
Demosaicing:Image Reconstruction from Color CCD SamplesRon Kimmel1?Computer Science Department, Technion, Haifa 32000, IsraelAbstract. A simpli�ed color image formation model is used to con-struct an algorithm for image reconstruction from CCD sensors samples.The proposed method involves two successive steps. The �rst is moti-vated by Cok's [1] template matching technique, while the second stepuses steerable inverse di�usion in color. Classical linear signal processingtechniques tend to over smooth the image and result in noticeable colorartifacts along edges and sharp features. The question is how shouldthe di�erent color channels support each other to form the best possiblereconstruction. Our answer is to let the edges support the color infor-mation, and the color channels support the edges, and thereby achievebetter perceptual results than those that are bounded by the samplingtheoretical limit.Keywords: Color enhancement, Multi channel image reconstruction, Steer-able inverse di�usion, Non linear image processing.1 IntroductionIn recent years, digital cameras for still images and movies became popular.There are many obvious advantages to digital images comparing to classical�lm based cameras, yet there are limitations as well. For example, the spatialresolution is limited due to the physical structure of the sensors. `Super resolu-tion' beyond the sensors resolution can be achieved by considering a sequence ofimages.In this note we deal with the reconstruction of a single color digital imagefrom its color CCD sensors' information. We limit our discussion to Bayer color�lter array (CFA) pattern as presented in Figure 1. We will start with a simplecolor image formation model and explore the relation between the di�erent colorchannels such that the channels support the edges, and the edges support thecolors. This relation with a simple color image formation model enables a recon-struction beyond the linear optimal signal processing approach that is limitedby the Nyquist sampling rate.? Part of this work was done while the author was a postdoctoral fellow at LBNL, andMath Dept. UC Berkeley, and supported in part by the OER Applied MathematicsSubprogram under DE-AC03-76SFOOO98, and ONR grant under NOOO14-96-1-0381.
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B B B BFig. 1. Bayer CFA (color �lter array) pattern (US Patent 3,971,065, 1976). [This is acolor �gure]We follow Cok's [1] exposition for constructing the �rst step of the algo-rithm: The reconstruction stage. The Green component is reconstructed �rstwith the help of the Red and Blue gradients. Then the Red and Blue are re-constructed using the Green values, edge approximations, and a simple colorratio rule: Within a given `object' the ratio Red=Green is locally constant (thesame is true for Blue=Green). This rule falls apart across edges where the colorgradients are high, which are the interesting and problematic locations from ourreconstruction point of view.Next the Green, Red, and Blue pixels are adjusted to �t the color cross ratioequivalence. The interpolation and the adjustment are weighted by a functionof the directional derivatives to reduce the inuence of ratios across edges. Thisis the main di�erence from Cok's [1] method, who try to match templates thatpredict the local structure of the image for a bilinear interpolation.The second step, the enhancement stage, involves an anisotropic inverse dif-fusion ow in color space, which is an extension of Gabor`s geometric �lter [6],and is based on the geometric framework for color introduced in [11, 8]. It isalso related to Weickert's texture enhancement method [12], and to the recentresults of Sapiro and Ringach [10], and Cottet and El Ayyadi [2]. The idea isto consider the color image as a two dimensional surface in 5D (x; y;R;G;B)space, extract its induced metric and smooth the metric in order to sense thestructure of the image surface beyond the local noise. Then di�use the di�erentchannels along the edges and simultaneously enhance the image by applying an`inverse heat' operator across the edges.The structure of this note is as follows: Section 2 introduces a simple modelfor color images. Next, Section 3 uses this model for the reconstruction of a1D image. Section 4 presents the �rst step of the algorithm, the reconstructionstage, that involves weighted interpolation subject to constant cross ratio of thespectral channels. Section 5 presents the second step of the algorithm. It is a



non linear enhancement �lter based on steerable anisotropic inverse di�usionow in color space. Section 5 concludes with experimental results on a set ofbenchmark images. Some of the techniques we present were developed as a resultof discussions with Prof. J.A. Sethian from UC Berkeley, and with Dr. Y. Hel-Orfrom HP Labs Israel.2 A Simple Color Image Formation ModelA simpli�ed model for color images is a result of viewing Lambertian non atsurface patches. Such a scene is a generalization of what is known as a `Mondriaanworld'. According to the model, each channel may be considered as the projectionof the real 3D world surface normal N̂(x) onto the light source direction l,multiplied by the albedo �(x; y). The albedo captures the characteristics of the3D object's material, and is di�erent for each of the spectral channels. That is,the 3 color channels may be written asIR(x) = �R(x)N̂(x) � lIG(x) = �G(x)N̂(x) � lIB(x) = �B(x)N̂(x) � l: (1)This means that the di�erent colors capture the change in material via �i (where istands for R;G;B) that multiplies the normalized shading image ~I(x) = N̂(x) �l. The Mondriaan color image formation model [4] was used for color basedsegmentation [7] and shading extraction from color images [5]. Let us follow theabove generalization of this model and assume that the material, and thereforethe albedo, are the same within a given object in the image, e.g. �i(x) = ci,where ci is a given constant. Thus, within the interior of a given object thefollowing constant ratio holds:Ii(x)Ij(x) = �i(x)~I(x)�j(x)~I(x) = �i(x)�j(x) = cicj = constant: (2)That is, the color ratio within a given object is constant. We note, that this isan oversimpli�ed assumption for general analysis of color images. However, itslocal nature makes it valid and useful for our technological purpose.3 The 1D CaseLet us start with a simple 1D example with two colors, see Fig. 2. Our assumptionis that the colors are smooth within a given object and go through a sudden jumpat the boundaries. De�ne the central di�erence approximation to be DxIi �Ii+1�Ii�1�x , where Ii � I(i�x) is the value of the function I(x) at the pointx = i�x, and �x is the spatial discretization interval.Given the samples (odd points for the Red and even points for the Green)we use the gradient to construct an edge indicator for the interpolation. Let the



0 1 2 4 5 6 7 83

Object 1 Object 2

R

GFig. 2. The Red and Green components of a 1D image.edge indicator be egi = f(DxGi), where f(�) is a decreasing function, e.g. egi =(1 + (DxGi)2)�1=2, and respectively eri . One simple reconstruction procedure isas follows:{ Init: Interpolate for the Green at the missing pointsGi = eri�1Gi�1 + eri+1Gi+1eri�1 + eri+1 :{ Repeat for 3 times:{ Interpolate the Red values via the ratio rule weighted by the edge indicatorRi = Gi egi�1Ri�1Gi�1 + egi+1 Ri+1Gi+1egi�1 + egi+1 :{ Correct the Green values to �t the ratio ruleGi = Ri eri�1Gi�1Ri�1 + eri+1Gi+1Ri+1eri�1 + eri+1 :{ End of loop.Note that this is a numerically consistent procedure for the proposed colorimage formation model. It means that as the sampling grid is re�ned, the resultconverges to the continuous solution.Here, again we recognize the importance of segmentation in computer vision.An accurate segmentation procedure, that gives the exact locations of the objectsboundaries, would have allowed an image reconstruction far beyond the samplinglimit (under the assumption that within a given object there are no high spatialfrequencies).



4 First Step: ReconstructionFor real 2D images with three color channels the reconstruction is less trivial.Edges now become curves rather than points, and in many cases one needs tointerpolate missing points along the edges. We would still like to avoid interpo-lating across edges.Based on the simpli�ed color image formation model, the three channels gothrough a sudden jump across the edges. Thus, the gradient magnitude can beused as an edge indicator, and its direction can approximate the edge direction(it is easy to verify that the gradient rG is normal to the level set curves ofG(x), i.e. G(x) = const:)The directional derivatives are approximated at each point based on its 8nearest neighbors on the grid. De�ne the �nite di�erence approximation for thedirectional derivatives, central D, forward D+, and backwards D�, as follows:8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
DxGi;j = Gi+1;j�Gi�1;j2�x + DyGi;j = Gi;j+1�Gi;j�12�y +Dx0Gi;j = Gi+1;j+1�Gi�1;j�12p�x2+�y2 + Dy0Gi;j = Gi�1;j+1�Gi+1;j�12p�x2+�y2 +D+x0Gi;j = Gi+1;j+1�Gi;jp�x2+�y2 + D�x0Gi;j = Gi+1;j+1�Gi;jp�x2+�y2 +D+y0Gi;j = Gi�1;j+1�Gi;jp�x2+�y2 + D�y0Gi;j = Gi;j�Gi+1;j�1p�x2+�y2 +

(3)At the Green points use maxfjD+x0Gi;jj; jD�x0Gi;jjg for the magnitude of the di-rectional derivative along the x0 direction (and similarly for y0). For the rest ofthe points and the x and y directions use central di�erences. We thereby con-struct an approximation for the directional derivatives at each and every point.Denote these approximations as Dxij; Dyij ; Dx0ij; and Dy0ij , respectively.Next, we generalize an edge indicator function. When a point at location((i+1)�x; j�y) is taking part in the interpolation at the (i�x; j�y) location, weuse the following weight as an edge indicator: ei+1;jij = (1+Dxij2+Dxi+1;j2)�1=2Based on the edge indicators as weights for the interpolation we follow similarsteps as for the 1D case to reconstruct the 2D image:{ Init: Interpolate for the Green at the missing pointsGij = ei�1;jij Gi�1;j + ei+1;jij Gi+1;j + ei;j�1ij Gi;j�1+ ei;j+1ij Gi;j+1ei�1;jij + ei+1;jij + ei;j�1ij + ei;j+1ij :



Interpolate for the Blue and Red in two steps.Step 1 (interpolate missing Blue at Red locations) :Bij = Gij ei+1;j+1ij Bi+1;j+1Gi+1;j+1 + ei�1;j�1ij Bi�1;j�1Gi�1;j�1 + ei�1;j+1ij Bi�1;j+1Gi�1;j+1 + ei+1;j�1ij Bi+1;j�1Gi+1;j�1ei+1;j+1ij + ei�1;j�1ij + ei�1;j+1ij + ei+1;j�1ij :Step 2 (interpolate at the rest of the missing Blue points):Bij = Gij ei+1;jij Bi+1;jGi+1;j + ei�1;jij Bi�1;jGi�1;j + ei;j+1ij Bi;j+1Gi;j+1 + ei;j�1ij Bi;j�1Gi;j�1ei+1;jij + ei�1;jij + ei;j+1ij + ei;j�1ij :Interpolate the Red with two similar steps.{ Repeat for 3 times:{ Correct the Green values to �t the ratio ruleGBij = Bij(ei+1;jij Gi+1;jBi+1;j + ei�1;jij Gi�1;jBi�1;j + ei;j+1ij Gi;j+1Bi;j+1 + ei;j�1ij Gi;j�1Bi;j�1+ei+1;j+1ij Gi+1;j+1Bi+1;j+1 + ei�1;j�1ij Gi�1;j�1Bi�1;j�1 + ei�1;j+1ij Gi�1;j+1Bi�1;j+1 + ei+1;j�1ij Gi+1;j�1Bi+1;j�1 )=(ei+1;jij + ei�1;jij + ei;j+1ij + ei;j�1ij + ei+1;j+1ij + ei�1;j�1ij + ei�1;j+1ij + ei+1;j�1ij ): (4)and average between the Blue and Red interpolation resultsGij = GBij +GRij2 :{ Correct the Blue and Red values via the ratio rule weighted by the edgeindicatorBij = Gij(ei+1;jij Bi+1;jGi+1;j + ei�1;jij Bi�1;jGi�1;j + ei;j+1ij Bi;j+1Gi;j+1 + ei;j�1ij Bi;j�1Gi;j�1+ei+1;j+1ij Bi+1;j+1Gi+1;j+1 + ei�1;j�1ij Bi�1;j�1Gi�1;j�1 + ei�1;j+1ij Bi�1;j+1Gi�1;j+1 + ei+1;j�1ij Bi+1;j�1Gi+1;j�1 )=(ei+1;jij + ei�1;jij + ei;j+1ij + ei;j�1ij + ei+1;j+1ij + ei�1;j�1ij + ei�1;j+1ij + ei+1;j�1ij ): (5){ End of loop.Up to this point, the original values given as samples were not modi�ed.We have interpolated the missing points weighted by edge indicator functionssubject to the constant cross ratio. Next, we apply inverse di�usion in color tothe whole image as an enhancement �lter.



x

y

I

max{dR +dG +dB }2 2 2

Diffusion
-DiffusionFig. 3. The Red and Green components painted as surfaces in x; y; I with the inversedi�usion (across the edge) and di�usion (along the edge) directions.5 Second Step: EnhancementThis section is a brief description of one of the non linear �lters introducedin [8] that we apply as a second step for enhancing the color image.In [6], Gabor considered an image enhancement procedure based on an anisotropicow via the inverse second directional derivative in the `edge' direction and thegeometric heat equation as a di�usion along the edge, see also [9]. Cottet and Ger-main [3] used a smoothed version of the image to direct the di�usion. Weickert[12] smoothed the `structure tensor' rIrIT and then manipulated its eigenval-ues to steer the smoothing direction, while Sapiro and Ringach [10] eliminatedone eigenvalue from the structure tensor in color space without smoothing itscoe�cients.Motivated by all of these results, a new color enhancement �lter was intro-duced in [8]. The inverse di�usion and di�usion directions are deduced from thesmoothed metric coe�cients g�� of the image surface. The color image is con-sidered as a 2D surface in the 5D (x; y;R;G;B) space, as suggested in [11]. Theinduced metric coe�cients are extracted for the image surface and used as anatural structure tensor for the color case.The induced metric (g��) is a symmetric matrix that captures the geometryof the image surface. Let �1 and �2 be the largest and the smallest eigenvalues of(g��), respectively. Since (g��) is a symmetric positive matrix its correspondingeigenvectors u1 and u2 can be chosen orthonormal. Let U � (u1ju2), and � ���1 00 �2�, then we readily have the equality(g��) = U�UT : (6)Note also that(g��) � (g��)�1 = U��1UT = U �1=�1 00 1=�2�UT ; (7)and that g � det(g��) = �1�2: (8)



Let us use the image metric as a structure tensor. We extract the structurefrom the metric (g��) and then modify it to be a non-singular symmetric matrixwith one positive and one negative eigenvalues. That is, instead of di�usionwe introduce an inverse di�usion in the edge direction. This is an extension ofGabor's idea [6] of inverting the di�usion along the gradient direction, see Fig.3. The proposed inverse di�usion enhancement for color images is then givenas follows:1. Compute the metric coe�cients g��.g�� = ��� + Xk=fR;G;Bg Ik�Ik� : (9)or explicitly(g��) = 0@ 1 +R2x +G2x +B2x RxRy +GxGy + BxByRxRy +GxGy +BxBy 1 +R2y +G2y + B2y 1A (10)2. Di�use the g�� coe�cients by convolving with a Gaussian of variance �,thereby ~g�� = G� � g�� : (11)Where G� = e�(x2+y2)=�2 .3. Change the eigenvalues of (~g��) such that the largest eigenvalue �1 is now�1 = ���1 and �2 = �, for some given positive scalar � < 1. This yields anew matrix ĝ�� that is given by:(ĝ��) = ~U ����1 00 �� ~UT = ~U�� ~UT : (12)A single scalar � is chosen for simplicity of the presentation. Di�erent eigen-values can be chosen, like eigenvalues that depend on the original ones.The important idea is to set the original largest eigenvalue to a negativevalue. This operation inverts the di�usion direction across the color edgeand thereby enhance it.4. Evolve the k-th channel via the ow:Ikt = @�ĝ��@�Ik= div� ~U ��� 00 ��1� ~UTrIk� : (13)Inverting the heat equation is an inherently unstable process. However, if wekeep smoothing the metric coe�cients, and apply the di�usion along the edge(given the positive eigenvalue), we get a coherence-enhancing ow that yieldssharper edges and is stable for a short duration of time.



Experimental ResultsWe tested the proposed method on four benchmark images that were sampledwith Bayer color �lter array pattern. The following examples demonstare the re-construction and enhancement results for four benchmark images: Statue, Sails,Window, and Lighthouse. For each case, the top left is the original image. As areference we present the result of a bilinear interpolation for the missing pointsfor each channel separately at the top right. The bottom left is the result ofthe �rst reconstruction by weighted interpolation step, and the bottom right isthe second step enhancement result. These are color images, and for a bettercolor view we refer to www.lbl.gov/�ron. The same parameters were used forthe reconstruction in all the examples, i.e. case dependent tuning was not usedfor the di�erent images.AcknowledgmentsI am grateful to Prof. James Sethian for the helpful discussions, and to Dr. YacovHel-Or for introducing the problem, the helpful discussions that followed, andsupplying the color benchmark images.References1. D R Cok. Reconstruction of CCD images using template matching. In Proc. ofIS&T's Annual Conference/ICPS, pages 380{385, 1994.2. G H Cottet and M El Ayyadi. A Volterra type model for image processing. IEEETrans. on IP, to appear, 1997.3. G H Cottet and L Germain. Image processing through reaction combined withnonlinear di�usion. Math. Comp., 61:659{673, 1993.4. P T Eliason, L A Soderblom, and P S Chavez. Extraction of topographic and spec-tral albedo information from multi spectral images. Photogrommetric Engineeringand Remote Sensing, 48:1571{1579, 1981.5. B V Funt, M S Drew, and M Brockington. Recovering shading from color images.In G Sandini, editor, Lecture Notes in Computer Science, 588, Computer Vision:ECCV'92, pages 124{132. Springer-Verlag, 1992.6. D Gabor. Information theory in electron microscopy. Laboratory Investigation,14(6):801{807, 1965.7. G Healey. Using color for geometry-insensitive segmentation. J. Opt. Soc. Am. A,6:920{937, 1989.8. R Kimmel, R Malladi, and N Sochen. Image processing via the beltrami operator.In Proc. of 3-rd Asian Conf. on Computer Vision, Hong Kong, January 1998.9. M Lindenbaum, M Fischer, and A M Bruckstein. On Gabor's contribution to im-age enhancement. Pattern Recognition, 27(1):1{8, 1994.10. G Sapiro and D L Ringach. Anisotropic di�usion of multivalued images with ap-plications to color �ltering. IEEE Trans. Image Proc., 5:1582{1586, 1996.11. N Sochen, R Kimmel, and R Malladi. A general framework for low level vision.IEEE Trans. on Image Processing, to appear, 1997.12. J Weickert. Anisotropic di�usion in image processing. Ph.D. thesis, KaiserslauternUniv., Kaiserslautern, Germany, November 1995.
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