tracking in 2D movies [23], and re�nement of e�cient segmentation in 3Dmedical images [20]. The curve propagation equation is just part of the wholemodel. Subsequently, the geometric evolution is implemented by the Osher-Sethian level set method [22].2.1 Level set methodThe Osher-Sethian [22] level set method considers evolving fronts in an implicitform. It is a numerical method that works on a �xed coordinate system andtakes care of topological changes of the evolving interface.Consider the general geometric planar curve evolutiondCdt = VN ;where V is any intrinsic quantity, i.e., V does not depend on a speci�c choice ofparameterization. Now, let �(x; y) : IR2 ! IR be an implicit representation of C,such that C = f(x; y) : �(x; y) = 0g. One example is a distance function from Cde�ned over the coordinate plane, with negative sign in the interior and positivein the exterior of the closed curve.The evolution for � such that its zero set tracks the evolving contour is givenby d�dt = V jr�j:This relation is easily proven by applying the chain rule, and using the fact thatthe normal of any level set, � = constant, is given by the gradient of �,d�dt = hr�; Cti = hr�; VN i = V �r�; r�jr�j� = V jr�j:This formulation enable us to implement curve evolution on the x; y �xedcoordinate system. It automatically handles topological changes of the evolvingcurve. The zero level set may split from a single simple connected curve, intotwo separate curves.Speci�cally, the corresponding geodesic active contour model written in itslevel set formulation is given byd�dt = div�g(x; y) r�jr�j� jr�j:



5Including an area minimization term that yields a constant velocity, modulatedby the edge indication function (by the freedom of parameterization of the gra-dient descent), we haved�dt = g(x; y)��+ div�g(x; y) r�jr�j�� jr�j:We have yet to determine a numerical scheme and an appropriate edge in-dication function g. An explicit Euler scheme with forward time derivative, in-troduces a numerical limitation on the time step needed for stability. Moreover,the whole domain needs to be updated each step, which is a time consumingoperation for a sequential computer. The narrow band approach overcomes thelast di�culty by limiting the computations to a narrow strip around the zeroset. First suggested by Chopp [9], in the context of the level set method, andlater developed in [1], the narrow band idea limits the computation to a tightstrip of few grid points around the zero set. The rest of the domain serves onlyas a sign holder. As the curve evolves, the narrow band changes its shape andserves as a dynamic numerical support around the location of the zero level set.2.2 The AOS schemeAdditive operator splitting (AOS) schemes were introduced by Weickert et al.[33] as an unconditionally stable numerical scheme for non-linear di�usion inimage processing. Let us briey review its main ingredients and adapt it to ourmodel.The original AOS model deals with the Perona-Malik [24], non-linear imageevolution equation of the form @tu = div (g(jruj)ru), given initial conditionas the image u(0) = u0. Let us re-write explicitly the right hand side of theevolution equation div (g(jruj)ru) = mXl=1 @xl (g(jruj)@xlu) ;where l is an index running over the m dimensions of the problem, e.g., for a 2Dimage m = 2,x1 = x, and x2 = y.As a �rst step towards discretization consider the operatorAl(uk) = @xlg(jrukj)@xl ;where the superscript k indicates the iteration number, e.g., u0 = u0. We canwrite the explicit schemeuk+1 = "I + � mXl=1 Al(uk)#uk;where, � is the numerical time step. It requires an upper limit for � if one desiresto establish convergence to a stable steady state. Next, the semi-implicit schemeuk+1 = "I � � mXl=1 Al(uk)#�1 uk;



6is unconditionally stable, yet inverting the large bandwidth matrix is a compu-tationally expensive operation.Finally, the consistent, �rst order, semi-implicit, additive operator splittingscheme uk+1 = 1m mXl=1 �I �m�Al(uk)��1 uk;may be applied to e�ciently solve the non-linear di�usion.The AOS semi-implicit scheme in 2D is then given by a linear tridiagonalsystem of equations uk+1 = 12 2Xl=1 [I � 2�Al(uk)]�1uk;where Al(uk) is a matrix corresponding to derivatives along the l-th coordinateaxis. It can be e�ciently solved for uk+1 by Thomas algorithm, see [33].In our case, the geodesic active contour model is given by@t� = div�g(jru0j) r�jr�j� jr�j;where u0 is the image, and � is the implicit representation of the curve. Sinceour interest is only at the zero level set of �, we can reset � to be a distancefunction every numerical iteration. One nice property of distance maps is itsunit gradient magnitude almost everywhere. Thereby, the short term evolutionfor the geodesic active contour given by a distance map, with jr�j = 1, is@t� = div (g(jru0j)r�) :Note, that now Al(�k) = Al(u0), which means that the matrices [I�2�Al(u0)]�1can be computed once for the whole image. Yet, we need to keep the � function asa distance map. This is done through re-initialization by Sethian's fast marchingmethod every iteration.It is simple to introduce a `balloon' force to the scheme. The resulting AOSscheme with the `balloon' then reads�k+1 = 12 2Xl=1 [I � 2�g(u0)Al(u0)]�1(�k + ��g(u0));where � is the area/balloon coe�cient.In order to reduce the computational cost we use a multi-scale approach[16]. We construct a Gaussian pyramid of the original image. The algorithm is�rst applied at the lower resolution. Next, the zero set is embedded at a higherresolution and the � distance function is computed. Moreover, the computationsare performed only within a limited narrow band around the zero set. The narrowband automatically modi�es its shape as we re-initiate the distance map.



72.3 Re-initialization by the fast marching methodIn order to maintain sub-grid accuracy, we detect the zero level set curve withsub-pixel accuracy. We apply a linear interpolation in the four pixel cells in which� changes its sign. The grid points with the exact distance to the zero level setare then used to initialize the fast marching method.Sethian's fast marching method [27, 26], is a computationally optimal numer-ical method for distance computation on rectangular grids. The method keepsa front of updated points sorted in a heap structure, and constructs a numer-ical solution iteratively, by �xing the smallest element at the top of the heapand expanding the solution to its neighboring grid points. This method enjoys acomputational complexity bound of O(N logN ), where N is the number of gridpoints in the narrow band. See also [8,31], where consistent O(N logN ) schemesare used to compute distance maps on rectangular grids.3 Edge indicator functions for color and moviesWhat is a proper edge indicator for color images? Several generalizations for thegradient magnitude of gray level images were proposed, see e.g. [11, 25, 29]. In[23] Paragios and Deriche, introduced a probability based edge indicator functionfor movies. In this paper we have chosen the geometric philosophy to extract anedge indicator. We consider a measure suggested by the Beltrami framework in[29], to construct an edge indicator function.3.1 Edges in ColorAccording to the Beltrami framework, a color image is considered as a twodimensional surface in the �ve dimensional spatial-spectral space. The metrictensor is used to measure distances on the image manifold. The magnitude ofthis tensor is an area element of the color image surface, which can be consid-ered as a generalization of the gradient magnitude. Formally, the metric tensorof the 2D image given by the 2D surface fx; y;R(x; y); G(x; y); B(x; y)g in thefx; y;R;G;Bg space, is given by(gij) = � 1 +R2x + G2x + B2x RxRy + GxGy +BxByRxRy + GxGy +BxBy 1 +R2y + G2y + B2y � ;where Rx � @xR. The edge indicator function is given by q = det(gij). It issimple to show thatq = 1 +Xi jruij2 + 12 3Xi=1 3Xj=1(rui �ruj)2;where u1 = R; u2 = G; u3 = B. Then, the edge indicator function g is given bya decreasing function of q, e.g., g = q�1.



83.2 Tracking objects in moviesLet us explore two possibilities to track objects in movies. The �rst, considers thewhole movie volume as a Riemannian space, as done in [7]. In this case the activecontour becomes an active surface. The AOS scheme in the spatial-temporal 3Dhybrid space is �k+1 = 13Xl [I � 3�Al(u0)]�1�k;where Al(u0) is a matrix corresponding to derivatives along the l-th coordinateaxis, where now l 2 [x; y; T ].The edge indicator function is again derived from the Beltrami framework,where for color movies we pull-back the metric(gij) =  1 + R2x +G2x + B2x RxRy +GxGy + BxBy RxRT +GxGT +BxBTRxRy + GxGy +BxBy 1 +R2y + G2y + B2y RyRT +GyGT + ByBTRxRT + GxGT + BxBT RyRT + GyGT +ByBT 1 +R2T + G2T +B2T ! :Which is the metric for a 3D volume in the 6D fx; y; T ; R;G;Bg spatial-temporal-spectral space. Again, setting q = det(gij), we have pqdxdydT asa volume element of the image. Intuitively, the larger q gets, the smaller spatial-temporal steps one should apply in order to cover the same volume. That is,q integrates the changes with respect to the x; y; and T coordinates, and can,thereby, be considered as an edge indicator.A di�erent approach uses the contour location in frame n as an initial condi-tion for the 2D solution in frame n+1, see e.g. [3, 23]. The above edge indicatoris still valid in this case. Note, that the aspect ratios between the time, the imagespace, and the intensity, should be determined according to the application.The �rst approach was found to yield accurate results in o� line trackinganalysis. While the second approach gives up some accuracy, that is achieved bytemporal smoothing in the �rst approach, for e�ciency in real time tracking.4 Experimental ResultsAs a simple example, the proposed method can be used as a consistent, un-conditionally stable, and computationally e�cient, numerical approximation forthe curvature ow. The curvature ow, also known as curve shortening ow orgeometric heat equation, is a well studied equation in the theory of curve evolu-tion. It is proven to bring every simple closed curve into a circular point in �nitetime [14,15]. Figure 1 shows an application of the proposed method for a curveevolving by its curvature and vanishes at a point. One can see how the numberof iterations needed for the curve to converge to a point decreases as the timestep is increased.We tested several implementations for the curvature ow. Figure 2 shows theCPU time it takes the explicit and implicit schemes to evolve a contour into acircular point. For the explicit scheme we tested both the narrow band and thenaive approach in which every grid point is updated every iteration. The tests



9step 1 step 3 step 30 step 80 step 150step 1 step 3 step 10 step 30 step 58Fig. 1. Curvature ow by the proposed scheme. A non-convex curve vanishes in �nitetime at a circular point by Grayson's Theorem. The curve evolution is presented fortwo di�erent time steps. Top: � = 20; bottom: � = 50.were performed on an Ultra SPARC 360MHz machine for a 256�256 resolutionimage.It should be noted that when the narrow band approach is used, the bandwidth should be increased as the � grows to ensure that the curve does notescape the band in one iteration.
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Fig. 2. Curvature ow CPU time for the ex-plicit scheme and the implicit AOS scheme.First, the whole domain is updated, next, thenarrow band is used to increase the e�ciency,and �nally the AOS speeds the whole process.For the explicit scheme the maximal timestep that still maintains stability is choosen.For the AOS scheme, CPU times for severaltime steps are presented.Figures 3 and 4 show segmentation results for color movies with di�cultspatial textures. The tracking is performed at two resolutions. At the lowerresolution we search for temporal edges and at the higher resolution we searchfor strong spatial edges. The contour found in the coarse grid is used as theinitial contour at the �ne grid.There are some implementation considerations one should be aware of. Forexample, if we choose a relatively large time step, the active contour may skip



10 step 2 step 40 step 60frame 2 frame 22 frame 50Fig. 3. Tracking a cat in a color movie by the proposed scheme. Top: Segmentation ofthe cat in a single frame. Bottom: Tracking the walking cat in the 50 frames sequence.over the boundary. The time step should thus be of similar order as the numericalsupport of the edges. One way to overcome this limit is to use a coarse to �nescales of boundary smoothing, with an appropriate time step for each scale.It is possible to compute the inverse matrices of the AOS once for the wholeimage, or to invert small sub-matrices as new points enter or exit the narrowband. There is obviously a trade-o� between the two approaches. For initial-ization, we have chosen the �rst approach, since the initial curve starts at theframe of the image and has to travel over most of the image until it capturesthe moving objects. While for tracking of moving objects in a movie, we use thelocal approach, since now the curve has only to adjust itself to local changes.5 Concluding RemarksIt was shown that an integration of advanced numerical techniques yield a com-putationally e�cient algorithm that solves a geometric segmentation model. Thenumerical algorithm is consistent with the underlying continuous model. Theproposed `fast geodesic active contour' scheme was applied successfully for im-age segmentation and tracking in movie sequences and color images. It combinesthe narrow band level set method, with adaptive operator splitting, and the fastmarching method.6 AcknowledgmentsWe thank Irad Yavne for intriguing conversations and Nikolaos Paragios foruseful correspondence.
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