To be published in the proceedings of the

IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR’96),

June 16-21, 1996, San Francisco, California, USA

Global Minimum for Active Contour Models:
A Minimal Path Approach

Laurent D. COHEN
CEREMADE, URA CNRS 749
Université Paris 9-Dauphine
75775 Paris cedex 16, France

cohen@ceremade.dauphine.fr

Abstract

A new boundary detection approach for shape mod-

eling is presented. It detects the global minimum of
an active contour model’s energy between two points.
Inttialization is made easier and the curve cannot be
trapped at a local minimum by spurious edges. We
modify the “snake” energy by including the internal
reqularization term in the external potential term. Our
method 1s based on the interpretation of the snake as
a path of minimal length in a Riemannian metric, or
as a path of minimal cost. We then make use of a
new cfficient numerical method to find the shortest
path which is the global minimum of the energy among
all paths joining the two end points. The method is
extended to closed contours, given only one point on
the objects’ boundary by using a topology—based saddle
search routine. We show examples of our method ap-
plied to real aerial and medical images.
Keywords: Shape modeling, Deformable Models—
Snakes, Path of minimal cost, Level Sets, Segmenta-
tion, Feature Extraction, Energy Minimization, Par-
tial Differential Equations.

1 Introduction

An active contour model for boundary integra-
tion and features extraction, introduced in [1], has
been considerably used and studied during the last
decade. Most of the approaches that were introduced
since then try to overcome the main drawbacks of
this model: nitialization, minimeization and topology
changes.

The model requires the user to input an initial curve
close to the goal. Often, it has to be a very precise
polygon approximation and it may be fastidious to
use for an application dealing with a large number
of images. Using the balloon model [2] allows a less
demanding initialization since any initial closed curve
inside an object may be used to obtain its complete
boundary. The same property can be realized using
the geometric model introduced in [3, 4] and recently
improved in [5]. In [6], only two end points on the
boundary are needed to follow the contour.

In this paper we present a new approach for find-
ing the global minimum of energy minimizing curves
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given only one or two end points. Qur goal is to help
the user in solving the problem in hand by mapping it
into a single minimum problem. The proposed method
contributes to the improvement of the first two items
above, initialization and minimazation which are obvi-
ously related. Only end points are needed as an easy
initialization and we are guaranteed that the global
minimum is found between these points.

We modify the snake energy in a way that makes
it ‘intrinsic’ or free of the parameterization. Most of
the classical snake models are non-intrinsic models.
Therefore, different parameterizations of the same (i.e.
having the same geometric shape) initial curve, could
lead to different solutions.

The modification we follow enables us to include the
internal regularization term in the external potential
term in a natural way, since the snake energy depends
only on the location of the point and not on the geom-
etry of the curve at this point. We use an evolution
scheme that provides at each image pixel an output of
the energy along the path of minimal integrated en-
ergy joining that pixel to the given start point. We
use the Sethian fast marching method [7, 8, 9]. The
search for a global minimum is then done efficiently.
While this minimum is restricted to connect two given
points, we also present a topology—based saddle search
that helps in automatically closing contours by click-
ing on a single point along the boundary.

An upper bound of the curvature along the minimal
path is introduced. This justify the fact that although
our approach is a path integration, it also incorporate
the regularization of the path like a “snake” model.

2 Deformable Contours

We refer to [10] for an overview of the different ap-
proaches for active contour models.

Since the introduction of “snakes” [1], deformable
models have been extensively used to integrate
boundaries and extract features from images. The
deformable contour model is a mapping C(v) =
(z(v),y(v)). In some cases v is chosen to be the arc-
length parameter, ranging on £ = [0, L] where L is
the length of the curve'. The energy of the model has

1We shall refer to arc-length parameter as s, to differ from
an arbitrary parameter v



the following form:

B = [ IO + el + PE()d.

where C, and C,, are the first and second derivatives
of C with respect to v, and P is the potential associ-
ated to the external forces. For the problem to be
well-posed, the space of admissible deformations A
is restricted by boundary conditions. These may be
free boundaries, as in the original snakes [1], cyclic
boundaries by using periodic closed curves [11], or
fixed boundaries by giving C(0), C,(0), C(1) and C,(1)
[2, 12].

A geometric approach for deformable models was
recently introduced in [3, 4]. A level set approach for
curve evolution [13, 14] is used to implement a planar
curve evolution of the form:
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where s is the arc-length parameter of the curve C in
this case. Therefore, C;; = k1 is the curvature vector
(7 being the unit normal), and w is some predefined
constant. This constant term is thus similar to the
pressure force introduced for the balloon model [2].

It was recently proven that introducing the ‘gra-
dient of potential’ (VP) term of the classical energy
minimization snakes [1, 12] into the geometric snakes
[3, 4] is based on geometrical as well as energy min-
imization reasoning, leading to the “geodesic active
contour” [5].

These were shown to ‘behave’ better than both its
‘ancestors’ since they enjoy the advantages of both. Tt
is shown in [5] that their curve evolution is a result
of minimizing the functional E = fﬂ

where s is the arclength (or F(C fﬂ ||C ||dv

for the arbitrary parameter v)

Although our work is related to [5], it is a totally
independent approach. We note that following the
formulation of [5], the minimization of the classical
energy (1) may be modified into the problem of find-
ing local geodesics in a Riemannian metric computed
from the image, where we propose to find the minimal
geodesics in a similar Riemannian metric (see Equa-
tion (2) in the following section). Although it is shown
in [5] that finding the solution of active contour mod-
els is closely related to finding geodesics, no method is
proposed to find the minimal ones. In [5], like in most
of the previous approaches, the algorithms search for
some local minimum that is close to the initial guess,
while we propose a method for finding the global mini-
mum of the same energy between two points as a min-
imal path (minimal geodesic).

3 Paths of Minimal Action

Given some potential P that takes lower values near
the edges or features, our goal 1s to find a single con-
tour that best fits the boundary of a given object or a
line of interest. This ‘best fit” question leads to algo-
rithms seeking for the minimal path, i.e. paths along

which the integration over P is minimal. As men-
tioned earlier, snakes start from a path close to the so-
lution and converge to a local minimum of the energy.
Given only the end points, our goal is to find the min-
imal path between these points, thereby simplifying
the initialization process and avoiding erroneous local
minima. Motivated by the ideas put forward in [15, 16]
we develop an efficient and consistent method to find
the path of minimal cost between two points, using
the surface of minimal action [16] and the fact that
operating on a given potential (cost) function helps
in finding the solution for our path of minimal action
(also known as minimal geodesic, or path of minimal
potential). Thereby, we are able to isolate the bound-
ary of a given object in the image.

3.1 Problem Formulation

The minimization problem we are trying to solve is
slightly different from the deformable models, though
there is much in common. One may still differ be-
tween “internal” and “external” forces, yet now all
terms are geometric which means a result of an in-
trinsic energy functional. Contrary to the classical
snake energy, here s represents the arc-length param-
eter, i.e. ||Cs(s)|] = 1. The reason we modified the
energy is that we now have an expression in which the
internal regularization energy is included in the po-
tential term in a natural way. We can then solve the
energy minimization in a similar way to that of find-
ing the shortest path on a surface [15]. The fact that
the energy integral is now intrinsic will also help us
to explore the relation between the smoothness of the
result and the potential. The energy E(C) of the new
model has the following form:

/ w||Cs||2 + P(C)ds = wlL —1—/ P(C)ds = / P(C)ds
Q Q Q

) (2)
where P(p) = w + P(p) and the energy is minimized
on Ap, p,, the space of all curves connecting two given
points (restriction by boundary conditions): C(0) = po
and C(L) = p1, where L is the length of the curve.
Contrary to the classical snake energy, here s repre-
sents the arc-length parameter. This makes the energy
depend only on the geometric curve and not on the
parameterization. The regularization term multiplied
by the constant w, now exactly measures the length of
the curve. We note that a similar regularization effect
may be also achieved by smoothing the potential P
[17].

Having the above minimization problem in mind,
we first search for the surface of minimal action Uy
starting at pg = C(0). At each point p of the image
plane, the value of this surface Uy corresponds to the
minimal energy integrated along a path starting at pg
and ending at p.

Us(p) = _inf {/Cﬁds} = inf E(C), (3)

C(L):p P0,P

We next present an approach to determine the value
of Uy everywhere in the image domain.



3.2 Shortest Paths As a Set

Following [15], given the minimal action surfaces Uy
to pp and Uy to pp, then the minimal geodesic between
po and p; is exactly the set of coordinate points p, that
satisfy

Uo(pg) + Ui(py) :piel}ng{Uo(P)‘i‘Ul(P)} (4)

Usually, the set of points p; needs to be refined
from a given "fat” set of points into a curve. In [16] a
thinning algorithm was applied. The above is a global
way for extracting the global minimum. In our exper-
iments we have preferred to use a back propagation
procedure that results in a single curve (see Section

3.5.2)
3.3 Minimal Action Level Sets

Evolution

In what follows, we assume that P > 0. Applying
the ideas of the previous section to minimize our en-
ergy (2), it is possible to formulate a partial differential
evolution equation describing the set of equal energy
contours £ in ‘time’, where ¢ is in fact the value of
the energy. These are the level sets of Uy defined by
Equation (3). In the evolution equation ¢ represents
the height of the level set of Uy:

0L(v,t) 1
5 = Fn(v,t), (5)

where P = P + w and fi(v,t) is the normal to the

closed curve £(.,t) : S* — IR?. The motivation for
this evolution is that we need to propagate with a ve-
locity that is proportional to the inverse of the penalty.
So that at ‘low cost’ area the velocity is high while at
a ‘high cost’ area the velocity is low.

The curve L(v,t) corresponds here to the set of
points p for which the minimal energy Up(p) is ¢:

{L(v,t),v €S} = {pe R?* | Us(p) =t}. (6)

This evolution equation is initialized by a curve
L(v,0) which is an infinitesimal circle around the point
po- It corresponds to a null energy. It then evolves
according to Eq. (5), similar to a balloon evolu-
tion [2] with an inflation force depending on the po-
tential. Considering the (z,y,t)-space, the family of
curves L(v,t) construct the level sets of the surface

Ulz,y) : R* — IR defined in (3). The ¢ level set
of U is exactly the curve £(.,7). Although a rigorous
proof of this statement can be found in [18], it can be
understood simply by the following geometric inter-
pretation. Observe that adding to a path ending at a
point of £(.,?) a small segment in the normal direction

to L(.,t) and of length %dt will add to the accumu-

lated energy of (2) a contribution of ]S%dt = dt. This

means that the new point 1s on the level ¢ + dt, that
is on the curve £(.,t 4 dt) . Figure 4 presents such a
surface U and its corresponding level sets.

It is possible to compute the surface U in several
ways. We shall describe three of them that are consis-
tent with the continuous case while implemented on a
rectangular grid.

3.4 Numerical Implementation

The numerical schemes we propose are consistent
with the continuous propagation rule. The consistency
condition guarantees that the solution converges to the
true one as the grid is refined. This is known not to
be the case in general graph search algorithms that
suffer from digitization bias due to the metrication er-
ror when implemented on a grid. This gives a clear
advantage to our method over minimal path estima-
tion using graph search. To evaluate and minimize the
snake energy (1), the “internal” terms can be evalu-
ated only by using the shape of the curve, leading to
curve deformation and evolution schemes from an ini-
tial curve. Based on the new energy definition (2),
we are able to compute the final path without evolv-
ing an initial contour, by using the surface of minimal
action. To find the surface of minimal action, graph
search and dynamic programming techniques were of-
ten used, considering the image pixels as vertices in a
graph [17]. We review and compare these algorithms
to our approach in [10]. These algorithms are indeed
efficient, yet suffer from ‘metrication errors’. Our phi-
losophy here is different. We propose to deal with the
continuous problem as long as possible. In that, we
follow the numerical analysis community, by first an-
alyzing the underlying problem in the continuous do-
main. Then, at the last stage which involves numerical
implementation we will consider the image given as a
grid of pixels, compute optimal paths and the surface
of minimum action in a relatively efficient way, while
at the same time enjoy the ‘consistency’ property of
converging to the desired continuous solution as the
grid is refined. The main reason is obviously accuracy
which is important for example in medical applica-
tions.

3.4.1 Front Propagation Approach

According to this first continuous approach, the curve
evolution L(t) of Equation (5) is reformulated into an
evolution of an implicit representation of the curve
defined by an evolving surface ¢ : IR* x [0,7) — R,
where for each value of {, £ = ¢~1(0). This means

that curve £(t) is the zero level set of ¢(t) : R* — IR.
This Eulerian formulation for curve evolution was in-
troduced by Osher and Sethian in [13, 14] to overcome
numerical difficulties and handle topological changes.
As initialization for £(0), we start with an infinites-
imal circle around the start point p. The function ¢
is initialized at ¢ = 0 to be negative in the interior
and positive in the exterior of the curve £(0). This
is obtained by setting one pixel to —1 and the rest to
+1. The evolution rule of ¢ is then given by:

0¢ 1

— = ——=||V4||. 7

B Vel (7)
. . fds

For a fast implementation, of order O(M “x-) where

M is the number of points in a narrow band around
the front and At is the time step of the scheme, of the
above approach we refer to [19].



3.4.2 Shape from Shading Approach

The second approach is based on a shape from shading
method introduced by Rouy and Tourin [20, 21] and
searches for the surface U itself instead of tracking
its level sets. In this case the surface may be found
according to the following minimization procedure:
Given U = 0 at the start point as boundary condi-
tion,
ou
or

where the solution U is the steady state of U(p, 7)
when 7 is large. The limit value U = U o 1s such that

= P—||vul|, (8)

VUl = P, 9)

with obviously U = 0 at the start point. We can
again give a geometric interpretation that relates (5)
to (9). The gradient of U is normal to its level sets
L(t), and the gradient norm is thus the value of the
spatial directional derivative in the normal direction.
As U increases by dt, the normal displacement of

the level set L(1) is % from (5). So the derivative
%% = (VU,7) = ||VU|| is equal to dt/% = P. Here,

boundary conditions are given in the form of fixing the
point C(0) = pg, i.e. U(po,7) = 0 for all 7. Authors
of [20] also presented a direct numerical approach to
solve (9) and gave a convergence proof to that min-
imization procedure in the viscosity solutions frame-
work. We shall discuss this method and its discretiza-
tion in more details in the following section. The
method we recommend is presented in the following
section. It 1s in some sense a hybrid of both methods
just described.

3.4.3 Sethian Fast Marching Method

In his recent report [7], Sethian presents a fast and
efficient method for solving Eq. (9). Tt is based on
a clever way for propagating the information on the
grid. Motivated by the two methods above and by
the narrow band approach [19], his method uses the
proposed numerical scheme in [13, 20]. However, by
marching in an ordered way, the problem is solved af-
ter a fixed number of steps, and by that contradicting
Remark 5 in [20]. We recommend this method for any
real time application.

Given the potential values P; ; = P(iAz, jAy) on
a grid (e.g. the pixel grid), the numerical method
approximating U; ; in Eq. (9) is given by

— Uip17,0})" +
(max{u— U j_1,u—Usj41,01)° = PZ, (10)

N

(max{u — Uj_1;,u

where, for simplicity, we assume Az = Ay = 1. In
[20] the numerical viscosity solution was obtained by
solving the above equation at each grid point, select-
ing for U; ; the largest u that satisfies Eq. (10). The
grid points were selected in an arbitrary way, and thus
1t was claimed that convergence is obtained after infi-
nite number of such iterations. Where each iteration

involves an arbitrarily selection of a grid point (4, j),
and updating the value of U; ; at that point.

The ‘fast marching level set method’ introduces or-
der in the selection of the grid points. It is based
on the fact that information is propagating form the
source point ‘outwards’. Following [7], the method
goes as follows:

Initialization:

e For each point in the grid, let U; ; = oo (large
positive value). Label all points as far.

e Set the start point (¢, j) = p to be zero: U, = 0,
and label 1t trial.

Marching Forward Loop:

o Let (4min, Jmin) be the trial point with the small-
est U value.
e Label the point (émin, jmin) as alive, and remove
it from the trial list.
e For each of the 4 neighboring grid points (k,!) of
(Zmin y Jmin )t
— If (k, 1) is labeled far, then label it trial.
— If (k, 1) is not alive, then compute Uy ; ac-
cording to Eq. (10), selecting the largest so-

lution to the quadratic equation, which is
the only valid solution. ¢.e. solve

(max{u — min{Ux_11, Up41.1}, 0})2 +

(max{u — min{Uy 1—1, U 141}, 0})2 = sz,l’

and let Uy ; = u.

For efficiency, the trial list is kept as min heap struc-
ture. We refer to [7, 8, 9, 22] for further details on
the above algorithm, as well as a proof of correct con-
struction. Using a min-heap structure for the triallist,
the algorithm computational complexity is O(NlogN)
where N is the number of grid points. It has similar
complexity to that of graph search based algorithms
like the A* or Dijkstra. For example on a SPARC
1000, it took a second to compute the U surface of
a 256 x 256 image. This is a first order numerical
scheme. As an example for accuracy we should note
that the Euclidean distance (P; ; = 1) from a straight
line is accurate with sub pixel accuracy (error = 0). In
general, the consistency condition guarantees that as
the grid is refined, the solution converges to the true
continuous one.

3.5 Global Snake Minimization
3.5.1 Shortest path between py; and p;

Using the approach described in Section 3.2, the short-
est path between a start point pg and a destination
point p1, according to the energy minimization is the
set of points pm = (Tm, Ym) that satisfy:

U0($ma ym) + U1($ma ym) = (lxngf){Uo(x’ y) + Ul(l‘, y)}a
(11)



where Uy and U; correspond to the minimal action
obtained in the previous section with paths starting
at pg and p; respectively. A natural combination is to
use the above method in order to locate the minimal
set, and then let the model defined in [5] take over and
refine the result. However, we recommend an easier
way to compute the path by back propagation.

3.5.2 Back propagation from p;

In order to determine the minimal path between pq
and pp, we need only to calculate Uy and then slide
back on the surface Uy from (p1, Us(p1)) to (po,0).
The surface of minimal action Uy has a convex like
behavior in the sense that starting from any point
(¢,Uo(q)) on the surface, and following the gradient

escent direction, we will always converge to pg. It
means that Uy has only one local minimum that is of
course the global minimum and is reached at py with
value zero. We show in Figure 4 an example of 3D
representation of the Up(x,y) surface and a level set
image of the same Uy. Given the point py, the path
of minimal action connecting py (the minimal point in

go, U(po) = 0) and p; is the curve C(o) starting at
C(0) = p1 and following the opposite gradient direc-
tion on Upy:

aC

A 12

oo Vo, (12)

Then the solution C(s) is obtained by arclength pa-
rameterization of C(—o) with C(0) = po and C(L) =
p1. The minimal path can be obtained this way since
VU is tangent to the geodesic. This i1s a consequence
of the results in [23] that show that the light rays
(geodesics, constant parameter curves) are orthogonal
to the wave fronts (equal cost contours). The gradient
of U is also orthogonal to the wave fronts since these
are its level sets.

The back propagation procedure is a simple steep-
est gradient descent. It is possible to make a simple
implementation on a rectangular grid: given a point
q = (4,7), the next point in the chain connecting ¢ to
p is selected to be the grid neighbor (k,!) for which
U(k, 1) is the minimal, and so forth. Of course, a bet-
ter tracking can be obtained using a more precise esti-
mation of the gradient of U. In our examples we have
chosen the discrete steepest descent just described, be-
cause of its simplicity, and the fact that it is used only
for presentation purpose. We back track the path of
minimal action connecting the two points, which is
the global minimum of the snake energy defined in
Eq. (2). Being a local operation, back propagation
suffers from angular error accumulation. In [22], a
more sophisticated back propagation technique devel-
oped for other purposes is introduced, it is used in the
examples of Figure 4.

4 Regularization properties

We showed in [10] how the constant w and the po-
tential P in Eq. (2) control the smoothness of the so-
lution. We introduced quantitative results in the form

of geometric bounds on the curvature of the final con-

tour. Given a potential P > 0 and let P=w+ P, the
curvature magnitude |k = ||Cs5]] along the geodesics

minimizing (2), [, P(C(s))ds, where s is the arclength
parameter, or [ P(C(v))||Cy||dv for an arbitrary pa-
rameter v, is bounded by:

_ supplIVPI}

o] < ZERL

(13)

The conclusion is that increasing the constant w added
to P, increases the denominator without affecting
supp{||VP||}. This gives a justification for referring
to w as a regularization parameter.

5 Closed Boundary Extraction

It is often needed to detect a closed contour. Our
previous approach of finding a minimal path between
two given end points, detects the two paths that com-
plete a closed contour only if both ways correspond
to a global minimum. In the general case of selecting
the second point, it is clear that although both ways
are local minima, only one 1s a global minimum. As-
suming only one start point pg is given on the closed
contour, let us compute the minimal action U from
this start point. We should then find a second point
p1 that is located on the unknown contour and from
where the two half paths have the same energy. This
means we have to find a point p; from which there is
more than one curve connecting it to the source pg.
As can be justified in [10], these special points are the
saddles of U.

The saddle points may serve as clues in closing con-
tours of objects that are contained within the image
domain. When the user searches for a closed contour
from pg, an automatic search for saddle points on U
is performed. Back propagating from a saddle point
p1 to both directions will connect the saddle to the
source point pg by two curves. Thereby, a closed con-
tour is formed representing the complete boundary of
an object.

To detect such a saddle point, we can compute the
gradient |[VU| and the Gaussian curvature (k142), and
check for |VU| < ¢ and k1k2 < 0. Another possibility
to isolate the saddle points on U is to use a simple
test to determine the number of level crossings. Con-
sider a small radius circle centered at a candidate point
q and embedded in the horizontal plane (z,y, U(q)).
Denote the number of level crossings to be the num-
ber of points this circle intersects with the surface
(z,y,U(x,y)). Tt can be shown that this number at
a saddle point is equal to four, while for most surface
points it is two, and at maximum and minimum points
there are no level crossings. In our implementation of
the number of level crossings, for each point (7, ) in
the pixels grid, we simply count the number of sign
changes in U(k,l) — U(i, j) while traveling around the
8 neighbors (k,{) of the point.

Although there are only few saddle points in U (see
Figure 5 for example), finding the level crossing for ev-
ery point g in the domain is not enough. It is necessary



to filter out the insignificant saddles that have a rela-
tively large value of P, i.e. those that are not close to
an edge, or a too large energy U.

This usually reduces the number of candidates to
a relatively small number (only two remain after sim-
ple filtering of the saddles in Figure 5). Selecting the
right regularization constant w will obviously filter out
most of the saddles that are formed due to noise, yet
will obviously introduce further constraints on w. Ac-
cording to our experience, selecting the right w for a
smoothing effect reduces the number of saddles to the
only interesting ones.

6 Examples and Results

We demonstrate the performance of the proposed
algorithm (using the minimal action algorithm de-
scribed in Section 3.4.3) by applying it to several real
images. The images were scaled to 128 x 128 pixels,
and the gray levels for P were normalized between 0
and 1. Parameter w 1s usually of the order of 0.1.

6.1 Open contour

In the first example, we are interested in a road de-
tection between two points in the image of Figure 2.
Road areas are lighter and correspond to higher gray
levels. The potential function P was thus selected to
be the opposite of the gray level imageitself: P = 1—1.
Minimizing this potential along a curve yields a path
that follows the middle of the road. In the example of
Figure 1, we show how a bad initialization for classi-
cal snakes leads to a wrong local minimum and in fact
requires a very accurate initial guess, as in the bot-
tom example, to guarantee convergence to the desired
solution. It is shown that given two end points, the
proposed procedure detects the path of minimal action
along the right road. This example illustrates the ef-
ficiency of our approach compared to classical snakes.
Given a start point pg on the bottom left, the image
of minimal action U(x,y) from this point is shown in
Figure 2. Observe the way the level curves propagate
faster along the road. Note, that using a completely
different approach based on classical snakes, the au-
thors of [6] have also found a way to solve efficiently
the snake problem between two end points. Although
their method behaves better than classical snakes, it
does not ensure to converge to the global minimum
and may be trapped in a bad local minimum solution
as we illustrate in [10]. The interactive tool for out-
lining roads in aerial or medical images presented in
[6] could also make use of our method between fewer
constraint points or key-points to solve some cases in
which there are many erroneous local minima. QOur
approach can be used for the minimization of many
paths emerging from the same point in one single cal-
culation of the minimal action. Figure 3 shows an ap-
plication of this operation for the road image. Given
a start point in the upper left area, the path achieving
the global minimum of the energy is found between
this point and four other given points to determine
the roads graph in our previous image. In a second
example, we show an application to the detection of
blood vessels in a medical angiographic image of the
eye fundus. Here also, the potential is obtained from

Figure 1: Local Minimum. The initial data is shown
on the left and the result on the right. Results of two
different initializations of the classical snakes.

Figure 2: Top : On the right, minimal path between
two points given on the left. Bottom: Minimal action
U from bottom left start point. On the left, black cor-
responds to lower values of U, on the right a random
look up table is used to render the level curves of U.



Figure 3: Many paths are obtained simultaneously
connecting the start point on the upper left to 4 other
points. The minimal action is shown on the left.

the image itself to detect higher gray levels. These re-
sults make use of high order ODE integrators for the
back propagation as described in [22].

6.2 Closed contour

In this third example, we want to extract the left
ventricle in an MR image of the heart area. The po-
tential 1s a function of the distance to the closest edge
in a Canny edge detection image (see Figure 5). Since
we are after a closed contour, we use the saddle points
classification in closing the boundaries of a single ob-
ject in the heart image (see Figure 5). Given a single
point, saddle point classification 1s used to find the
second end point. The closed contour is formed of the
two minimal paths joining the start and end points.

7 Concluding Remarks

In this paper we presented a method for integrating
objects boundaries by searching for the path of mini-
mal action connecting two points. The search for the
global minimum makes sense only after the two end
points are determined, and the ‘action’ or ‘potential’
is generated from the image data. The proposed ap-
proach makes snake initialization an easier task that
requires only one or two end points and overcomes
one of the fundamental problems of the active con-
tour model, that is being trapped by an insignificant
local minimum. Applying the proposed procedure to
real images gave very promising results that were com-
pared to the results obtained by other approaches that
search for local solutions. The result of the proposed
procedure may be considered either as the solution or
as initial condition for classical snake models, or even
more naturally for geodesic active contours for further
refinement. In the later case, refinement to the proper
solution should be almost immediate.
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Figure 5:  MRI heart image: Top: Original image
on the left, edge image on the right; Middle: distance
map on the left, minimal action U with its level sets
on the right and represented as a graph surface below;
Bottom: saddle point image on the left (after filtering,
only two of the white points remain); after filtering the
white pixels, the selected saddle point is used to find
the two half contours on the right.



