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Abstract assumptions. One such assumption is thaty isophotes

A general geometrical framework for image processing Mmatter”. We argue that this assumption, though leading
is presented. We consider intensity images as surfaces iff® Many interesting results in many cases, seems to fail in
the (x, I) space. The image is thereby a two dimensional many other naturfil cases. Let us (_jemonstrate |t_W|th a sim-
surface in three dimensional space for gray level images. Plé €xample: In Fig. 1 we see two images of a bright square
The new formulation unifies many classical schemes, algo-°n & darker background.
rithms, and measures via choices of parameters in a “mas-
ter” geometrical measure. More important, it is a simple
and efficient tool for the design of natural schemes for im-
age enhancement, segmentation, and scale space. Here we
give the basic motivation and apply the scheme to enhance
@mages. We pre_sent the concept of an image as a sgr_face Figure 1. Two images of a bright square on
in dimensions higher than the three dimensional intuitive
space. This will help us handle movies, color, and volumet-
ric medical images.

dark background

In fact, we notice that (see Fig. 2) in the second image
the lower left corner of the ‘bright square’ is much darker
1. Introduction than the upper right corner of the ‘dark’ background. Fur-

Motivated by [1, 14], we consider low level vision as an thermore, even the upper right corner of the ‘bright’ square
input to output process. For example, the most commonis darker than the upper right corner of the ‘dark’ back-
input is a gray level image; namely a map from a two di- ground. The boundary of the inner square in the left image
mensional surface to a three dimensional sg#ige). We is closely related to one of the isophotes of the gray level
have at each point of they coordinate plane an intensity image in that image, as shown in the upper row of Fig. 2. In
I(z,y). TheIR? space-featurédhas Cartesian coordinates the second case, we added a smooth function - a tilted plane
(z,y,I) wherez andy are thespatial coordinates and - to the first intensity function. This additional smooth édn
is the feature coordinate. The output of the low level pro- tion might be the result of non-uniform lighting conditions
cess in most models consists of 1). A smoothed image[22]. It is obvious that in the second intensity image (the
from which reliable features can be extracted by local, and rightimage) the isophotes play only a minor role in the per-
therefore differential operators. 2). A segmentationt tha  ception process of the image.
either a decomposition of the image domain into homoge- The importance of edges in scale space construction is
neous regions with boundaries, or a set of boundary pointsobvious. Our view is consistent with the rest of the vision
—an “edge map”. community in that boundaries between objects should sur-

The research on the low level vision process in the retinavive as long as possible along the scale space, while homo-
and the brain indicate the existence of layers serving as op-geneous regions should be simplified and flattened in a more
erators such that the information is processed locallyén th rapid way. On the other hand, we still want to preserve the
layers and forwarded to the next layer with no interaction geometry that results in some interesting non-linear éscal
between distance layers. This means that the low level vi-spaces’. Another important question, for which there are
sion process can be described by a local differential opera-only partial answers, is how to treat multi valued images.
tor. This process is callescale spacavheret is the scale A color image is a good example since one actually talks
(layer) parameter. about 3 images (Red, Green, Blue) that are composed into

There are many definitions for scale spaces of imagesone. Should one treat such images as multi valued functions
aiming to arrive at a coherent framework that unifies many as proposed in [7, 20]?



We attempt to answer some of the above questions bydimensional manifol& by (¢!, o). The mapX is explic-
viewing images asmbedding mapshat flow towardsnin- itly given by (X' (¢!, 0%), X*(ct, 0%), X3(c!, 0?)). Since
imal surfaces We consider two dimensions higher than the local coordinates’ are curvilinear, and not orthogonal
most of the classical schemes, and instead of dealing within general, the distance square between two close points on
isophotes as planar curves we deal with the whole imageX, p = (¢!, %) andp+(do!, do?) is notds? = do? +do3.
as a surface. For example, a gray level image is no longerin fact, the squared distance is given by a positive definite
considered as a function but as a two dimensional surfacesymmetric bilinear forny;; (¢!, o?) called the metric
in three dimensional space. In another example, we will ds?
show how to treat color images as a 2D surfaces in 5D: e.g.
(x,y,R,G,B) space.

The remainder of this paper is organized as follows: In \yhere we used Einstein summation convention in the sec-
Section 2 we comment on the notions of metric and length o equality; identical indices that appear one up and one

needed _for the definition of measure and the _ﬂQW-_ We down are summed over. We will denote the inverse of the
present in Sec. 3 our measure and a choice of minimizationmetric by 4, so thaty*’ g, = 6%, wheres! is the Kro-
H - 1] ry

that gives a generalized version of the mean curvature flow.necker delta.

Then, Section 4 introduces the flow itself that we have cho- )

sen to nameBeltrami flow and present a geometric inter- 2-1. Induced metric _ _

pretation in the simplestD case. Next, Section 5 presents L€t X : & — M be an embedding a4, g) in (M, h),

the metric and the resulting flow for color images. The anal- WhereX and M are Riemannian manifolds agcandh are
ysis of movies and volumetric medical images is presentedthelr_metrlcs respectively. We can use the knowlgdge of the
in Sec. 7. We refer the interested reader to [21] for further Metric onA/ and the magX to construct the metric ol.

Juvdotdo”
911(d01)2 + 2912d01d02 + gzz(daz)z, (1)

details and examples. This procedure , which is denoted formally @8, )s. =
" X*(hij)ar, is called thepullbackfor obvious reasons and is
o given explicitly as follow:
20 220 gNV(Ul’Uz) = hl](X)aNXZaVX]a (2)
P T where:,j = 1,...,dimM are being summed over, and

20 40 60

0, X' = 0X (o, 0?)/00H.
Take for example a grey level image which is, from our

6 point of view, the embedding of a surface described as a
© \\Q graph inIR>:
SN X:(ot, 0} = (x =0 y=02=1(c',0%)), (3)
0 40 e where(z, y, z) are Cartesian coordinates. Using Eqn. (2)
Figure 2. The two images from Fig. 1, their we get 2
: _ : 1+12 LI,
isophotes and the image as a surface in the )=\ 71" 142 ) (4)
I : oY Y :
(.9, T) space where we used the identificatian= ¢! andy = ¢? in the
. mapX.
2. The Metric Actually, we can understand this result in an intuitive
oty 4OUGH ly it way: Eqg. (2) means that the distance measured on the sur-

face by the local coordinates is equal to the distance mea-
sured in the embedding coordinates, see Fig. 3. Under the
above identification, we can write

ds? de® + dy® + dI?
dz® 4+ dy* + (Lde + I,dy)°
(1 + I2yda? + 2L I dzdy + (1 + I;)dy”.

3. Polyakov Action and Harmonic Maps

In this section, we present a general framework for non-
Figure 3. Length element of a surface curve. linear diffusion in computer vision. The equations will be
The basic concept of Riemannian differential geome- derived by a minimization problem from an action func-

try is distance. Let us start with the important example tional. The functional in question dependslmsththe im-

X : ¥ — IR?. We denote the local coordinates on the two age manifold and the embedding space. Denotéhy)



the image manifold and its metric and b/, h) the space-  expression. The operator that is acting6his the natural
feature manifold and its metric, then the m¥p: ¥ — M generalization of the Laplacian from flat spaces to mani-
has the following weight folds and is calledhe second order differential parameter
, , , of Beltrami[12], or for shortBeltrami operatoyand we will
SIXY, guw, hif] = / d"o\/Gg" 0, X0, X7 hi;(X), (5)  denote itbya,.

For a surface:, embedded in 3 dimensional Euclidean
space, we get a minimal surface as the solution to the mini-
mization problem. In order to see that and to connect to the
usual representation of the minimal surface equation, we
notice that the solution of the minimization problem with
respect to the metric is

wherem is the dimension ofZ, ¢ is the determinant of
the image metricg#” is the inverse of the image met-
ric, the range of indices ig, v = 1,...,dim%, and
i, =1,...,dimM, andh;; is the metric of the embed-
ding space. This functional, fon = 2, was first proposed
by Polyakov [18] in the context of high energy physics, and ,
the theory known astring theory Juv = 0, X" 0, X;. 9)

~ Given the above functional, we have to choose the min- on inspection, this equation is simply the induced metric on
imization. We may choose for example to minimize with y; For the case of a surface embeddetkihwe calculated
respect to the embedding alone. In this case the mgtric it explicitly in Eq. (4). Plugging this induced metric in the

is treated as a parameter and may be fixed by hand. Anothefirst Euler-Lagrange, Eq. (8) we get the steepest decent flow
choice is to vary only with respect to the feature coordisnate . .

of the embedding space, or we may choose to vary the im- Xy =HN, (10)

age metric as well. In [21] we show how different choices WhereH is the mean curvaturey is the normal to the sur-
yield different flows. Some flows are recognized as existing face: :

methods like the heat flow, with passive coordinate tranrsfor 7 — ((1 + 1Dy — 211y Ly + (1 + jj)jxx) /g%,
mation [10], the Perona-Malik flow [17], the segmentation N o= (I, —1 1)T/\/§ (11)

via minimal surfaces [5], the color flow [20, 6, 4], the mean- o ’

curvature flow [13] and its variants [8], and a new invariant andy = 1 + 72 + 72. We see that this choice gives us the

flow of images painted on surfaces [11]. Other choices areémean curvature flow! This should not be a surprise, since

new and will be described below. the action functional for the above choice of metijg is
To gain some intuition about this functional, let us take

the example of a surface embeddedii and treat both the _ 9 _ 9 \/—Z

metric (g,, ) and the spatial coordinates of the embedding 5= /d Vo= /d o1/ det(9, X109, Xy),

space as free parameters, and fix them to o ) )
which is the Euler functional that describes the area of the

g = (1 0) , z=c |, y=o’ (6) surface (also known in high energy physics as the Nambu
0 1 action).
From now on, we also fix the embedding space to Euclidean  In general for any manifol& andA/, the mapX : ¥ —
(IR? in the example at hand) with Cartesian coordinates (i.e. A/ that minimizes the actio§ with respect to the embed-
h;; = é;;). Then, up to a non-important constant, we get  ding is called eharmonic map. The harmonic map is the
natural generalization of the geodesic curve and the mini-
S, guv = b, hij = bi5] = /d2‘7|VI|2~ (7) mal surface to higher dimensional manifolds and for differ-
ent embedding spaces.
The generalization to any manifold embedded with ar-
bitrary co-dimension is given by using Eq. 8 for all the
embedding coordinates and using the induced metric Eq. 9.

If we now minimize with respect té, we will get the usual
heat operator acting oh
Using standard methods in variation calculus (see
[21]), the Euler-Lagrange equations with respect to the
embedding are:
_ 1 “ﬁ_iﬁ wr g xi 8
26X\ w9970, X) ©® In this section, we present a new and natural flow. The

Notice that we used our freedom to multiply the Euler- image is regarded as an embedding m&p ¥ — IR?,
Lagrange equations by a strictly positive function. Since whereX: is a two dimensional manifold, and the flow is nat-
(g9uv) is positive definiteg = det(g,,) > 0 for all o*. ural in the sense that it minimizes the action functionahwit
This factor is the simplest one that does not change the mini-respect td and(y;; ), while being reparametrization invari-
mization solution while giving a reparametrization ineani ant. The coordinate¥* and X2 are parameters from this

4. The Beltrami flow

1we assume Euclidean embedding spdtg: = &;;, for the general ?Note that some definitions of the mean curvature include tafad 2
case see [21]. that we omit in our definition.



view point and are identified as above with ands? re- 953
spectively. The result of the minimization is the Beltrami
operator acting od:

1

L=A,0=—08,(/99"0,1)=HN -1  (12)
t g \/g N(\/_ )
where the metric is the induced one given in Eq. 2, Afsl
the unit vector in the direction. Figure 4. Left: Mean curvature flow. Right:

The geometrical meaning is obvious. Each pointonthe Beltrami flow.
image surface moves with a velocity that equals to/t{B
component(s) of the mean curvature vettoince along Substituting for , we end up with the following evolu-
the edges the normal to the surface is almost parallel to thetjon equation
z-y plane,l hardly changes along the edges, while the flow 9 _ 9
drives other regions of the image towards a minimal surface 7, = (Lt 1)) oo QIszy Ixy;_ (Lt 1)Ly
at a more rapid rate. Let us further explore the geometry of L+ I+ 1y
the flow in3D: with the image itself as initial conditiod(z,y,0) =
4.1. Geometric Flows Towards Minimal Surfaces I(#,y). Using Beltrami second order operaty and the

A minimal surface is the surface with the least area that metricg, Eq. (14) may be read ds = gA, /. On the other
satisfies given boundary conditions. It has nice geométrica hand, the Beltrami flow (selective mean curvature flow)
properties, and is often used as a natural model of variousl: = A, is given explicitly for the simple 2D case as
physical phenomena, e.g. soap bubbles “Plateau’s prob- (L4 I2)ow = 2L Iy Loy + (1 + I2)1y,
lem”, in computer aided design, in architecture (strudtura Iy = TESEESAE , (15)
design), and recently even for medical imaging [5]. _ vy

For constructing the mean curvature flow of a gray level see Fig. 4.
image as a surface, we follow three steps: As an example, Fig. 5 compares the results of the Bel-

(1). Given the surfacé that evolves according to the ge-  trami flow and the mean curvature flow both applied to a
ometricflowaf = F,whereF is an arbitrary smooth flow digital subtrat_:tlon angiogram (DSA). It d_emonstrat_es the
field. The geometric deformation 6fmay be equivalently ~ €d9€ preserving property of the Beltrami flow relative to

written as%? = (ﬁ,/\7)/\7, where\ is the unit normal te mean curvature flow.

of the surface at each point, amﬁ,ﬁ) is the inner prod- kit ‘
uct (the projection of” on\'). The tangential component T e
affects only the internal parameterization of the evolving il - '

surface and does not influence its geometric shape.
(2). The mean curvature flow is given b%ij = HN, i W“- “

whereH is the mean curvature &f at every point. Let us

, (14

now use the relation given in Step 1: Figure 5. Left: Original medical image. _Mid-

(3). Considering the image functiok(z, y), as a pa- dle: Result of the mean curvature flow. Right:
rameterized surfac = (z,y, I(x,y)). We may write the Result of the Beltrami flow.
mean curvature flow as%% = ﬁi, for any smooth We note again that some properties for the mean curva-

ture flows that are relevant to some of our cases are studied
by the PDE community, e.g. [2]. One important result, at
least for the level set framework [16], in which the map-
#1 .7 =14+ 12+ 12(0,0,1) = V9(0,0,1). (13) ping is from R" to R™*! (embedding with codimension
(N, Z) v 1) is that embedding of evolving surfaces is preserved [9].
Fixing the(z, y) parameterization along the flow (i.e. us- Roughly speaking, it means that surfaces can not cross as
ing the fixedz, y plane as the natural parameterization), we they evolve if they do not cross to begin with.

haves, = aa_(l,’ v, I(z,y)) = (0,0, L(x,y)). Thus, for _In [21] we show that Iarge ratlo_between the gray level
tracking the tevolving surface, it is enough to evolveia axis and one of the coordinate axis leads to potential sur-

o _ gy s ez wh h i faces via the heat equation [3, 15], while at small ratio we
o~ Y + {4+ Ly, Where the mean curvatute 1S have thel'V (total variation ori,) [19]. We have thereby

qi\gen as a function of the image see Fig. 4, and Eq. (11).  |inked many classical schemes via a selection of one param-
The mean curvature vectdl = A,(x,I(x)) is normal to the  gter, that is, the image gray level scale with respect teyjts
surface. . . . . . .
coordinates. This scale is determined arbitrarily anyhow.

vector fLeIdZ defined on the surface. Especially, we may
chooseZ as thel direction, i.e.Z = (0,0, 1). In this case




5. Color flow is shown on the right. Iteration has been manually

We generalize the Beltrami flow to the 5 dimensional stopped to produce the result. Constraints similar to [4] ca
space-feature needed in color images. The embeddinge added; see [21] for details. Third and forth rows: The
space-feature space is taken to be Euclidean with Cartesianesult of applying the Beltrami flow to reconstruct a color

coordinate system. The image, thus, is the nfiapX — image with noise artifacts introduced first by wavelet lossy
IR® whereX is a two dimensional manifold. Explicitly the compression and then by JPEG lossy compression. The left
map isf = pair depicts the corrupted image and the right pair is the

reconstruction with the Beltrami flow.

7. Movies and Volumetric Medical Images
We note that there are obvious better selections to color Traditionally, MRI volumetric data is referred to as 3D

space definition rather than the RGB flat space. medical image. Following our framework, a more appropri-
We minimize the action (5) with respect to the metricand ate definition is of a 3D surface in 40, y, z, I). In a very

with respect tq 1", 19, I’). For convenience denote below similar manner we will consider gray level movies as a 3D

(r,g¢,b) in general byi. Minimizing the metric gives the  surfaces in 4D, where all we need to do is the mental exer-

(X(O’l, c?),Y (o', o)), I" (0!, 0%), I*(c*, 0?), (ot 02)) :

induced metric: cise of replacing of the volumetric medical images by the
gi1 = 14 (D) + (I + (1), sequence (time) Qxis. In Fig. 7, the first row shows images
P at differentz locations and the second row shows the corre-
12 £y ey Ty sponding denoised images. For better view we refer to our
g2 = 1+ (I;)2 + (Igj’)2 + (15)2, web site [21]. This is a relatively simple case, since now we
- = — 42 have co-dimension equal to one.
g = deilyy) = g — i The induced metrig in this case is given by
Note that this metric differs from the Di Zenzo matrix [7, L+12 L], I 1,
20] by the addition oft to g;; andgs». The source of the (g55) = LI, 1+1; I , (19)
difference is the map used to describe the image. Di Zenzo I 1, LI, 1417
usedX : ¥ — IR? while we useX : ¥ — IR”. . .
The action functional under this choice of the metric is and the Beltrami f|OW1IS. V]
the Euler functionals = [ d%c./g. It is simply the area I; = —div (—) : (20)
of the image surface. Minimization with respect/tagives Vi Vi
the Beltrami flow where now 1 = (I, I,,I.)andg = 1 + I; + I + I7.
I = L%WM‘”@VF), (16) 8. Concluding Remarks
v A new framework that unifies many previous scale space

which is a flow towards a minimal surface that preserves resylts and introduces new procedures was presented. There
edges. For simple implementation of the Beltrami flow gre still many open questions, like what is the right aspect
compute the 6 matricesl;, I,, and the following 6 ma-  ratio between the intensity and the image plane? Or in a

trices: ' ' ' more general sense, what is the ‘right’ embedding space
po= g (gaodl — ginll), hi;?
¢ = g—1/2(g11[;' — gia1l). (17) Finding g_‘right norm’ when dealing with images is in-
deed not trivial, and the right answer probably depends on
Then the evolution is given by the application. For example, the ‘right’ color metrig;
]j = g—1/2 <p; + q;) . (18) is the consequence of empirical results, experimental data
_ ) and the application. Here we covered some of the gaps be-
6. Beltrami Flow in Color Space tween the two classical norms(-TV and thel-) in a ge-

We now present some results of denoising color imagesometrical way and proposed a new approach to deal with
using our model. Spatial derivatives are approximatedysin multi dimensional images. We used recent results from high
central differences and an explicit Euler step is emploged t energy physics that yield promising algorithms for enhance
reach the solution. ment, segmentation and scale spdce.

The results are presented n Fig. 6. First R.OW' The Bhel- *We thank David Adalsteinsson and Korkut Bardakgi for iatting
_traml flow as an edge preser_vmg scale space in color. T I'€&jiscussions, to James Sethian and Alfred Bruckstein far tumments
images that correspond to different scales are preserfted le on presentation, and to David Marimont for supplying theocamages.
to right. Observe the way the fine geometric details disap- This work is supported in part by the Applied Mathematics [Bogram

: : of the OER under DE-AC03-76SFO0098, ONR under NOOO14-96-1-
pe_ar first, while sha.rp edges _are preserved along the eV00381, and NSF under PHY-90-21139. All calculations werdgered
lution. Second Row: A color image corrupted with Gaus- 4t the Lawrence Berkeley National Laboratory, UniversityCalifornia,

sian noise. The reconstruction result by applying Beltrami Berkeley.
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Figure 7. Movie or volumetric data; see text.



