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Abstract. A simplified color image formation model is used to con-
struct an algorithm for image reconstruction from CCD sensors samples.
The proposed method involves two successive steps. The first is moti-
vated by Cok’s [1] template matching technique, while the second step
uses steerable inverse diffusion in color. Classical linear signal processing
techniques tend to over smooth the image and result in noticeable color
artifacts along edges and sharp features. The question is how should
the different color channels support each other to form the best possible
reconstruction. Our answer is to let the edges support the color infor-
mation, and the color channels support the edges, and thereby achieve
better perceptual results than those that are bounded by the sampling
theoretical limit.
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1 Introduction

In recent years, digital cameras for still images and movies became popular.
There are many obvious advantages to digital images comparing to classical
film based cameras, yet there are limitations as well. For example, the spatial
resolution is limited due to the physical structure of the sensors. ‘Super resolu-
tion’ beyond the sensors resolution can be achieved by considering a sequence of
images.

In this note we deal with the reconstruction of a single color digital image
from its color CCD sensors’ information. We limit our discussion to Bayer color
filter array (CFA) pattern as presented in Figure 1. We will start with a simple
color image formation model and explore the relation between the different color
channels such that the channels support the edges, and the edges support the
colors. This relation with a simple color image formation model enables a recon-
struction beyond the linear optimal signal processing approach that is limited
by the Nyquist sampling rate.
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Fig.1. Bayer CFA (color filter array) pattern (US Patent 3,971,065, 1976). [This is a
color figure]

We follow Cok’s [1] exposition for constructing the first step of the algo-
rithm: The reconstruction stage. The Green component is reconstructed first
with the help of the Red and Blue gradients. Then the Red and Blue are re-
constructed using the Green values, edge approximations, and a simple color
ratio rule: Within a given ‘object’ the ratio Red/Green is locally constant (the
same is true for Blue/Green). This rule falls apart across edges where the color
gradients are high, which are the interesting and problematic locations from our
reconstruction point of view.

Next the Green, Red, and Blue pixels are adjusted to fit the color cross ratio
equivalence. The interpolation and the adjustment are weighted by a function
of the directional derivatives to reduce the influence of ratios across edges. This
is the main difference from Cok’s [1] method, who try to match templates that
predict the local structure of the image for a bilinear interpolation.

The second step, the enhancement stage, involves an anisotropic inverse dif-
fusion flow in color space, which is an extension of Gabor‘s geometric filter [6],
and is based on the geometric framework for color introduced in [11, 8]. Tt is
also related to Weickert’s texture enhancement method [12], and to the recent
results of Sapiro and Ringach [10], and Cottet and El Ayyadi [2]. The idea is
to consider the color image as a two dimensional surface in 5D (z,y, R, G, B)
space, extract its induced metric and smooth the metric in order to sense the
structure of the image surface beyond the local noise. Then diffuse the different
channels along the edges and simultaneously enhance the image by applying an
‘inverse heat’ operator across the edges.

The structure of this note is as follows: Section 2 introduces a simple model
for color images. Next, Section 3 uses this model for the reconstruction of a
1D image. Section 4 presents the first step of the algorithm, the reconstruction
stage, that involves weighted interpolation subject to constant cross ratio of the
spectral channels. Section 5 presents the second step of the algorithm. It 1s a



non linear enhancement filter based on steerable anisotropic inverse diffusion
flow in color space. Section 5 concludes with experimental results on a set of
benchmark images. Some of the techniques we present were developed as a result
of discussions with Prof. J.A. Sethian from UC Berkeley, and with Dr. Y. Hel-Or
from HP Labs Israel.

2 A Simple Color Image Formation Model

A simplified model for color images is a result of viewing Lambertian non flat
surface patches. Such a scene is a generalization of what is known as a ‘Mondriaan
world’. According to the model, each channel may be considered as the projection
of the real 3D world surface normal N(X) onto the light source direction 1,
multiplied by the albedo p(z,y). The albedo captures the characteristics of the
3D object’s material, and is different for each of the spectral channels. That is,
the 3 color channels may be written as

17(x) = pr(x)N(x) -1
19(x) = pe()N(x) -1
1%(x) = pp(x)N(x) -1 (1)

This means that the different colors capture the change in material via p; (where ¢
stands for R, G, B) that multiplies the normalized shading image f(x) = N(X) .
1. The Mondriaan color image formation model [4] was used for color based
segmentation [7] and shading extraction from color images [5]. Let us follow the
above generalization of this model and assume that the material, and therefore
the albedo, are the same within a given object in the image, e.g. p;(x) = ¢,
where ¢; 1s a given constant. Thus, within the interior of a given object the
following constant ratio holds:

I'(x) _ p(x)I(x) _ pix) _ ¢

i
. ~— = = — = constant. (2)
D) px)Ix) rix)
That is, the color ratio within a given object is constant. We note, that this is
an oversimplified assumption for general analysis of color images. However, its
local nature makes it valid and useful for our technological purpose.

3 The 1D Case

Let us start with a simple 1D example with two colors, see Fig. 2. Our assumption
is that the colors are smooth within a given object and go through a sudden jump
at the boundaries. Define the central difference approximation to be D, I; =
%, where I; = I(iAz) is the value of the function I(z) at the point
x = 1Az, and Ax is the spatial discretization interval.

Given the samples (odd points for the Red and even points for the Green)
we use the gradient to construct an edge indicator for the interpolation. Let the
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Fig.2. The Red and Green components of a 1D image.

edge indicator be ¢! = f(D,G;), where f(o) is a decreasing function, e.g. ¢/ =
(14 (D;G:)*)~?  and respectively ef. One simple reconstruction procedure is
as follows:

— Init: Interpolate for the Green at the missing points
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— Repeat for 3 times:
— Interpolate the Red values via the ratio rule weighted by the edge indicator
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Correct the Green values to fit the ratio rule
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End of loop.

Note that this 1s a numerically consistent procedure for the proposed color
image formation model. It means that as the sampling grid is refined, the result
converges to the continuous solution.

Here, again we recognize the importance of segmentation in computer vision.
An accurate segmentation procedure, that gives the exact locations of the objects
boundaries, would have allowed an image reconstruction far beyond the sampling
limit (under the assumption that within a given object there are no high spatial
frequencies).



4 First Step: Reconstruction

For real 2D images with three color channels the reconstruction is less trivial.
Edges now become curves rather than points, and in many cases one needs to
interpolate missing points along the edges. We would still like to avoid interpo-
lating across edges.

Based on the simplified color image formation model, the three channels go
through a sudden jump across the edges. Thus, the gradient magnitude can be
used as an edge indicator, and its direction can approximate the edge direction
(it is easy to verify that the gradient VG is normal to the level set curves of
G(x), i.e. G(x) = const.)

The directional derivatives are approximated at each point based on its 8
nearest neighbors on the grid. Define the finite difference approximation for the
directional derivatives, central D, forward DT, and backwards D, as follows:
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At the Green points use max{|D},G; ;|,|D;.G; ;|} for the magnitude of the di-
rectional derivative along the @’ direction (and similarly for ¢'). For the rest of
the points and the x and y directions use central differences. We thereby con-
struct an approximation for the directional derivatives at each and every point.
Denote these approximations as Du;;, Dy;;, Dz’;;, and Dy’i]», respectively.

Next, we generalize an edge indicator function. When a point at location
((i+1)Az, jAy) is taking part in the interpolation at the (iAx, j Ay) location, we
use the following weight as an edge indicator: e;f "7 = (14 D> 4 Dagyq 7))~ H?

Based on the edge indicators as weights for the interpolation we follow similar
steps as for the 1D case to reconstruct the 2D image:

— Init: Interpolate for the Green at the missing points
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Interpolate for the Blue and Red in two steps.
Step 1 (interpolate missing Blue at Red locations) :
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Step 2 (interpolate at the rest of the missing Blue points):
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Interpolate the Red with two similar steps.
— Repeat for 3 times:

— Correct the Green values to fit the ratio rule
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and average between the Blue and Red interpolation results

B R
ij — 9 .

— Correct the Blue and Red values via the ratio rule weighted by the edge

indicator
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(5)
— End of loop.

Up to this point, the original values given as samples were not modified.
We have interpolated the missing points weighted by edge indicator functions
subject to the constant cross ratio. Next, we apply inverse diffusion in color to
the whole image as an enhancement filter.
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Fig.3. The Red and Green components painted as surfaces in z,y, I with the inverse
diffusion (across the edge) and diffusion (along the edge) directions.

5 Second Step: Enhancement

This section is a brief description of one of the non linear filters introduced
in [8] that we apply as a second step for enhancing the color image.

In [6], Gabor considered an image enhancement procedure based on an anisotropic
flow via the inverse second directional derivative in the ‘edge’ direction and the
geometric heat equation as a diffusion along the edge, see also [9]. Cottet and Ger-
main [3] used a smoothed version of the image to direct the diffusion. Weickert
[12] smoothed the ‘structure tensor’ VIVIT and then manipulated its eigenval-
ues to steer the smoothing direction, while Sapiro and Ringach [10] eliminated
one eigenvalue from the structure tensor in color space without smoothing its
coefficients.

Motivated by all of these results, a new color enhancement filter was intro-
duced in [8]. The inverse diffusion and diffusion directions are deduced from the
smoothed metric coefficients g,, of the image surface. The color image is con-
sidered as a 2D surface in the 5D (#,y, R, G, B) space, as suggested in [11]. The
induced metric coefficients are extracted for the image surface and used as a
natural structure tensor for the color case.

The induced metric (g,, ) is a symmetric matrix that captures the geometry
of the image surface. Let A; and As be the largest and the smallest eigenvalues of
(guv), respectively. Since (g,,) is a symmetric positive matrix its corresponding
eigenvectors u; and wus can be chosen orthonormal. Let U = (uq|us), and A =

(A()l /\0 ) , then we readily have the equality
2

(gun) = UAUT. (6)
Note also that

and that
g =det(gu) = A Ao, (8)



Let us use the image metric as a structure tensor. We extract the structure
from the metric (g,,) and then modify it to be a non-singular symmetric matrix
with one positive and one negative eigenvalues. That is, instead of diffusion
we introduce an inverse diffusion in the edge direction. This is an extension of
Gabor’s idea [6] of inverting the diffusion along the gradient direction, see Fig.
3.

The proposed inverse diffusion enhancement for color images is then given
as follows:

1. Compute the metric coefficients g, .

Juv = 6;“/ + Z I;Ijlll/C (9)
k={R,G,B}

or explicitly

1+ R+ G+ B, R.R,+G.Gy+ B:B,

(guu) = (10)
ReRy +GoGy + BBy 1+ Ry + Gy + B}

2. Diffuse the g,, coefficients by convolving with a Gaussian of variance p,
thereby

Gu =G * gup. (11)

Where G, = e= (@420

3. Change the eigenvalues of (§,,) such that the largest eigenvalue A; is now
A1 = —a~ ! and Ay = a, for some given positive scalar o < 1. This yields a
new matrix g,, that is given by:

- —a”t 0N ~ . .

@W):IJ< 0 a)LﬂE:UAaUT. (12)
A single scalar « is chosen for simplicity of the presentation. Different eigen-
values can be chosen, like eigenvalues that depend on the original ones.
The important idea is to set the original largest eigenvalue to a negative
value. This operation inverts the diffusion direction across the color edge
and thereby enhance it.

4. Evolve the k-th channel via the flow:

IF = 0,4" 0,IF
T ot —a 0 T k
=div (U 0 a-l UsviIt). (13)

Inverting the heat equation is an inherently unstable process. However, if we
keep smoothing the metric coefficients, and apply the diffusion along the edge
(given the positive eigenvalue), we get a coherence-enhancing flow that yields
sharper edges and is stable for a short duration of time.



Experimental Results

We tested the proposed method on four benchmark images that were sampled
with Bayer color filter array pattern. The following examples demonstare the re-
construction and enhancement results for four benchmark images: Statue, Sails,
Window, and Lighthouse. For each case, the top left is the original image. As a
reference we present the result of a bilinear interpolation for the missing points
for each channel separately at the top right. The bottom left is the result of
the first reconstruction by weighted interpolation step, and the bottom right is
the second step enhancement result. These are color images, and for a better
color view we refer to www.lbl.gov/~ron. The same parameters were used for
the reconstruction in all the examples, i.e. case dependent tuning was not used
for the different images.
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