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Abstract
A general geometrical framework for image processing

is presented. We consider intensity images as surfaces in
the (x; I) space. The image is thereby a two dimensional
surface in three dimensional space for gray level images.
The new formulation unifies many classical schemes, algo-
rithms, and measures via choices of parameters in a “mas-
ter” geometrical measure. More important, it is a simple
and efficient tool for the design of natural schemes for im-
age enhancement, segmentation, and scale space. Here we
give the basic motivation and apply the scheme to enhance
images. We present the concept of an image as a surface
in dimensions higher than the three dimensional intuitive
space. This will help us handle movies, color, and volumet-
ric medical images.

1. Introduction
Motivated by [1, 14], we consider low level vision as an

input to output process. For example, the most common
input is a gray level image; namely a map from a two di-
mensional surface to a three dimensional space(IR3). We
have at each point of thexy coordinate plane an intensityI(x; y). The IR3 space-featurehas Cartesian coordinates(x; y; I) wherex and y are thespatial coordinates andI
is the feature coordinate. The output of the low level pro-
cess in most models consists of 1). A smoothed image
from which reliable features can be extracted by local, and
therefore differential operators. 2). A segmentation, that is,
either a decomposition of the image domain into homoge-
neous regions with boundaries, or a set of boundary points
– an “edge map”.

The research on the low level vision process in the retina
and the brain indicate the existence of layers serving as op-
erators such that the information is processed locally in the
layers and forwarded to the next layer with no interaction
between distance layers. This means that the low level vi-
sion process can be described by a local differential opera-
tor. This process is calledscale spacewheret is the scale
(layer) parameter.

There are many definitions for scale spaces of images
aiming to arrive at a coherent framework that unifies many

assumptions. One such assumption is that“only isophotes
matter”. We argue that this assumption, though leading
to many interesting results in many cases, seems to fail in
many other natural cases. Let us demonstrate it with a sim-
ple example: In Fig. 1 we see two images of a bright square
on a darker background.

Figure 1. Two images of a bright square on
dark background

In fact, we notice that (see Fig. 2) in the second image
the lower left corner of the ‘bright square’ is much darker
than the upper right corner of the ‘dark’ background. Fur-
thermore, even the upper right corner of the ‘bright’ square
is darker than the upper right corner of the ‘dark’ back-
ground. The boundary of the inner square in the left image
is closely related to one of the isophotes of the gray level
image in that image, as shown in the upper row of Fig. 2. In
the second case, we added a smooth function - a tilted plane
- to the first intensity function. This additional smooth func-
tion might be the result of non-uniform lighting conditions
[22]. It is obvious that in the second intensity image (the
right image) the isophotes play only a minor role in the per-
ception process of the image.

The importance of edges in scale space construction is
obvious. Our view is consistent with the rest of the vision
community in that boundaries between objects should sur-
vive as long as possible along the scale space, while homo-
geneous regions should be simplified and flattened in a more
rapid way. On the other hand, we still want to preserve the
geometry that results in some interesting non-linear ‘scale
spaces’. Another important question, for which there are
only partial answers, is how to treat multi valued images.
A color image is a good example since one actually talks
about 3 images (Red, Green, Blue) that are composed into
one. Should one treat such images as multi valued functions
as proposed in [7, 20]?
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We attempt to answer some of the above questions by
viewing images asembedding maps, that flow towardsmin-
imal surfaces. We consider two dimensions higher than
most of the classical schemes, and instead of dealing with
isophotes as planar curves we deal with the whole image
as a surface. For example, a gray level image is no longer
considered as a function but as a two dimensional surface
in three dimensional space. In another example, we will
show how to treat color images as a 2D surfaces in 5D: e.g.
(x,y,R,G,B) space.

The remainder of this paper is organized as follows: In
Section 2 we comment on the notions of metric and length
needed for the definition of measure and the flow. We
present in Sec. 3 our measure and a choice of minimization
that gives a generalized version of the mean curvature flow.
Then, Section 4 introduces the flow itself that we have cho-
sen to nameBeltrami flow, and present a geometric inter-
pretation in the simplest3D case. Next, Section 5 presents
the metric and the resulting flow for color images. The anal-
ysis of movies and volumetric medical images is presented
in Sec. 7. We refer the interested reader to [21] for further
details and examples.
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Figure 2. The two images from Fig. 1, their
isophotes and the image as a surface in the(x; y; I) space.

2. The Metric
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Figure 3. Length element of a surface curve.
The basic concept of Riemannian differential geome-

try is distance. Let us start with the important exampleX : � ! IR3. We denote the local coordinates on the two

dimensional manifold� by (�1; �2). The mapX is explic-
itly given by(X1(�1; �2); X2(�1; �2); X3(�1; �2)). Since
the local coordinates�i are curvilinear, and not orthogonal
in general, the distance square between two close points on�, p = (�1; �2) andp+(d�1; d�2) is notds2 = d�21+d�22.
In fact, the squared distance is given by a positive definite
symmetric bilinear formgij(�1; �2) called the metricds2 = g��d��d��� g11(d�1)2 + 2g12d�1d�2 + g22(d�2)2; (1)

where we used Einstein summation convention in the sec-
ond equality; identical indices that appear one up and one
down are summed over. We will denote the inverse of the
metric byg�� , so thatg��g� = �� , where�� is the Kro-
necker delta.

2.1. Induced metric
Let X : � ! M be an embedding of(�; g) in (M;h),

where� andM are Riemannian manifolds andg andh are
their metrics respectively. We can use the knowledge of the
metric onM and the mapX to construct the metric on�.
This procedure , which is denoted formally as(g��)� =X�(hij)M , is called thepullbackfor obvious reasons and is
given explicitly as follow:g��(�1; �2) = hij(X)@�Xi@�Xj ; (2)

where i; j = 1; :::; dimM are being summed over, and@�Xi � @Xi(�1; �2)=@��.
Take for example a grey level image which is, from our

point of view, the embedding of a surface described as a
graph inIR3:X : (�1; �2)! (x = �1; y = �2; z = I(�1; �2)); (3)

where(x; y; z) are Cartesian coordinates. Using Eqn. (2)
we get (g��) = � 1 + I2x IxIyIxIy 1 + I2y � ; (4)

where we used the identificationx � �1 andy � �2 in the
mapX.

Actually, we can understand this result in an intuitive
way: Eq. (2) means that the distance measured on the sur-
face by the local coordinates is equal to the distance mea-
sured in the embedding coordinates, see Fig. 3. Under the
above identification, we can writeds2 = dx2 + dy2 + dI2= dx2 + dy2 + (Ixdx+ Iydy)2= (1 + I2x)dx2 + 2IxIydxdy + (1 + I2y)dy2:
3. Polyakov Action and Harmonic Maps

In this section, we present a general framework for non-
linear diffusion in computer vision. The equations will be
derived by a minimization problem from an action func-
tional. The functional in question depends onboth the im-
age manifold and the embedding space. Denote by(�; g)
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the image manifold and its metric and by(M;h) the space-
feature manifold and its metric, then the mapX : � ! M
has the following weightS[Xi; g��; hij] = Z dm�pgg��@�Xi@�Xjhij(X); (5)

wherem is the dimension of�, g is the determinant of
the image metric,g�� is the inverse of the image met-
ric, the range of indices is�; � = 1; : : : ; dim�, andi; j = 1; : : : ; dimM , andhij is the metric of the embed-
ding space. This functional, form = 2, was first proposed
by Polyakov [18] in the context of high energy physics, and
the theory known asstring theory.

Given the above functional, we have to choose the min-
imization. We may choose for example to minimize with
respect to the embedding alone. In this case the metricg��
is treated as a parameter and may be fixed by hand. Another
choice is to vary only with respect to the feature coordinates
of the embedding space, or we may choose to vary the im-
age metric as well. In [21] we show how different choices
yield different flows. Some flows are recognized as existing
methods like the heat flow, with passive coordinate transfor-
mation [10], the Perona-Malik flow [17], the segmentation
via minimal surfaces [5], the color flow [20, 6, 4], the mean-
curvature flow [13] and its variants [8], and a new invariant
flow of images painted on surfaces [11]. Other choices are
new and will be described below.

To gain some intuition about this functional, let us take
the example of a surface embedded inIR3 and treat both the
metric (g��) and the spatial coordinates of the embedding
space as free parameters, and fix them tog = �1 00 1� ; x = �1 ; y = �2: (6)

From now on, we also fix the embedding space to Euclidean
(IR3 in the example at hand) with Cartesian coordinates (i.e.hij = �ij). Then, up to a non-important constant, we getS[I; g�� = ��� ; hij = �ij ] = Z d2�jrIj2: (7)

If we now minimize with respect toI, we will get the usual
heat operator acting onI.

Using standard methods in variation calculus (see
[21]), the Euler-Lagrange equations with respect to the
embedding1 are:� 12pg hil �S�X l = 1pg @�(pgg��@�Xi) (8)

Notice that we used our freedom to multiply the Euler-
Lagrange equations by a strictly positive function. Since(g��) is positive definite,g � det(g��) > 0 for all ��.
This factor is the simplest one that does not change the mini-
mization solution while giving a reparametrization invariant1We assume Euclidean embedding space:hij = �ij , for the general
case see [21].

expression. The operator that is acting onXi is the natural
generalization of the Laplacian from flat spaces to mani-
folds and is calledthe second order differential parameter
of Beltrami[12], or for shortBeltrami operator, and we will
denote it by�g.

For a surface�, embedded in 3 dimensional Euclidean
space, we get a minimal surface as the solution to the mini-
mization problem. In order to see that and to connect to the
usual representation of the minimal surface equation, we
notice that the solution of the minimization problem with
respect to the metric isg�� = @�Xi@�Xi: (9)

On inspection, this equation is simply the induced metric on�. For the case of a surface embedded inIR3 we calculated
it explicitly in Eq. (4). Plugging this induced metric in the
first Euler-Lagrange, Eq. (8) we get the steepest decent flow~Xt = H ~N ; (10)
whereH is the mean curvature,~N is the normal to the sur-
face:2H = �(1 + I2x)Iyy � 2IxIyIxy + (1 + I2y )Ixx� =g 32 ;~N = (�Ix;�Iy; 1)T=pg; (11)

andg = 1 + I2x + I2y . We see that this choice gives us the
mean curvature flow! This should not be a surprise, since
the action functional for the above choice of metricg�� isS = Z d2�pg = Z d2�qdet(@�Xi@�Xi);
which is the Euler functional that describes the area of the
surface (also known in high energy physics as the Nambu
action).

In general for any manifold� andM , the mapX : �!M that minimizes the actionS with respect to the embed-
ding is called aharmonic map. The harmonic map is the
natural generalization of the geodesic curve and the mini-
mal surface to higher dimensional manifolds and for differ-
ent embedding spaces.

The generalization to any manifold embedded with ar-
bitrary co-dimension is given by using Eq. 8 for all the
embedding coordinates and using the induced metric Eq. 9.

4. The Beltrami flow

In this section, we present a new and natural flow. The
image is regarded as an embedding mapX : � ! IR3,
where� is a two dimensional manifold, and the flow is nat-
ural in the sense that it minimizes the action functional with
respect toI and(gij), while being reparametrization invari-
ant. The coordinatesX1 andX2 are parameters from this2Note that some definitions of the mean curvature include a factor of 2
that we omit in our definition.
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view point and are identified as above with�1 and�2 re-
spectively. The result of the minimization is the Beltrami
operator acting onI:It = �gI � 1pg @�(pgg��@�I) = H ~N � Î (12)

where the metric is the induced one given in Eq. 2, andÎ is
the unit vector in theI direction.

The geometrical meaning is obvious. Each point on the
image surface moves with a velocity that equals to theI (I)
component(s) of the mean curvature vector3. Since along
the edges the normal to the surface is almost parallel to thex-y plane,I hardly changes along the edges, while the flow
drives other regions of the image towards a minimal surface
at a more rapid rate. Let us further explore the geometry of
the flow in3D:

4.1. Geometric Flows Towards Minimal Surfaces
A minimal surface is the surface with the least area that

satisfies given boundary conditions. It has nice geometrical
properties, and is often used as a natural model of various
physical phenomena, e.g. soap bubbles “Plateau’s prob-
lem”, in computer aided design, in architecture (structural
design), and recently even for medical imaging [5].

For constructing the mean curvature flow of a gray level
image as a surface, we follow three steps:

(1). Given the surfaceS that evolves according to the ge-
ometric flow@S@t = ~F; where~F is an arbitrary smooth flow
field. The geometric deformation ofS may be equivalently

written as @S@t = h~F ; ~Ni ~N ; where ~N is the unit normal

of the surface at each point, andh~F ; ~Ni is the inner prod-
uct (the projection of~F on ~N ). The tangential component
affects only the internal parameterization of the evolving
surface and does not influence its geometric shape.

(2). The mean curvature flow is given by:@S@t = H ~N ;
whereH is the mean curvature ofS at every point. Let us
now use the relation given in Step 1:

(3). Considering the image functionI(x; y), as a pa-
rameterized surfaceS = (x; y; I(x; y)). We may write the

mean curvature flow as:@S@t = Hh ~N ;~Zi ~Z; for any smooth

vector field ~Z defined on the surface. Especially, we may
choose~Z as theÎ direction, i.e.~Z = (0; 0; 1). In this case1h ~N ; ~Zi �~Z =q1 + I2x + I2y �(0; 0; 1) = pg(0; 0; 1): (13)

Fixing the(x; y) parameterization along the flow (i.e. us-
ing the fixedx; y plane as the natural parameterization), we
haveSt = @@t(x; y; I(x; y)) = (0; 0; It(x; y)). Thus, for
tracking the evolving surface, it is enough to evolveI via@I@t = Hq1 + I2x + I2y ; where the mean curvatureH is

given as a function of the imageI, see Fig. 4, and Eq. (11).3The mean curvature vectorH = �g(x; I(x)) is normal to the
surface.
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Figure 4. Left: Mean curvature flow. Right:
Beltrami flow.

Substituting forH, we end up with the following evolu-
tion equationIt = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy1 + I2x + I2y ; (14)

with the image itself as initial conditionI(x; y; 0) =I(x; y). Using Beltrami second order operator�g and the
metricg, Eq. (14) may be read asIt = g�gI. On the other
hand, the Beltrami flow (selective mean curvature flow)It = �gI is given explicitly for the simple 2D case asIt = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy(1 + I2x + I2y )2 ; (15)

see Fig. 4.
As an example, Fig. 5 compares the results of the Bel-

trami flow and the mean curvature flow both applied to a
digital subtraction angiogram (DSA). It demonstrates the
edge preserving property of the Beltrami flow relative to
the mean curvature flow.

Figure 5. Left: Original medical image. Mid-
dle: Result of the mean curvature flow. Right:
Result of the Beltrami flow.

We note again that some properties for the mean curva-
ture flows that are relevant to some of our cases are studied
by the PDE community, e.g. [2]. One important result, at
least for the level set framework [16], in which the map-
ping is from IRm to IRm+1 (embedding with codimension
1) is that embedding of evolving surfaces is preserved [9].
Roughly speaking, it means that surfaces can not cross as
they evolve if they do not cross to begin with.

In [21] we show that large ratio between the gray level
axis and one of the coordinate axis leads to potential sur-
faces via the heat equation [3, 15], while at small ratio we
have theTV (total variation orL1) [19]. We have thereby
linked many classical schemes via a selection of one param-
eter, that is, the image gray level scale with respect to itsxy
coordinates. This scale is determined arbitrarily anyhow.
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5. Color
We generalize the Beltrami flow to the 5 dimensional

space-feature needed in color images. The embedding
space-feature space is taken to be Euclidean with Cartesian
coordinate system. The image, thus, is the mapf : � !IR5 where� is a two dimensional manifold. Explicitly the
map isf =�X(�1; �2); Y (�1; �2); Ir(�1; �2); Ig(�1; �2); Ib(�1; �2)� :
We note that there are obvious better selections to color
space definition rather than the RGB flat space.

We minimize the action (5) with respect to the metric and
with respect to(Ir ; Ig; Ib). For convenience denote below(r; g; b) in general byi. Minimizing the metric gives the
induced metric:g11 = 1 + (Irx)2 + (Igx)2 + (Ibx)2;g12 = IrxIry + IgxIgy + IbxIby;g22 = 1 + (Iry )2 + (Igy )2 + (Iby)2;g = det(gij) = g11g22 � g212:
Note that this metric differs from the Di Zenzo matrix [7,
20] by the addition of1 to g11 andg22. The source of the
difference is the map used to describe the image. Di Zenzo
usedX : �! IR3 while we useX : �! IR5.

The action functional under this choice of the metric is
the Euler functionalS = R d2�pg. It is simply the area
of the image surface. Minimization with respect toIi gives
the Beltrami flowIit = 1pg@�(pgg��@�Ii); (16)

which is a flow towards a minimal surface that preserves
edges. For simple implementation of the Beltrami flow
compute the 6 matrices:Iix; Iiy, and the following 6 ma-
trices: pi = g�1=2(g22Iix � g12Iiy);qi = g�1=2(g11Iiy � g12Iix): (17)

Then the evolution is given byIit = g�1=2 �pix + qiy� : (18)

6. Beltrami Flow in Color Space
We now present some results of denoising color images

using our model. Spatial derivatives are approximated using
central differences and an explicit Euler step is employed to
reach the solution.

The results are presented in Fig. 6. First Row: The Bel-
trami flow as an edge preserving scale space in color. Three
images that correspond to different scales are presented left
to right. Observe the way the fine geometric details disap-
pear first, while sharp edges are preserved along the evo-
lution. Second Row: A color image corrupted with Gaus-
sian noise. The reconstruction result by applying Beltrami

flow is shown on the right. Iteration has been manually
stopped to produce the result. Constraints similar to [4] can
be added; see [21] for details. Third and forth rows: The
result of applying the Beltrami flow to reconstruct a color
image with noise artifacts introduced first by wavelet lossy
compression and then by JPEG lossy compression. The left
pair depicts the corrupted image and the right pair is the
reconstruction with the Beltrami flow.

7. Movies and Volumetric Medical Images
Traditionally, MRI volumetric data is referred to as 3D

medical image. Following our framework, a more appropri-
ate definition is of a 3D surface in 4D(x; y; z; I). In a very
similar manner we will consider gray level movies as a 3D
surfaces in 4D, where all we need to do is the mental exer-
cise of replacingz of the volumetric medical images by the
sequence (time) axis. In Fig. 7, the first row shows images
at differentz locations and the second row shows the corre-
sponding denoised images. For better view we refer to our
web site [21]. This is a relatively simple case, since now we
have co-dimension equal to one.

The induced metric in this case is given by(gij) = 0@ 1 + I2x IxIy IxIzIxIy 1 + I2y IyIzIxIz IyIz 1 + I2z 1A ; (19)

and the Beltrami flow is:It = 1pgdiv
�rIpg� ; (20)

where nowrI � (Ix; Iy; Iz) andg = 1 + I2x + I2y + I2z .

8. Concluding Remarks
A new framework that unifies many previous scale space

results and introduces new procedures was presented. There
are still many open questions, like what is the right aspect
ratio between the intensity and the image plane? Or in a
more general sense, what is the ‘right’ embedding spacehij?

Finding a ‘right norm’ when dealing with images is in-
deed not trivial, and the right answer probably depends on
the application. For example, the ‘right’ color metrichij
is the consequence of empirical results, experimental data,
and the application. Here we covered some of the gaps be-
tween the two classical norms (L1-TV and theL2) in a ge-
ometrical way and proposed a new approach to deal with
multi dimensional images. We used recent results from high
energy physics that yield promising algorithms for enhance-
ment, segmentation and scale space.44We thank David Adalsteinsson and Korkut Bardakçi for interesting
discussions, to James Sethian and Alfred Bruckstein for their comments
on presentation, and to David Marimont for supplying the color images.
This work is supported in part by the Applied Mathematics Subprogram
of the OER under DE-AC03-76SFOOO98, ONR under NOOO14-96-1-
0381, and NSF under PHY-90-21139. All calculations were performed
at the Lawrence Berkeley National Laboratory, University of California,
Berkeley.
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Figure 6. Color results.

Figure 7. Movie or volumetric data; see text.
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