
Planar Shape Enhancement and ExaggerationAmi Steiner� Ron Kimmelx Alfred M. Bruckstein��July 23, 1995AbstractA local smoothing operator applied in the reverse direction is used to obtain planarshape enhancement and exaggeration. Inversion of a smoothing operator is an inher-ently unstable operation. Therefore, a stable numerical scheme simulating the inversesmoothing e�ect is introduced. Enhancement is obtained for short time spans of evo-lution. Carrying the evolution further yields shape exaggeration or caricaturizatione�ect. Introducing attraction forces between the evolving shape and the initial one,yields an enhancement process that converges to a steady state. These forces dependon the distance of the evolving curve from the original one and on local properties.Results of applying the unrestrained and restrained evolution on planar shapes, basedon a stabilized inverse Geometric Heat Equation, are presented showing enhancementand caricaturization e�ects.1 IntroductionIn this paper we consider possible ways to design an automatic procedure for enhancing andcaricaturizing planar shapes. Di�erent caricaturists relate to similar inputs di�erently andend up with very di�erent caricatures [4]. Yet, there is a common trend in all caricatures:special, unusual or uncommon features in objects are detected and magni�ed. In [4], SusanBrennan proposed a caricaturization algorithm based on exaggerating the di�erences betweena given object and an `average' one. Her algorithm requires a-priori knowledge of a set ofitems from the input class and the correspondence points between them. Without thesereference items, the input item cannot be exaggerated. Even when a set of reference shapeswas available, the strict demands on the correspondence between the shapes led the author torepresent them by simple polygons which made it practically impossible to generate smoothcaricatures (see results in [4, 5]). We here propose an exaggeration algorithm that needs noa-priori data and can perform exaggeration on single input images.�Electrical Engineering Department, Technion, Haifa 32000, Israel, E-mail: steiner@tx.technion.ac.ilxElectrical Engineering Department, Technion, Haifa 32000, Israel, E-mail: ron@tx.technion.ac.il��Computer Science Department, Technion, Haifa 32000, Israel, E-mail: freddy@cs.technion.ac.il, on sab-batical leave at AT&T Bell Labs, Murray Hill, NJ07974.1



In order to generate an approach for shape exaggeration that does not rely on someaverage or typical object of each class, we propose to utilize planar curve evolution theory.Further motivation for introducing the feature enhancement and exaggeration for planarshapes via curve evolution comes from a closely related approach for deblurring and featureenhancement in 2D images. Indeed, in the �eld of image processing one often needs toenhance an image that was blurred or smoothed by some known operator. In this context itis possible, in some cases, to invert the blurring operator, thereby deblurring or reconstructingthe original image.As shown in [7, 8, 9], the curvature 
ow for planar curve evolution, also known as thegeometric heat equation (GHE), shrinks any planar curve into a circular point with thefastest rate of shortening the curve's total length. In [21], an a�ne invariant GHE thatshrinks planar curves into ellipses is analyzed. Such evolutions can be considered the ultimatesimpli�cation or smoothing 
ows for shapes. Therefore, for caricature generation based onlocal properties of the shape itself and for shape enhancement, all that is needed is toinvert these 
ows. An inverse geometric heat equation would have desired speci�cationsof locally exaggerating features of planar curves. But, inverting the time direction of thepartial di�erential equation describing the GHE must be done carefully. Involving positivefeedback, such an evolution is inherently unstable. In this paper we propose methods forcontrolling the propagation of curves so that stability is achieved. A steady state can beachieved in some models by introducing restraining forces in addition to the evolution forces.This idea resembles the so-called deformable templates relaxation approach [11, 24]. Beforeintroducing the proposed methods, let us brie
y review the classical deblurring approach inimage processing.Assume an image I0(x; y) is smoothed in time by the di�erential equationIt(x; y; t) = r2I(x; y; t);where I(x; y; 0) = I0(x; y) is the original image and I(x; y;�t) is the image distorted by thesmoothing process at time �t. Given the blurred image I(x; y;�t) the goal is to reconstructthe original image I(x; y; 0). Using the Taylor expansion one can write:I(x; y; 0) = I(x; y;�t) ��tr2I(x; y;�t) +O(�t2)One dimensional deblurring of a smoothed step function is illustrated in Figure 1.We could try to use the same idea for the nonlinear partial di�erential equation describingthe GHE deforming planar curves by:Ct = Css: (1)Here, C(s; t) : [0; L] � [0; T ) ! IR2 is a planar curve deforming in time t according to itssecond derivative with respect to its arc-length. Again, by using the Taylor expansion wecould propose to reconstruct C(0) from C(�t) via:C(0) = C(�t)��tCss(�t) +O(�t2): 2
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I Figure 1: Deblurring a step function, the 1D case.However, in this case, since the arc-length is not preserved during the evolution, this is not acorrect restoration. Indeed @2=@s2 is a non linear operator, and the arc-length parameter sof C(�t) may di�er from that of C(0). Since we aim at propagating a curve for long periodsof time in order to also obtain the exaggeration e�ects, we should search for a di�erentapproximation.The geometric heat equation is known to be a stable process, however, attempts todirectly invert Equation (1), i.e. to propagateCt = �Css; (2)results in an unstable, partial di�erential equation. In [19], the inverse smoothing of curveswas indeed identi�ed as an unstable evolution. Malladi and Sethian [15], simulated theinverse heat equation to exaggerate the borders of alpha-numeric input and thereby improveclassi�cation results of hand-written characters. Figure 2 demonstrates the smoothing e�ectsof the GHE and desired enhancement/exaggeration e�ects to be obtained from the inverse
ow.In the sequel we introduce two new approaches for simulating the e�ects of the inverseGHE on outlines of shapes given as polygons or via gray-level images on a grid of pixels.In Section 2, we introduce a stabilized curve enhancement evolution. Careful numericaltreatment is suggested to stabilize this inherently unstable process. The proposed evolutionenhances the curve for short time, but it does not reach a steady-state. To approximatethe evolution of continuous curves, we utilize a numerical method for level-set evolutionintroduced by Osher and Sethian in [16], and elaborated in [3, 12, 17, 20, 23]. For curvesapproximated by polygons, we use a generalized form of the discrete evolution given in [1]3



Enhancment

SmoothingFigure 2: Smoothing vs. Enhancement. A smoothing evolution used on the original (bold)curve shifts the high curvature parts inwards (dashed). Evolution in the reverse directionwill shift it outwards yielding an enhanced curve (solid).and [2]. In Section 3, we formulate \restrained" evolutions by introducing restraining forcesthat are added to the original evolution. Results of applying the unrestrained and restrainedevolutions based on the Inverse GHE of some planar shapes are demonstrated on pixel gridimages as well as on polygonal curves.2 Unrestrained EvolutionIn this section we present two approaches for simulating the inverse smoothing operation forcurves and describe the numerical schemes for approximating the process. For continuouscurves, the level-set Eulerian formulation [16] in its reverse direction is used and a gener-alized model which controls the intensity of the exaggeration is suggested. For polygonalapproximation of curves, two discrete evolutions are applied: the discrete analogue to thereverse GHE evolution, and an evolution based on inverting the evolution equations analyzedin [1].2.1 Simulating the continuous caseLet us �rst modify the planar curve evolution via Equation (2) into a controllable one.Geometrically, Equation (2) is identical to:Ct = ��(s; t)N̂(s; t);where � is the curvature and N̂ is a unit vector normal to the curve. We follow the Osher-Sethian Eulerian formulation [16], creating a bivariate function � : IR2 � [0; T ) ! IR and4



evolving each of its level sets �(x; y; t) = l (also denoted as C(t) = ��1(l)) according to:Ct = F (�(s; t))N̂(s; t): (3)It was shown in [16] that the �-surface evolution equivalent to Equation (3) is:�t = F (�(�))jr�j: (4)The reverse GHE for � is therefore given by:�t = ��(x; y; t)jr�j: (5)where C(t) = ��1(0) for all t. One possible way of choosing the initial �(x; y; 0) is thedistance from the curve C(s; 0), with negative signs in the interior and positive signs in theexterior of the curve. The curvature of each level set curve ��1(l) is given by:�(x; y; t) = �(�) = r �  r�jr�j! = �xx�2y � 2�x�y�xy + �yy�2x(�2x + �2y)3=2 : (6)But the Eulerian formulation, (5), su�ers from the inherent instability of the original planarevolution. We therefore need to make some modi�cations that will enable to monitor theevolution of the process.For a small neighborhood near the zero level set ��1(0) of a simple convex curve, theouter level sets having low curvature propagate outwards slowly while the inner level sets,having higher curvature propagate outwards with higher velocity. Without any numericalcontrol on the function behavior, this cause shocks to form in the propagating �. Given �as a distance map, it is possible to change the evolution law given in Equation (4) so thatthe distance to the zero level set is preserved along the propagation. Each level set shouldnow evolve in lockstep with the zero level set. This is achieved by �rst observing that in adistance map, the curvature radius R = 1=� of each level set ��1(l) changes linearly with l,as shown in Figure 3. Using this observation, Equation (4) can be modi�ed to:�t = F (K)jr�j;and the modi�ed inverse geometric heat equation becomes:�t = �Kjr�j; (7)where K is set to be:K = K(x; y; t) = 11�(x;y;t) � �(x; y; t); (8)in the attempt to assign to the point (x; y) the curvature of its closest point on the zero levelset. Equation (7) is still not stable numerically. Recalling the explicit representation of the5



dR = t0R

A BFigure 3: For a circle, the distance map �(x; y; 0) is a cone. The radius of the outer arcis R0 + dR compared to R0 of the original arc. Therefore, �(� = t) must be modi�edaccordingly to allow the same propagation speed for all level sets.curve, we further modify it by actually �xing the 
ow �eld to its initial value throughoutthe evolution:Ct = �K(x; y; 0)N̂(s; t); (9)where K(x; y; 0) : IR2 ! IR is the extended curvature of C(s; 0):K(x; y; 0) = f �(s; 0) j where s minimizes the distance jC(s; 0)� (x; y)j g:This is achieved by setting t = 0 in Equation (8). The curvature of the initial curve is thusextended to the whole plane, so that each point on the plane assigned a value correspondingto the curvature of the initial curve point closest to it. Having a 
ow �eld K of propagationvelocity �xed in time, we use the Eulerian formulation to implement the curve evolution.The relaxed evolution equation for � equivalent to Equation (9) is given by:�t = �K(x; y; 0)jr�j: (10)The above result, obtained by geometrical reasoning, can also be obtained via the follow-ing considerations from curve evolution theory. Observe that the level sets of any distancefunction �(x; y; 0) can be described as curves evolving according to the classical \prairie-�re"rule: 8<: C� = N̂(p; � )C(p; 0) = fCurve extracted from �(x; y; 0) zero level setg : (11)where p is an arbitrary parameterization and N̂ (p; � ) is a unit vector normal to the curve at(p; � ). This means that the set of points of each level set of �, i.e. f(x; y) j �(x; y; 0) = lg,is given by the set of points of the curve C(p; � = l). As shown by Sethian [19], the curvatureof C(p; � ) evolves in this case according to:�� (p; � ) = ��2(p; � ); given �(p; 0);6



a Riccati equation for which the explicit solution is:�(p; � ) = �(p; 0)1 + �(p; 0)� ;and therefore we have that�(p; 0) = �(p; � )1 � �(p; � )� : (12)We next show that for the curve evolution given by Equation (11), one can trace back thecorrespondence between any point (x; y) 2 C(p; � ) and its origin (x0; y0) 2 C(p; 0). This canbe done using the following Lemma (see [16] or [13]):Lemma 1 For a simple closed curve C(p; � ) evolving according to:@@� C(p; � ) = N̂(p; � )where N̂ (p; � ) is a unit vector normal to the curve at (p; � ), the direction of the normal is a\conserved quantity", i.e. it does not change in time prior to shock formation.Proof. Let us prove that T� = @@�T (p; � ) = 0 and therefore N̂� = 0 , where T (p; � ) is aunit vector tangent to the curve at (p; � ). First we calculatehCp� ; N̂i = hCp� ; C� i = 12 @@phC� ; C� i = 12 @@phN̂ ; N̂i = 12 @@p 1 = 0:which means that Cp� has only a tangent component. Now@@� T = @@� CpjCpj = jCpjCp� � hCp ; Cp� iCpjCpjjCpj2 = Cp� � hT ; Cp� iTjCpj = 0:To conclude, given �(x; y; 0) as a distance map, one can calculate the \extended" curva-ture map �(x; y; 0) directly from �(x; y; 0) using Equation (6), then de�ne K(x; y; 0) usingEquation (8) and evolve the surface according to Equation (10).The 
ow �eld K(x; y; 0) su�ers from discontinuities along symmetry points (at the (x; y)locations of the ridges in the distance map). We have therefore smoothed the 
ow �eld byconvolving it with a Gaussian kernel. This smoothing also suppresses the e�ects of smallperturbations on the propagating curves. A reasonable assumption is that curvature valuesof the outline contour of shapes given on a pixel grid do not exceed the value of 2, i.e. acurvature radius of half a pixel. Hence, we limit K so that - jKj < 2 and set higher valuesto 2. This limit on jKj also allows us to maintain the C.F.L. condition without forcing veryshort time steps in the numerical approximation (see [14]).7



Propagating � for a short time �T , then computing the distance function D(x; y;�T ) ofeach point (x; y) on the plane, from the zero level set of �(x; y;�T ), it is possible to computethe new K(x; y;�T ) and proceed with the propagation:( �t = �K(x; y;�T )jr�j�(x; y;�T ) = D(x; y;�T ):Repeating the same procedure at t = 2�T; 3�T; ::: will enable monitoring of the stability ofthe evolution process while preserving consistency with the continuous case.The �rst step of the numerical approximation involves taking forward �nite di�erenceapproximation in time and the slope limiters [14, 18, 23] described below. For each timestep �t, we calculate �(n+1)i;j � �(i�x; j�y; (n+ 1)�t) to be:�(n+1)i;j = �ni;j ��tK(i; j; n) ((�x�ni;j)2 + (�y�ni;j)2)1=2 (13)where:(�x�ni;j)2 = 8><>: max( min(Dx+(i; j); 0)2 ; max(Dx�(i; j); 0)2 ) if K(i; j) > 0max( max(Dx+(i; j); 0)2 ; min(Dx�(i; j); 0)2 ) if K(i; j) � 0(�y�ni;j)2 = 8><>: max( min(Dy+(i; j); 0)2 ; max(Dy�(i; j); 0)2 ) if K(i; j) > 0max( max(Dy+(i; j); 0)2 ; min(Dy�(i; j); 0)2 ) if K(i; j) � 0and Dx+(i; j) = (�i+1;j � �i;j)=�xDx�(i; j) = (�i;j � �i�1;j)=�xDy+(i; j) = (�i;j+1 � �i;j)=�yDy�(i; j) = (�i;j � �i;j�1)=�yEquation (13) is a stable numerical approximation for the evolution given by Equation(10). We use Equation (13) with K(i; j; n) = K(i; j; 0). For K �xed in time, � does notremain a distance map while evolving. We therefore adjust it to be a distance map, withrespect to its zero-level-set, after every few iterations. Figure 4 demonstrates some curveexaggerations using this procedure with Equation (13).2.2 The generalized continuous caseEquation (4) de�nes the evolution law to be proportional to the initial curvature �(�). Inprinciple, �t can depend on any parameter derived from the data in f�(x; y; t)g. ThusEquation (4) can be generalized to:�t = f(�(x; y; t))jr�j 8



Figure 4: Exaggeration of several curves (original curves are at the left side). The evolvingcurves are sampled at times bn�tc=10, 30 and 50.9



We suggest an evolution law that controls the intensity of enhancement, using the followingobservation: Since �(x; y; t) is a distance map with respect to its zero-level-set, it followsthat if at time t0; �(x0; y0; t0) = 0 , then the point (x0; y0) is on the curve C(s; t0) and isexactly a distance of �(x0; y0; 0) away from the original curve C(s; 0). ReplacingK(x; y; 0) inEquation (10) by a `modi�ed'KG(x; y) that makes use of the above observation, the amountof enhancement can be controlled. For example, substituting K(x; y; 0) in Equation (10) by:KG = K(x; y; 0)(1 + �j�(x; y; 0)j�); � ; � � 0increases the enhancement e�ect, since KG(x;y)K(x;y;0) � 1 for all (x; y) and it increases as the point(x; y) departs from the initial curve. Figure 5 shows results obtained with the above KG.
(a) (b) (c)Figure 5: (a) Original curve, (b) Normal exaggeration (c) Enhanced exaggeration (� =0:6; � = 1). All evolutions are shown after bn�tc = 30 iterations.2.3 Simulating the polygonal caseFor curves given in a polygonal form we can use a discrete non-linear evolution rule analogueof the continuous case. Alternatively, a linear a�ne invariant evolution similar to the reverseGHE can be introduced by reversing the direction of the discrete smoothing transformationintroduced in [6] and discussed in [1, 2]. We will �rst derive the discrete analogue of thereverse GHE as given by Equation (3), then compare it with the suggested linear evolutionand show the relation between the two.2.3.1 Direct approximation of the reverse GHELet a polygonal contour be de�ned by its vertices, fPigMi=1. The discrete evolution analogueto the GHE shifts each vertex Pi = (xi; yi), according to:P (n+1)i = P (n)i + �(n)i � N̂ (n)i : (14)10



Exaggeration is achieved by inverting the direction of movement. That is:P (n+1)i = P (n)i � �(n)i � N̂ (n)i (15)Here P (n)i = (x(n)i ; y(n)i ) indicates the location of vertex i after n iterations, N̂ (n)i is a unitnormal to the curve at vertex i, de�ned as a unit vector in the direction of the bisector ofthat vertex and �(n)i is the curvature at vertex i de�ned in [1] as:�(n)i def= c � �extiwhere �exti is the external angle between the two edges, for which P (n)i is a common vertex,and c is a normalization factor. Figure 6 demonstrates polygon exaggeration using Equation(15).
(c)(b)(a)Figure 6: Polygon exaggeration. For each vertex of the initial polygon (a), the normal N̂ (n)iand curvature �(n)i are calculated. Then, (b) each vertex is moved in the direction of N̂ (n)iby a step proportional to �(n)i thus creating a caricature e�ect (c).2.3.2 Other A�ne and Euclidean approximations to the GHEIn [2] the following general smoothing operator is proposed:P (n+1)i = (1� �)P (n)i + ���P (n)i�1 + ��+P (n)i+1or, in matrix form:P (n+1) = MP (n) (16)where fP (n)i gNi=1 are the polygons N vertices after n iterations,M is an N by N matrix. For�� = �+ = 12 , this operator is circulant, linear and a�ne invariant. It evolves an arbitraryclosed polygon to a simple concave one, and �nally the polygon vanish to a point having anelliptic polygonal limiting shape (see proof in [1]). For �� = d+d++d� ; �+ = d�d++d� , whered� = jP (n)i � P (n)i�1j and d+ = jP (n)i+1 � P (n)i j are the two edge lengths, the evolution is11



nonlinear and Euclidean invariant. It smoothes shapes but may lead to non-elliptic limitingshapes.We achieve shape enhancement by inverting Equation (16). We may calculate the shiftfrom the original polygon to the smoothed one, (M � I)P (n), then move the vertex in theopposite direction:P (n+1) = (I � (M � I))P (n) = (2I �M)P (n) (17)The relation between the evolution given by Equation (14) and the evolution given byEquation (16) for the case �� = d+d++d� ; �+ = d�d++d� is readily derived. The reverseEquations (15) and (17), are similarly related. De�ning v̂� and v̂+ as unit vectors from P (n)i
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(v+)+(v-)Figure 7: The vectors v̂� and v̂+ are de�ned by the vertices: Pi�1; Pi and Pi+1. The dashedline indicates the bisector of Pi which coincides with the direction of the vector v̂� + v̂+.to P (n)i�1 and P (n)i+1 respectively , we haveP (n+1)i = (1 � �)P (n)i + ���P (n)i�1 + ��+P (n)i+1 == P (n)i + � � d+d+ + d� (P (n)i�1 � P (n)i ) + � � d�d+ + d� (P (n)i+1 � P (n)i )= P (n)i + � d+ � d�d+ + d� (v̂� + v̂+)= P (n)i + �(n)i � N̂ (n)iwhere �(n)i is the coe�cient multiplying the \normal" vector of vertex i after the n-thiteration. Note that v̂�+ v̂+ is indeed a vector in the direction of the bisector of the angle atvertex Pi which was the above de�ned \normal" to the polygon at Pi. We thus showed thatboth Equations (16) and (14) move the vertices in the direction of the bisector (see Figure7), but di�er in the amount of movement. Equation (16) propagate vertex i by �(n)i whileEquation (14) propagate it by �(n)i . Figures 8 - 10 show results obtained by applying thetwo evolution laws (Equations (16) and (17)) in their linear form (i.e. �� = �+ = 12).12



(a) Star after 0, 2, 10, and 20 iterations,
(b) Bunny after 0, 3, 30, and 300 iterations,

(c) Dino after 0, 5 and 500 iterations.Figure 8: Some examples of the smoothing evolution. (the scaling is di�erent in each image).Further iterations result in an in�ntesimal polygon of elliptic shape.13



(a) Star after 0, 2, 4 and 6 iterations,
(b) Bunny after 0, 4, 6, 8 iterations.

(c) Dino after 3, 6, 9 iterationsFigure 9: Some examples of the exaggerating evolution. (the scaling is di�erent in eachimage). After a few more iterations the polygons `explode'.14



Figure 10: A few more exaggeration examples15



3 Restrained EvolutionSo far we have de�ned several stable, yet non-converging, shape enhancing evolutions. Ap-plying the above evolution laws (in both continuous and polygonal simulations) for in�nitetime spans expands the initial curve to in�nity. In this section we de�ne evolution processesthat converge to steady-states. We introduce \imaginary strings" that connect the originalcurve with its evolving \image" so that each point on the evolving curve is attracted back toits initial position. For continuous curves, attraction forces between the original and evolv-ing � functions will implicitly restrain the evolution of the embedded curve. For polygonalapproximations of curves, a set of strings binding each vertex of the original polygon withthe corresponding vertex in the evolving polygon will create the desired attraction. Thecondition for the existence of steady-states, and an explicit formula for the steady-state inthe polygonal case are given.3.1 Restraining continuous curve evolutionWe modify Equation (10) so as to include attraction forces between the initial distance map�(x; y; 0) and the evolving one, �(x; y; t):�t = �K(x; y; 0) � jr�j � � � (�(x; y; t)� �(x; y; 0)); � > 0 (18)The �rst term is the basic evolution force as de�ned in Equation (10). The second termde�nes attraction forces proportional to the deviation of the evolving map from the initialone and directed towards the initial map. This way, parts that do not evolve rapidly aremostly in
uenced by the basic evolution while rapidly evolving parts are exposed to in-creasing attraction forces that impede their deviation from the original curve. Initialy, forsmall t's, �(x; y; t) �= �(x; y; 0) , and Equation (18) looks like Equation (10). As t increases,the restraining term becomes more and more in
uential. For large �, the attraction forcesincrease rapidly and the deviation of �(x; y; t) from its initial shape �(x; y; 0) is strongly re-strained. Di�erent choices of � = �(x; y; t) de�ne di�erent evolution laws thereby controllingthe evolution of the curve and its steady-state (if it exists). For � ! 0 the attraction elementvanishes. As with the unrestrained evolution, �(x; y; t) does not remain a distance map whileevolving. We therefore adjust is to be a distance map, with respect to its zero-level-set, afterevery few iterations.The problem of �nding when does �(x; y; t) evolve to a steady state remains yet to besolved. If however there exists a steady-state solution �(1)(x; y) to Equation (18), with �adjusted to remain a distance map with respect to its zero-level-set during the evolution,then it must satisfy:( jr�j = 1 ;�t = 0 : 16



Thus, from Equation (18) the steady-state can be expressed in terms of the initial conditions:�(1)(x; y) = limt!1 �(x; y; t) = �(x; y; 0)� K(x; y; 0)�(x; y) : (19)In general, � can be a function of any parameters derived from �(x; y; t) (such as localcurvature). For � / 1local curvature , low-curvature parts of the curve are restrained to theirinitial position while high-curvature parts depart rapidly from the original curve.Figure 11 shows an example of restrained evolution using Equation (18) compared withthe unrestrained evolution using Equation (10).3.2 Restraining polygon evolutionsIn the polygonal case, the attraction forces are assumed to act at each vertex. As before,let fP 0i gNi=1 de�ne the initial polygon and let fP ni gNi=1, be the evolved versions at discretetime steps n = 1; 2; ::: , the evolution being governed by Equation (16). We introduce Nattracting strings so that string (i) is attached on one side to the evolving vertex P ni and onthe other side to the initial vertex P 0i , and has an elasticity constant of �i. The attractionforce will be proportional to the distance of the evolving vertex from its original position.Adding these restraining forces to the smoothing evolution Equation (16) we arrive at anevolution of the form:P (n+1)i = (1� �) � P (n)i + ���P (n)i�1 + ��+P (n)i+1 + �i � (P (0)i � P (n)i );or in a matrix form:P (n+1) = MP (n) +B � (P (0) � P (n)): (20)In a similar way, the reversed (exaggerating) evolution is given byP (n+1) = (I � (M � I))P (n) +B � (P (0) � P (n)): (21)The last term in Equations (20) and (21) is the restraining force. B is an N �N diagonalmatrix: B = diag(�0; :::; �N). We are particularly interested in diagonal matrices withelements related to the curvature at each vertex. Figure 12 shows an example of restrainedevolution using Equation (21) compared with unrestrained evolution using Equation (17).We shall next derive conditions for the convergence of the evolving polygon to a steady-state polygonal shape and explicitly express the steady-state for the linear case.3.2.1 Terms of convergence for the restrained linear smoothing lawTheorem 1 Given the polygon smoothing equation:P (n+1) = MP (n) +B(P (0) � P (n)); (22)17



(a) Unrestrained continuous evolution after 0, 30, 60, 120 iterations.
(b) Restrained continuous evolution after 0, 30, 60, 120 iterations, with restraining factor:�0 = 0:001K(x;y;t) .

(c) Restrained continuous evolution, all after 120 iterations, with restraining factors:0:75�0; �0; 2�0 and 4�0.Figure 11: Restrained versus unrestrained evolutions - the continuous case.18



(a) Elephant after 0, 10, 30 and 100 unrestrained iterations (The \exploding" polygons aredown scaled).(b) Elephant after 0, 10, 30 and 100 restrained iterations.Figure 12: Restrained versus unrestrained evolutions - the polygonal case.where: P (n) is an N-element vector of the polygon's coordinates after n iterations (in com-plex notation), M is an N � N circulant matrix with �rst row de�ned as M1;(�) = f1 ��;�=2; 0; :::; 0; �=2g, and B = diag(�0; :::; �N) where �i are the restraining coe�cients, sothat 0 < �i < 2(1 � �) ; 8 0 � i � N � 1 , there exists a steady-state polygon de�ned by:P (1) = limn!1P (n) = (I �M +B)�1BP (0): (23)Proof. Following P (n)'s evolution we obtain:P (1) = Qz }| {(M �B)P (0) +BP (0) = QP (0) +BP (0)P (2) = (M �B)P (1) +BP (0) = Q2P (0) +BQP (0)+BP (0)...P (n) = (M �B)P (n�1) +BP (0) = "Qn +B n�1Xi=0 Qi#P (0) (24)Therefore, P (1) exists if and only if the right side of Equation (24) is �nite. We now utilizethe following Lemmas, as stated in [10]:Lemma 2 Let A be a given n by n matrix. If there is a matrix norm jjj � jjj such thatjjjAjjj < 1 , then limk!1 Ak = 0; that is, all the entries of Ak tend to zero as k !1. (see[10], page 298) 19



Lemma 3 An n by n matrix A is invertible if there is a matrix norm jjj � jjj such thatjjjI �Ajjj < 1. If this condition is satis�ed, then:A�1 = 1Xk=0(I �A)k(see [10], page 301)From the above it follows that if there exists a matrix norm jjj � jjj, such that jjjAjjj < 1, then:1Xl=0Al = (I �A)�1limk!1Ak = 0Evolving via Equation (24), P (n) converges to a �nite limit polygon, P (1), which can bedirectly computed using the initial conditions. We shall next derive this relation.Using the jjj � jjj1 norm, de�ned as follows:jjjAjjj1 def= max1�i�n nXj=1 jaijj;we readily have thatjjjQjjj1 = jjjM �Bjjj1 = maxi (j1� � � �ij+ j�j) < 1since 0 � � � 1 we need to satisfyj1� �� �ij < 1� ��1 + � < 1� �� �i < 1� �) 0 < �i < 2(1 � �) 8iWe have thus found a class of B matrices for which the smoothing evolution converges to asteady state polygon. If there exists a steady-state polygon, P (1), then by Equation (22):P (1) = QP (1) +BP (0)) P (1) = (I �Q)�1BP (0) = (I �M +B)�1BP (0) (25)Thus, P (1) can be calculated explicitly using the initial polygon.20



3.2.2 Terms of convergence for the restrained linear exaggeration lawFor the exaggeration evolution law, terms for convergence and the steady-state polygon cansimilarly be de�ned.Theorem 2 Given the polygon exaggeration evolution:P (n+1) = (2I �M)P (n) +B(P (0) � P (n)); (26)so that 2� < �i < 2 ; 8 0 � i � N � 1 , there exists a steady-state polygon given by:P (1) = limn!1P (n) = (M +B � I)�1BP (0): (27)Proof. Following P (n) evolution, given by Equation (26), we obtain:P (1) = Vz }| {(2I �M �B)P (0) +BP (0) = V P (0) +BP (0)P (2) = (2I �M �B)P (1) +BP (0) = V 2P (0) +BV P (0) +BP (0)...P (n) = (2I �M �B)P (n�1) +BP (0) = "V n +B n�1Xi=0 V i#P (0) (28)Using the jjj � jjj1 norm, we have:jjjV jjj1 = jjj2I �M �Bjjj1 = maxi (j2� �i � (1 � �)j + 2j�2 j) < 1:Since 0 � � � 1 we need to satisfyj2� �i � (1 � �)j < 1 � ��1 + � < 1 + �� �i < 1 � �) 2� < �i < 2 8iIf this su�cient condition is satis�ed, then there exists a steady-state polygon, P (1), givenby Equation (26):P (1) = V P (1) +BP (0)) P (1) = (I � V )�1BP (0) = (M +B � I)�1BP (0) (29)We have thus found su�cient conditions for the existence of a steady-state polygon andexpressed it explicitly using the initial polygon.For the linear polygonal case, we have found the terms for convergence to a steady-state polygon, as well as de�ning the steady-state polygon in terms of the initial polygonand the restraining matrix B. Figures 13 , 14 demonstrate these results. Starting with aninitial polygon, we arbitrarily use its perimeter to characterize its evolution in time. When21
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�Figure 14: Restrained exaggeration convergence for di�erent bounding forces. The ratiobetween the perimeter of the evolving polygon and the initial one is given for di�erent valuesof B = �I. The `star' line is a result of 1,000 iterations with the restrained evolution law. Theother line is the steady-state result. In the convergence range, 2� < � < 2; (� = 0:25) , thetwo are identical. Outside the convergence range, the polygon `explodes' to in�nite perimeterand does not reach a steady-state. 23



P (1) exists, the ratio between the initial polygon's perimeter and that of the steady-statecharacterizes the amount of change the polygon had gone. If P (1) does not exist, the polygon`explodes', sending the perimeter towards in�nity. Figure 13 shows the di�erence betweenthe unrestrained evolution and the restrained one, the latter approaches the steady-statesolution as n ! 1. Figure 14 shows the ratio perimeter(P (1))perimeter(P (0)) as a function of � resultingfrom the smoothing evolution with di�erent restraining matrices of the type B = �I. Thecontinuous line is calculated directly from the steady-state polygon as given by Equation (27)while the `star'-line use the perimeter of the polygon after 1,000 iterations with Equation(26). For 2� < � < 2, both the explicit evolution and the steady-state polygon yield thesame result. Outside the convergence range of �, the evolving polygon explodes and doesnot reach a steady-state. The explicit evolutions yield extremely high perimeter after 1,000iterations. Hence in this case steady-state is not reached.4 ConclusionsThe reverse GHE can be used to enhance features in planar curves. For a given initial curve,known to have been distorted by a smoothing operation (such as blurring), evolution usingthe reverse GHE for short times can approximately restore it. Longer time evolution willfurther enhance the curve yielding an exaggeration e�ect. For continuous curves, the level-set Eulerian formulation [16] was utilized and a generalization of the reverse GHE, whichenables control over the intensity of exaggeration, was introduced, leading to suppressed orenhanced exaggeration. For polygonal shapes, two di�erent evolution laws were explored.One derived directly from the continuous GHE, the second being a discrete approximationof the GHE given by [2]. The relation between the two was shown and, in the linear case,conditions for convergence to a steady-state polygon were explicitly derived, as well as aclosed form formula for the steady-state polygon itself.Using our approach, planar curves are exaggerated using only their intrinsic features,without a-priori knowledge on their classi�cation and with no need for further information.This is an advantage over previously stated exaggeration methods which require such knowl-edge. We introduced tools to control the parameters of the exaggeration, and in some casesallow the evolution to converge to a well de�ned steady-state curve.5 AcknowledgmentWe would like to thank Yaacov Farkash (Zeev), a leading Israeli professional caricaturist, forhis helpful caricature demonstrations, Asher Koriat from Haifa University, for his suggestionson caricaturization heuristics, and Michael Elad and Doron Shaked from the Technion, forsuggesting and sharing fruitful ideas with us.This work was supported in part by the Ollendor� Center Research Fund and by the Fund24



for Promotion of Research at the Technion.This paper is available at: ftp.technion.ac.il (login: anonymous)under: /pub/supported/ee/Vision/exaggeration TR977.psReferences[1] A. M. Bruckstein, G. Sapiro, D. Shaked, \Evolutions of Planar Polygons", Technion -CIS Report #9202 (2nd Revision), April 1993. (To appear in the International Journalof Pattern Recognition).[2] A. M. Bruckstein and D. Shaked, \On Projective Invariant Smoothing and Evolutionsof Planar Curves and Polygons", Technion - CIS Report #9328, November 1993.[3] A. M. Bruckstein, \Analyzing and Synthesizing Images by Evolving Curves", Proc. ofICIP'94 Austin Texas, Nov. 1994.[4] S. E. Brennan, \Caricature Generator", M.Sc. Thesis, MIT (1982).[5] S. E. Brennan, \Caricature Generator: The Dynamic Exaggeration of Faces by Com-puter", Leonardo, Vol. 18, No. 3, pp. 170-178 (1985).[6] M. G. Darboux, \Sur un probleme de geometrie elementaire", Bulletin Sci. Math 2, pp.298-304 (1878).[7] M. Gage and R. S. Hamilton, \The Heat Equation Shrinking Convex Plane Curves", J.Di�erential Geometry, 23, pp. 69-96 (1986).[8] M. Grayson, \The Heat Equation Shrinks Embedded Plane Curves to Round Points",J. Di�erential Geometry, 26, pp. 285-314 (1987).[9] M. Grayson, \Shortening embedded curves", Annals of Mathematics, 129, pp. 71-111(1989).[10] R. A. Horn and C. J. Johnson, \Matrix Analysis", Cambridge University Press, 1985.[11] M. Kass, A. Witkin and D. Torsopolos, \Snakes: Active Contour Models", InternationalJ. of Computer Vision, pp. 321-331 (1988).[12] R. Kimmel and A.M. Bruckstein, \Shape from Shading via Level-Sets" CIS Report#9209. Center for Intelligent systems, Technion, June 1992.[13] R. Kimmel and A.M. Bruckstein, \Shape O�sets via level sets" CAD, 25(5): 154-162,March 1993.[14] R.J. LeVeque, \Numerical Methods for Conservation Laws", (2nd Edition) Lectures inMathematics, ETH Zurich, Birkh�auser Verlag, Basel (1992).25



[15] R. Malladi and J. A. Sethian, \A uni�ed Framework for Shape Segmentation, Repre-sentation, and Recognition", LBL-36039, Lawrence Berkely Laboratory, UC-Berkely,August 1994.[16] S. J. Osher and J. A. Sethian, \Fronts Propagating with Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations", J. Comp. Phys., Vol. 79, pp.12-49 (1988).[17] S. J. Osher and L. Rudin, \Feature-oriented image enhancement using shock �lters",SIAM J. Numerical Anal., Vol. 27, pp. 919-940 (1990).[18] E. Rouy and A. Tourin, \A viscosity solutions approach to shape-from-shading", SIAMJ. Numerical Anal., Vol. 29, No. 3, pp. 867-884, June 1992.[19] J. A. Sethian, \Curvature and the Evolution of Fronts", Comm. in Math. Physics, Vol.101, pp. 487-499, (1985).[20] J. A. Sethian and J. Strain, \Crystal Growth and Dendritic Solidi�cation", J. of Comp.Physics, 98, (1991).[21] G. Sapiro and A. Tannenbaum, \A�ne Invariant Scale-Spaces", International J. ofComputer Vision 11:1, pp. 25-44, 1993.[22] A. Steiner, \Shape Exaggeration", M.Sc. Thesis, Technion - Israel Institute of Technol-ogy, Faculty of Elec. Eng. (to appear by October 1995).[23] M. Sussman, P. Smereka and S. Osher, \A Level Set Approach for Computing Solutionsto Incompressible Two-Phase Flow" UCLA Comp. and Applied Mathematics, CAMReport 93-18 (June 1993).[24] A. Yuille, D. Cohen and P. Hallinan, \Feature Extraction from Faces Using DeformableTemplates" CVPR (1989), pp. 104-109.
26


