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1. Introduction

1.1. Image Segmentation—The Problem

For a long time now the vision problems have been
subdivided into three classes: low-, intermediate- and
high-level, each concerned with its own level of image
description. On the low level we seek description in
terms of edges, ridges, specularities, fragments of lines
or circles; on the intermediate level—in terms of ob-
jects, their geometry, background, occlusions, etc; on
the high level we expect to recognize the objects and
give a full three-dimensional scene description. Typical
problems on each level are edge detection, segmenta-
tion, and object recognition, respectively. This subdivi-
sion probably stems from David Marr’s model of vision
[53].

The vision process, especially at the lower levels, is
usually considered to be bottom-up. The importance
of top-down feedbacks both within the same level and
between levels is recognized sometimes, but is usually

∗The figures in color are available at http://www.technion.ac.
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neglected in practice. Nevertheless, a thoughtful look
at a few pictures readily convinces that in many cases
edge detection, segmentation, three-dimensional re-
construction and image understanding are impossible
without each other. Neuroanatomical [43] and psy-
chophysical [48] evidence suggests that in primates
these processes influence each other, and take place
simultaneously or at least overlap in time.

A “neighbor” field of image processing poses
other problems: image enhancement, restoration,
compression—that may seem different and even un-
related. However in reality, when we have to deal with
noisy, blurred, distorted images, some restoration and
enhancement are necessary before we can extract infor-
mation from the image even at the low level. And vice
versa: information obtained from vision algorithms
(edges, segmentation) can help enormously to achieve
good restoration and compression.

All this suggests that a segmentation or edge de-
tection algorithm that incorporates as much of vision
levels as possible and attempts restoration concur-
rently with segmentation should be worthwhile. Sadly,
object recognition or full 3-dimensional description
from a single image are very difficult without some
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a priori knowledge. So, we are left with edge detection,
segmentation, and restoration. Variational formulation
provides a framework that can integrate these problems
and suggest algorithms for their solution.

1.2. Is it Worth it?

The vast amount of existing algorithms for edge detec-
tion and segmentation compels to provide some jus-
tification, in addition to the general ideas above, be-
fore embarking upon developing yet another algorithm.
Here we demonstrate how the most basic version of the
Mumford-Shah functional (that will be the main theme
of this work) can be used to improve drastically the
performance of the Sobel edge detector.

Let us consider a circle (a color image in the range
[0, 1]3) and add to it Gaussian noise with zero mean and
standard deviation 0.8 (Fig. 1b). The gradient magni-
tude (c) does not show clear maximum at the edge,
and of course the edge detector performance is very
poor (d). On the other hand, if we take the edge func-
tion produced by the implementation of the Mumford-
Shah functional described in Section 4.1 (e), we see a
clear edge, and the same edge detector performs very
well (f).

1.3. This Work

This work is an attempt to provide a general variational
framework for color (or general vectorial) images, gen-
eralizing the Mumford-Shah functional. We also give
a review of the variational methods of segmentation
and edge detection. The initial intent was to provide a

Figure 1. The noisy circle experiment.

theoretical background for the model proposed and im-
plemented in [45]. These plans, however, changed due
to the need to find the right balance of model plausibil-
ity, quality of numerical results and theoretical validity.

One important issue is absent from this work, in spite
of it being closely related to the theme and often leading
to similar formulations and results. We do not consider
at all the Markov Random Fields point of view on the
segmentation problem. It should be noted that a great
deal of research was done in this field, and there are
some promising results (see, e.g., [51]).

Another omission that we have to mention is the
functionals depending on the second-order derivatives,
as the weak plate model of [12]. These functionals were
recently studied in [3], where elliptic approximations
are provided and implemented numerically.

This work is organized as follows: in Section 2 we re-
view the relevant work on variational segmentation and
color edge detection. Section 3 offers a summary of the
theory of the Mumford-Shah functional and of numer-
ical minimization methods devised for this functional.
We propose some generalizations of the Mumford-
Shah functional in Section 4, discuss them and show
some numerical results. Our conclusions and some di-
rections for further research are presented in Section 5.

A few words on the notation. When a sentence de-
fines a new term, this term is shown italicized. The
norm | · | is the usual Euclidean norm of any object: a
number, a vector, or a matrix. In particular, for a func-
tion u : R

n → R
m we put |∇u| = (

∑
( ∂ui

∂x j
)2)1/2 (also

called Hilbert-Schmidt or Frobenius norm of the ∇u
matrix). Ln is the Lebesgue measure on R

n .
Hn−1 is the (n −1)-dimensional Hausdorff measure,

which is a generalization of the area of a submanifold.
For any A ⊂ R

n we take a covering {Sj } of A (that is,
A ⊂ ∪Sj ); the diameter of the covering is defined to
be λ({Sj }) = sup j diam Sj . Then

Hm(A) = lim
δ→0

inf
λ({Sj })<δ

∑
j

ωm

(
diam Sj

2

)m

,

where ωm is the (Lebesgue) volume of a unit ball in
R

m .

2. Image Segmentation—A Biased Review

2.1. Variational Segmentation

We consider images as functions from a domain in R
2

into some set, that will be called the feature space.
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When needed, we suppose that the domain is [0, 1]2.
Some examples of feature spaces are

– an interval, e.g. [0, 255] or [0, ∞), for gray-level
images;

– a subset of R
3, e.g. [0, 1]3 or S1 × [0, 1]2, for color

images in RGB or HSV;
– R

2 or S1 × R+ for a movement field.

2.1.1. Regularization. Regularization is among the
well-established techniques of image restoration. A
standard model of image acquisition is given by

w = Lu + e. (1)

Here

– L is a linear operator representing the optical sys-
tem, usually a Hilbert-Schmidt operator Lu(x) =∫

K (x, y)u(y) dy.1 The effect of L is a blur; when it
is space-independent we have K (x, y) = K̄ (x − y),
meaning L is a convolution.

– e is an additive noise introduced by the recording sys-
tem, which is usually assumed to be random, some-
times with known mean value and variance σ 2.

In order to restore the image we have to solve Eq. (1)
for u, which is usually an ill-posed problem; the main
reason for the ill-posedness is that L is compact, and so
L−1 is unbounded even when it exists. Another problem
is that e is unknown.

We expect from (1) that ‖Lu − w‖2 ≈ σ 2. To com-
pensate for the loss of information in (1) we must use
our a priori knowledge about the image, usually in the
form of a smoothness assumption. That is, we assume
that

∫ |∇u|2, or
∫ ‖Du‖2 (for some differential opera-

tor D) is small. So, we arrive at the problem

min
u

∫
‖Du‖2 subject to ‖Lu − w‖2 = σ 2.

Using Lagrange multipliers, we arrive at an equivalent
problem of

min
u

(
‖Lu − w‖2 + α

∫
‖Du‖2

)
.

The mathematical framework for this kind of argu-
ment was provided by Tikhonov in 1963 (see [8]). Con-
sider an operator L : F → G on Hilbert spaces, and a

closed convex subset E ⊂ F representing a priori con-
straints. Given Lh and wδ such that ‖L − Lh‖ ≤ h and
‖w − wδ‖ ≤ δ, the problem is to construct an approx-
imate solution of Lu = w, u ∈ E . Tikhonov proposed
to do it by minimizing the functional ‖Lhu − wδ‖2

G +
α‖u‖2

F , where α > 0 is a parameter (to be chosen sep-
arately). This problem is well-posed. Applying this to
our problem, we might set F = W 1,2, G = L2, δ = σ

and α can be chosen to ensure ‖Lu − wδ‖2
G = δ2.

Frequently in applications Lh = I , thus the func-
tional becomes ‖u − wδ‖2

G + α‖u‖2
F , in our case∫

((u − w)2 + α|∇u|2).

2.1.2. Total Variation Methods. The presence of the
term ‖u‖2

F = |∇u|2 in Tikhonov regularization often
leads to smoothing and blurring of the edges; the
Dirichlet functional

∫ |∇u|2 “prefers” smooth gradi-
ents and “punishes” steep edges (e.g. the characteristic
function of a unit ball in R

n is not in W 1,2(Rn)). How-
ever, most images contain steep edges, which provide
very important perceptional clues, and we would like
to recover these steep edges during the reconstruction.
The problem is that these edges are represented by dis-
continuities in the corresponding functions.

A solution was proposed in [60, 63], based on shock
capturing numerical methods from fluid mechanics,
and suggesting to minimize

∫
((u − w)2 + α|∇u|); the

term
∫ |∇u| is called total variation of f .2 This func-

tional allows discontinuities in the object function, and
is usually minimized over the space of functions of
bounded variation (to be defined later). Total variation
methods were extensively studied during the last ten
years, both theoretically and practically; in particular,
well-posedness is shown in [22]. An extensive bibliog-
raphy can be found in [78, ch. 1.7].

The main drawbacks of the total variation recon-
struction are

1. The integrand |∇u| is not differentiable. The stan-
dard method to overcome this is to replace it with√

|∇u|2 + β, where β > 0 is a small parameter.
Even then the resulting Euler-Lagrange equation
is nonlinear and demands sophisticated numerical
methods.

2. Although allowing discontinuities in the object
function, total variation functional still “punishes”
each discontinuity, proportionally to the height of
the jump. An ideal image restoration functional
should not punish large jumps (probable edges), def-
initely not more than small ones (probable noise). In
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Figure 2. An example of total variation restoration. Note the good
restoration of sharp edges and appearance of staircasing.

this respect, total variation exhibits behavior which
is opposite to our expectations.

3. Very strong “staircasing” effect on noisy images
which are far from being piecewise constant (Fig. 2).
To overcome this, we can use total variation
restoration near edges and W 1,2 restoration in the
smooth regions; two different methods based on this
idea were suggested and implemented in [22] and
[13].

2.1.3. Mumford-Shah Functional. In [57] Mumford
and Shah suggested segmenting an image by minimiz-
ing a functional of the form

∫
�\K (|∇u|2 +α|u −w|2)+

β length(K ), where K is the union of edges in the im-
age. This choice is suggested by modeling images as
piecewise smooth functions. The image is supposed to
consist of a number of regions with slow and smooth
changes within each region. Across the boundaries be-
tween these regions the changes may be abrupt. Of
course, we must also suppose that these boundaries are
“nice” (a union of smooth curves of small length, for
example).

The functional consists of three terms:

– the smoothing term
∫
�\K |∇u|2, which should be

small, if u is changing slowly within regions;
– the fidelity term

∫
�\K |u − w|2, that controls how

close the smoothed image should be to the input;
– the length of the edges length(K ), that must be kept

small to prevent the edges from filling up the whole
image.

A justification of this model from the statistical point
of view is given in [56]. Morel and Solimini in their
book [55] show that many other segmentation models

are particular cases of the Mumford-Shah functional or
are closely related to it.

The minimization of the Mumford-Shah functional
poses a difficult problem, both theoretical and numeri-
cal, because it contains both area and length terms and
is minimized with respect to two variables: a function
u : � → R and a set K ⊂ �. This kind of functionals
was introduced in [33]. In [32] De Giorgi introduced
the name “free discontinuity problems”, referring to his
idea of representing K as the set of jump points of f .

2.2. Color Image Segmentation

There are numerous sources of vectorial images, i.e.,
those with feature space of dimension higher than
one. The most obvious, widespread and important are
color images. Other examples include multi-modal
medical images, satellite images taken at a set of
wavelengths, spectral imaging and others. Sometimes
vectorial images are derived from scalar images, e.g.
decompositions of texture data with respect to some
basis or a collection of image derivatives of some or-
ders. Optical flow is yet another source of vectorial
images.

We will work with the usual color images, for sim-
plicity in the RGB color space. The easiest way to
extend image processing methods onto color images
is the channel-by-channel processing. Unfortunately,
it is frequently inadequate for segmentation purposes.
Some edges may be strong only in one channel and
remain undetected. Since any smoothing unavoidably
shifts the edges slightly, edges that are strong in two
or three channels will produce thin stripes of spurious
colors (see Fig. 3). Thus, some coupling between the
channels is needed.

The usual mean of providing coupling is by defining
a suitable edge indicator function e, that is supposed
to be small in the smooth parts of the image and large
in the vicinity of an edge. A typical example is e(x) =

Figure 3. Channel-by-channel color image restoration. The restora-
tion was performed by a convolution with a Gaussian. Note the ap-
pearance of a green stripe, though there is no green in the original
image.
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|∇u(x)|2, and the integral
∫

e usually constitutes the
smoothing term.

2.2.1. Images as Manifolds. One of the promising
frameworks to derive and justify edge indicators is to
consider images as embedded manifolds and to look at
the induced metric for measurements of image smooth-
ness. This idea first appeared in [37]. In this article
images are considered as functions u : R

2 → R
m ,

thus defining a two-dimensional manifold in R
m with

induced metric gi j = 〈 ∂u
∂xi

, ∂u
∂x j

〉 (under the assumption
that rank ∂ui

∂x j
= 2 everywhere). The case m = 1 of a

usual grey-level image makes no sense in this setting,
however.

In the work [29] an edge indicator based on g
is proposed and implemented: edges are where the
greater eigenvalue of g has a maximum in the direc-
tion of the corresponding eigenvector. Also, noticing
the problem when m = 1, the author suggests repre-
senting an image as a surface embedded in R

m+2 given
by (x1, x2, u1, . . . , um) as a “more consistent geometric
interpretation”.

This interpretation was formulated in the most gen-
eral way and implemented in [72]. The n-dimensional
m-valued image is considered as an n-dimensional
manifold in (Rn+m, h) given by

(x1, . . . , xn, f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

and
√

det g, where g is the metric on the manifold in-
duced by the metric h from R

n+m , is taken to be the

Figure 4. Examples of Beltrami flow restoration.

edge indicator function. The integral
∫ √

det g gives
the n-dimensional volume of the manifold, and its min-
imization brings on a kind of non-isotropic diffusion,
which the authors called the Beltrami flow. A similar
flow was also independently suggested in [80].

As pointed out in [72, 73, 80], when implementing
such a diffusion, one must decide what is the relation-
ship between unit lengths along the xi axes and along
the u j axes. It seems that no general principle exists to
help in this decision. The significance of the ratio of
the scales is discussed in detail in [72]. We will denote
this coefficient by γ .

The simplest example of this framework is u : R →
R. The corresponding energy is just the length of the
graph (x, u(x)), and its minimization is by the curvature
flow.

In the case of gray-level images this framework
was first introduced in [38]. Here the image is a sur-
face in R

3, the edge indicator is the area element
(1 + u2

x + u2
y)1/2, and the flow is closely related to

the mean curvature flow. (See Fig. 4 for an illustration
of these two examples.)

In a number of works (e.g. [24, 46, 75]) another prob-
lem is considered, leading to very similar equations. It
is the problem of smoothing, scaling and segmenting
an image in a “non-flat” feature space, like a circle, a
sphere or a projective line.

2.2.2. Related Work. Segmentation and restoration
of vectorial images are not always a straightforward
generalization of grey-level image segmentation, and
different possibilities were offered and explored.
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In [49] a texture image is decomposed using
Gabor wavelets and represented as a scalar function
f (σ, θ, x, y) depending (besides position) on the fre-
quency (σ ) and direction (θ ) of the wavelet. This func-
tion then serves as the argument for a Mumford-Shah
type functional, but with quadruple integrals. It seems
impossible to use this continuous formulation for cases
where the feature space is finite-dimensional (like in
color images) but the computer implementation (which
uses 24-dimensional sampling, 3 frequencies and 8 ori-
entations, of the feature space) can be used for all cases.
An essential point in this paper is that the right choice
of a norm on the feature space is important; the authors
argue convincingly in favor of using L2 and not the L∞.

The representation in [9] is again a Mumford-Shah
type functional used to segment texture, but here the im-
ages are vectorial (texture decomposition using Zernike
polynomials). The approximating function is supposed
to be piecewise constant, which eliminates the smooth-
ing term from the functional. Instead of the length of
the discontinuity set its affine total variation is taken,
thus making the segmentation affine-invariant. The im-
plementation is by region growing.

Mumford-Shah functional is the model in [23], again
with piecewise constant approximation. The coupling
between channels is by the common edge set. Imple-
mentation is very different, though, using level sets to
represent the edge.

The work [79] is concerned with diffusion rather than
segmentation, but the framework is very similar. The
Hilbert-Schmidt norm of the Jacobian squared (|∇u|2)
is proposed as diffusion coefficient, common for all
channels. Also, a metric on the feature space is intro-
duced: feature space of normalized image gradient is
equipped with the S1 metric.

Color images are regarded as functions � : R
2 →

R
3 in [66, 67], carrying on the ideas from [29]: use

the metric induced from the feature space to extract
information on edges. In these works the expression
f (λ+ − λ−), where λ+, λ− are the eigenvalues of the
metric, is used as a diffusion coefficient. CIELAB is
used as a metric on the feature space (color).

Color TV (total variation) method, introduced in
[14], proposes the use of the norm

TVn,m(�) =
(

m∑
i=1

[∫
�

|∇�i |
]2

)1/2

as a smoothing term for color image � : � ⊂ R
n →

R
m , which is a generalization of total variation. This

method performs very well for images with crisp edges,

but has strong staircasing effect on smooth gradients.
Besides, any TV method, given a “step” as an input will
reduce its height; generally, we would like the opposite,
so that the edges are enhanced.

A similar approach is taken in [71]: in a variational
formulation for scalar image segmentation, the smooth-
ing term is replaced by the |∇ f |. The values are trans-
formed to CIELAB.

A more general approach is adopted in [15]. The
feature space is taken to be [0, 1]3 with a general
Riemannian metric ϕi j . A distance d(u(x), w(x)) be-
tween the points of two images is taken to be the
geodesic distance, and the energy is

∫
�\K

(
d(u(x), w(x))+

∑
i, j

ϕi j 〈∇ui , ∇u j 〉
)

+H1(K ).

3. Mumford-Shah Functional

3.1. Theory

3.1.1. Weak Formulation. Initial formulation in [58]
suggested minimizing

E(u, K ) =
∫

�\K
(|∇u|2 + α|u − w|2) + β length(K )

over u ∈ C1(�\K ) and K a finite union of smooth
arcs. Mumford and Shah conjectured that minimizers
exists, and that there are three possible configurations
for endpoints and crossings in K :

1. triple points, where three arcs meet at 120◦,
2. boundary points, where a curve meets the boundary

perpendicularly,
3. crack tips, where a single arc ends without meeting

others.

The core difficulty in proving this conjecture is that
the functional is a sum of an area and a curvilinear
integrals, and the curve of integration is one of the
variables.

There is yet another problem, namely that the pro-
posed domain of u and K is too restrictive and lacks
some convenient properties (compactness, lower semi-
continuity of the functionals in question). This one,
however, is ordinary; instead of imposing that K is a
finite union of smooth arcs, we should drop this re-
quirement, and prove later that a minimizing K must
be smooth. This also requires replacing length(K ) with
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something defined on non-smooth sets; the most natural
replacement is H1(K ), the one-dimensional Hausdorff
measure of K .

The crucial idea in overcoming the difficulties of
interaction between the area and the length terms is to
use a weak formulation of the problem. First, we let K
be the set of jump points of u: K = Su . The functional
thus depends on u only. Second, we relax the functional
in L2, that is, we consider

Ē(u) = inf
{

lim inf
k→∞

E
(
uk, Suk

)
: uk → u in L2,

uk ∈ C1
(
�

∖
Suk

)
,H1

(
Suk

∖
Suk

) = 0
}
.

It turns out (see [7]) that this functional has an integral
representation

Ē(u) =
∫

�

(|∇u|2 + α|u − w|2) + βH1(Su)

and if Ē(u) is finite then u ∈ SBV, the space of special
functions of bounded variation.

In this weak setting it was shown in [34] that Ē
indeed has minimizers and that at least some of them
are regular enough (with K closed and u ∈ C1(�\K )).
Actually, it was proven for the more general case of
� ⊂ R

n , n ≥ 2, and

F(u) =
∫

�

(|∇u|2 + α|u − w|2) + βHn−1(Su).

3.1.2. BV Functions. The question arises of the space
on which to consider the functional F , in particular,
how should Su be defined. A class of functions is needed
that is sufficiently regular for ∇u to exist a.e., but if we
take too regular a class (like W 1,1) jump sets will be too
small (of zero “length”). If we take a class too general,
the jump set will be irregular, and we need it to be
reasonably similar to a closed subset of finite length.
It seems that the natural habitat for F is the space of
functions of bounded variation. We will now define it
and present some of its properties. The books [5, 39]
can be consulted for a full treatment of the subject.

A function u ∈ L1(�, R
m) (for an open � ⊂ R

n) is
of bounded variation, if

|Du|(�) = sup

{
m∑

k=1

∫
�

uk div gk :

gk ∈ C1
0 (�, R

n), ‖gk‖∞ ≤ 1

}
< + ∞.

Here |Du|(�) is the (total) variation of u in �. This
definition agrees with one in Section 2.1.2 for smooth
real functions.

We will say that u0 is an approximate limit of u at x ,
and write ap limy→x u(y) = u0, if

lim
ρ→0

ρ−n
∫

Bρ (x)
|u(y) − u0| dy = 0.

A function of bounded variation has an approximate
limitLn-a.e. The approximate discontinuity set Su is the
set of all points in � where u does not have an approxi-
mate limit. The set Su is countably Hn−1-rectifiable,
that is, it is (up to a Hn−1-negligible set) a union
of countably many C1 hypersurfaces. Hence, Hn−1-
everywhere we can define a unit normal νu to Su and
traces of u on Su by

u±(x) = ap lim
y→x

±〈y−x,νu (x)〉>0

u(y).

Functions of bounded variation are also Ln-a.e. ap-
proximately differentiable, that is, for Ln-a.e. x ∈ �

there is a vector ∇u(x) such that

ap lim
y→x

|u(y) − u(x) − 〈∇u(x), y − x〉|
|y − x | = 0.

So, we see that all the elements of F are well defined,
and have their intended meaning.

3.1.3. SBV Functions. However, it turns out that BV
is too large for our purpose, since it contains function
like the Cantor-Vitali function (Cantor’s ladder), and
every w ∈ L2 can be approximated by such a func-
tion that has zero derivative and is continuous. Thus,
infBV F = 0, but this infimum is never reached.

The following result is classical for functions in
BV(R, R): f = f a + f j + f c, where f a is absolutely
continuous, f j consists of a finite or a countable num-
ber of jumps, f c is continuous and d

dx f c(x) = 0 a.e.
(in f c ‘c’ is for Cantor). Sometimes this result is for-
mulated in terms of measures: by the Radon-Nikodym
theorem, Du = Dau + Dsu, with Dau = ∇uL1 being
the absolutely continuous part and Ds the singular part
(with respect to L1). Dsu can be further decomposed
into the part supported on Su (the jump part) and the
rest (the Cantor part): Dsu = D j u + Dcu, and thus
Du = Dau + D j u + Dcu.
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The latter decomposition can be generalized to
BV(Rn, R

m). The functions without the Cantor part in
their derivatives are the special functions of bounded
variation and this space is denoted by SBV(Rn, R

m).
It is well suited for the study of functionals of the
Mumford-Shah type.

We also note that Dau = ∇uLn (here ∇u is the app-
roximate gradient) and D j u = (u+ −u−) ⊗ νuHn−1|Su .

For technical reasons, we will also need the fol-
lowing spaces: generalized BV (GBV) and general-
ized SBV (GSBV). A function u is in GBV(GSBV)
if its truncations min(T, max(T, u)) are in BV(SBV)
for any T > 0. For the practical applications to images,
where all functions are bounded, these distinctions are
irrelevant.

3.1.4. Known Theoretical Results. Presently, the
Mumford-Shah conjecture in its original form stands
unproven, yet there are interesting and meaningful ad-
vancements (see the review [54] and the book [5]). For
example, in [15] the conjecture is proved under the as-
sumption that the number of connected components of
K is bounded. A more general but less complete re-
sult appears in [5]: there exists a closed set � ⊂ K ,
Hn−1(�) = 0 such that K\� is locally C1,ν hypersur-
face for any ν < 1 (in the case n = 2 also for ν = 1).

Another result proved in [4], that is important for
numerical approximations, is that a minimizer (u, K ) of
the Mumford-Shah functional can be approximated by
pairs (uε, Kε) where Kε is piecewise-smooth and uε ∈
C∞(�\K ), and such that E(u, K ) < E(uε, Kε) + ε. A
similar result was proved in [36].

Besides the question of the regularity of minimizers,
it has to be proven that the conjectured configuration
are, indeed, minimizers (and the only ones). Consider-
able progress was made and is also reviewed in [5]. In
a recent preprint [16] crack tip is shown to be a global
minimizer.

An interesting and important limiting case of the
Mumford-Shah functional is the problem

F̄ =
∫

�

α|u − w|2 + βHn−1(Su), ∇u = 0 on �\Su

(2)

of approximating g by a piecewise-constant function.
For this functional, the Mumford-Shah conjecture was
proved already in the original paper [58]; an elemen-
tary constructive proof can be found in [55]. Exis-
tence of minimizers for any n ≥ 2 was shown in
[28].

3.2. Numerical Approximation

The main difficulty that hampers attempts to minimize
the Mumford-Shah functional E(u, K ) numerically is
the necessity to somehow store the set K , keep track
of possible changes of its topology, and calculate its
length. Also, the number of possible discontinuity sets
is enormous even on a small grid.

We can, however, try to find another functional
approximating the Mumford-Shah functional that will
also be more amenable to numerical minimization.
The framework for this kind of approximation is
�-convergence, introduced in [35] (also see the book
[31]).

3.2.1. Γ-convergence. A precursor of �-convergence
was G-convergence, which was an attempt to invent a
convergence for a certain type of differential equations
that would imply convergence of their solutions. An
example by De Giorgi showed that pointwise conver-
gence was inappropriate for this purpose. Treating the
differential equations as Euler-Lagrange equations of
appropriate functionals, we can reformulate the prob-
lem as “find a convergence of functionals that implies
convergence of minimizers”. �-convergence has this
very nice property.

Consider a metric space (X, d). A sequence of func-
tionals Fi : X → R+ is said to �-converge to F : X →
R+ (�- lim Fi = F) if for any f ∈ X

1. ∀ fi → f : lim inf Fi ( fi ) ≥ F( f ) (lower inequality);
2. ∃ fi → f : lim sup Fi ( fi ) ≤ F( f ) (upper inequal-

ity, or existence of recovery sequence).

We can extend this definition to families of functionals
depending on a continuous (real) parameter ε ↓ 0, re-
quiring convergence of Fεi to F(x) on every sequence
εi ↓ 0.

It is important to notice that �-limit depends on what
kind of convergence we have on X . Sometimes, to avoid
ambiguities, it is designated as �(X )- or �(d)-limit.

We can take X = R to construct simple examples
of �-convergence [31, 42]. For example (see Fig. 5),
�- limn→∞ sin nx = −1, and if we set

fn(x) =




−nx 0 ≤ x ≤ 1/n,

nx − 2 1/n ≤ x ≤ 2/n,

0 otherwise,

f (x) =
{

−1 x = 0,

0 otherwise,
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Figure 5. Examples of �-convergence: (a) sin nx and (b) fn .

then �- limn→∞ fn = f . Note that in the first case there
is no pointwise convergence and in the second case the
pointwise limit of fn is 0. In the first case every point
is a limit point of a sequence of minimizers of sin nx ,
and indeed, the limiting function has a minimum at
every point. In the second case, arg min fn = 1/n → 0,
and �-limit has a minimum at 0 with the correct value
of −1.

Some important properties of �-convergence:

– �-limit (if exists) is unique and lower semicontinu-
ous. In particular, if Fi ≡ F is a constant sequence,
then �- lim Fi equals the lower semicontinuous en-
velope of F .

– If �- lim Fi = F and G : X → R+ is continuous,
then �- lim(Fi + G) = F + G.

– If �- lim Fi = F , fi minimizes Fi and fi → f , f
minimizes F . More than that, it is enough to have
Fi ( fi ) ≤ inf Fi + εi for some εi ↓ 0.

– Suppose that �- lim Fi = F and that there is a com-
pact set K ⊂ X such that ∀i infX Fi = infK Fi . Then
there exists minX F = limi infX Fi . Moreover, if fi

is a minimizer of Fi and fi → f , then f is a mini-
mizer of F .

3.2.2. The Approximations. We come back to the
task of approximating the Mumford-Shah functional
by a nicer functional. However, we can not approx-
imate F(u) with functionals of the usual local inte-
gral form Fε(u) = ∫

�
fε(∇u, u) for u ∈ W 1,1 (see [19,

p. 56]). One of the possibilities to overcome this is to
introduce a second auxiliary variable, which was done
in [6, 7].

The approximation proposed in [7] is

Fε(u, v) =
∫

�

[
v2|∇u|2 + β

(
(v − 1)2

4ε
+ ε|∇v|2

)

+ α|u − w|2
]

dx . (3)

The meaning of v in this functional is clear—it approx-
imates 1 −χSu , being close to 0 when |∇u| is large and
1 otherwise. This functional is elliptic and is relatively
easy to minimize numerically, for an implementation
see [61].

A finite-element discretization was proposed in [10],
with a proof that the discretized functionals also �-
converge to F(u) if the mesh-size is o(ε). This dis-
cretization was improved and implemented in [17].

Other possible approximations of F can be found
in [19]. Some of these approximating functionals are
easier to minimize using finite elements and not finite
differences. It should be taken into account, though,
that the geometry of the mesh is important and in gen-
eral can introduce anisotropy to the limiting functional
[18, 59]. On the other hand, finite elements implemen-
tations with adaptive mesh based on non-local approx-
imations have less parameters to take care of compared
to finite differences.

A different approach is taken in [77], which rep-
resents Su as a curve using level sets, and the curve
evolves together with the image itself to minimize the
Mumford-Shah functional by steepest descent.

The piecewise-constant approximation F̄ , Eq. (2),
has also been a subject of numerical implementations.
A region-merging algorithm was proposed in [47] (also
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described in [55]); it creates a scale-space-like pyrami-
dal structure with respect to the parameter β. Another
implementation using level-set methods to represent Su

is described in [25] and then extended in [26]. In these
works, however, the number of different values u can
assume must be prescribed a priori.

3.3. Related Formulations

In [12] Blake and Zisserman describe models of
piecewise-continuous images. One of these models—
the weak membrane—is the Mumford-Shah func-
tional. The discretization of the functional they suggest
is ∑

W (| fi+1, j − fi, j |) + W (| fi, j+1 − fi, j |)
+ | fi, j − gi, j |2

where W is given by

W = min{µ2x2, ν}, µ, ν parameters.

They also suggest an algorithm (the graduated non-
convexity) to minimize the discretized functional. In
[20, 21] the relationship between the Mumford-Shah
and Blake-Zisserman formulations is clarified: the
Blake-Zisserman discrete formulation �-converges to
a functional close to the Mumford-Shah functional.
However, the distinction is important: in the limiting
case of Blake-Zisserman functional the edge length is
replaced by the sum of it’s projections on the axes.
Another similar discrete model, due to Geman and
McClure, also �-converges to the same functional [62].

In [68] the functional
∫
�

(u − w)2 + λ(|∇u|) is pro-
posed, where λ(t) is quadratic for t < cρ and linear for
t ≥ cρ (cρ is a parameter determining the coarseness
and amount of edges to be detected).

The authors of [27] propose a discrete segmentation
model, based upon certain conditions that guarantee
that the model is edge-preserving. They then represent
this model as the infimum of quadratic functionals by
introducing an auxiliary variable that “plays the role
of a discontinuity marker” (half-quadratic regulariza-
tion). In a subsequent paper [76] they add a smoothing
constraint for this variable, thus arriving at a functional
almost identical to Eq. (3).

In [65] the authors propose the functional

Jε =
∫

�

|u − w|2 + ελ2
∫

�

ϕ(|∇u|) + η2

ε

∫
�

W (u),

where ϕ(|∇ f |) is an edge-preserving smoothing term
(similar to those discussed in Section 4.4.2), and W
is a multi-well potential, for segmentation of images
consisting of patches belonging to a few classes (many
satellite images belong to this category). The number
and the characteristics of these classes (mean bright-
ness and standard deviation) are known beforehand. As
in the above two works, the authors introduce an auxil-
iary variable based on the half-quadratic regularization,
and arrive at

J ∗
ε ( f, b) =

∫
�

|u − w|2 + ελ2
∫

�

[b|∇u| + ψ(b)]

+ η2

ε

∫
�

W (u),

which they minimize numerically. The authors mention
some �-convergence results to justify their model, but
do not prove the �-convergence of Jε or of J ∗

ε . In [64]
this model is extended to the vectorial case.

A term penalizing for curvature (
∫

K κ2) is added
to the Mumford-Shah functional in [52]. The authors
show �-convergence and give numerical examples.

The author of [70] modified the Ambrosio-Tortorelli
construction to be

Gε =
∫

�

[
v2|∇u| + α|u − w|

+ β

(
ε|∇v|2 + (1 − v)2

4ε

)]

and conjectured that it approximates in the sense of
�-convergence the functional

∫
�\K

(|∇u| + α|u−w|) dx +β

∫
K

|u+ − u−|
1 + |u+ − u−| dH1.

This result is proved in [1].

4. Generalizing Mumford-Shah Functional
to Color

4.1. The Straightforward Generalization

The most obvious way to generalize the Mumford-Shah
functional to color images u : � → R

3 is to use

F(u) =
∫

�

(|∇u|2 + α|u − w|2) + βHn−1(Su). (4)
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In this case the only coupling between the channels is
through the common jump set Su . The approximation
results from Section 3.2 translate to this case without
change (as noted in [7]) and we can use the elliptic
approximation

Fε(u, v) =
∫

�

[
v2|∇u|2 + β

(
(v − 1)2

4ε
+ ε|∇v|2

)

+ α|u − w|2
]

dx, (5)

to find minimizers of F(u). We minimize Fε by steepest
descent,

ut = −Cu[2α(u − w) − div(2v2∇u)]

= −2Cu[α(u − w) − v2�u − 2v〈∇v, ∇u〉],
vt = −Cv

[
2v|∇u|2 + β

(
v − 1

2ε
− 2ε�v

)]
.

A result of numerical minimization is shown in Fig. 6.
The original images are shown in Fig. 7.

Figure 6. Results of numerical minimization of F , with ε = 0.04, α = 0.6, β = 0.015 for ‘house’ and ε = 0.02, α = 1.2, β = 0.01 for ‘trees’.

4.2. The Geometrical Generalizations

We want to generalize the Mumford-Shah functional∫
�

(|∇u|2 + α|u − w|2) + βHn−1(Su)

to color images, using the “image as a manifold” inter-
pretation, while the length term Hn−1(Su) remains the
same.

The fidelity term that is most consistent with the ge-
ometric approach would be the Hausdorff distance be-
tween the two surfaces, or at least

∫
�

d(u(x), w(x)),
where d(·, ·) is the geodesic distance in the feature
space, as in [15]. Yet, both these approaches seem
computationally intractable. The suggestion of

∫
�

‖u−
w‖2

h , made in [45], (here hi j is the metric on the fea-
ture space, and ‖·‖h is the corresponding norm on
the tangent space) is easy to implement, but lacks
mathematical validity: u − w is not in the tangent
space. We will use the simplest reasonable alternative,∫
�

|u − w|2.
The smoothing term is the area

∫
�

√
det g or the en-

ergy
∫
�

det g, where g is the metric induced on the
manifold by h—the metric on the feature space. In the
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Figure 7. The original images: ‘house’ (compressed and noisy) and ‘trees’ (clean image with strong dithering).

case where

h =




γ 0 0 0 0

0 γ 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




is a Euclidean metric on � × [0, 1]3 and

U (x, y) = (x, y, R, G, B)

= (x, y, u1(x, y), u2(x, y), u3(x, y))

is the embedding, we get

det g = det(dU ∗ ◦ h ◦ dU )

= γ 2 + γ
∑

i

|∇ui |2 +
∑
i< j

|∇ui × ∇u j |2

= γ 2 + γ (|ux |2 + |uy |2) + |ux × uy |2
= γ 2 + γ |∇u|2 + |ux × uy |2.

Thus, we have two models:

F1(u) =
∫

�

√
γ 2 + γ |∇u|2 + |ux × uy |2

+ α

∫
�

|u − w|2 + βHn−1(Su),

F2(u) =
∫

�

(γ |∇u|2 + |ux × uy |2)

+ α

∫
�

|u − w|2 + βHn−1(Su).

Note that γ 2 was dropped in the second functional,
since in this case it merely adds a constant to the
functional.

However, the theory of functionals on SBV or GSBV
seems to be unable to deal with these models at the
moment. It is necessary to establish lower semiconti-
nuity of the functionals, both to ensure existence of
minimizers, and as an important component in the
�-convergence proofs. Though, theorems on lower
semicontinuity of functionals on SBV exist only for
isotropic functionals (depending only on |∇u| and not
on ∇u itself), or at least functionals with constant rate
of growth, i.e.

c|∇u|r ≤ f (∇u) ≤ C(1 + |∇u|)r

for some C > c > 0 and r > 1.

The term |ux × uy |2 is of order |∇u|4, yet we can not
bound it from below by c|∇u|4 for some c > 0, there-
fore we can not use these theorems.

The role of the term |ux ×uy |2 is explored in [44]. If
we assume the Lambertian light reflection model, then
u(x, y) = 〈n(x, y), l〉ρ(x, y), where n(x, y) is the unit
normal to the surface, l is the light source direction,
and ρ(x, y) captures the characteristics of the material.
Assuming that for any given object ρ(x, y) = ρ =
const we have u(x, y) = 〈n(x, y), l〉ρ, hence Im u ⊂
span{ρ} and rank du ≤ 1. This is equivalent to ux ×
uy = 0.

Thus, the term |ux × uy |2 in the edge indicator en-
forces the Lambertian model on every smooth surface
patch. It also means that taking rather small γ makes
sense, since we expect |ux × uy |2 to be (almost) 0, and
|∇u|2 to be just small.
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4.3. The Proposed Generalizations

A generalization of the Mumford-Shah functional pro-
posed here is an attempt to combine the nice smoothing-
segmenting features of the geometric model with the
existing �-convergence results for the elliptic ap-
proximation of the original Mumford-Shah functional.
We pay for that by the loss of some of the geo-
metric intuition behind the manifold interpretation.
First, we replace |ux × uy |2 by |ux × uy | in F1 and
F2:

G1(u) =
∫

�

(γ |∇u|2 + |ux × uy |)

+ α

∫
�

|u − w|2 + βHn−1(Su),

G2(u) =
∫

�

√
γ 2 + γ |∇u|2 + |ux × uy |

+ α

∫
�

|u − w|2 + βHn−1(Su).

Note that |ux ×uy | enforces the Lambertian model, just
as |ux × uy |2.

The new functional G2 seems to violate another im-
portant requirement, necessary for lower semicontinu-
ity with respect to L1 convergence: being quasiconvex
(see the definition and discussion in Section 4.3.1). Be-
sides, since the smoothing term is of linear growth,
approximation similar to those in Section 3.2 will con-
verge to a functional with more interaction between the
area and the length terms, and depending on the Cantor

Figure 8. Edge indicator functions of various functionals.

part of Du. We thus propose the functional

G3(u) =
∫

�

√
γ + |∇u|2 + α

∫
�

|u − w|2

+ β

∫
Su

|u+ − u−|
1 + |u+ − u−| dHn−1 + |Dcu|(�).

Although lacking the term |ux × uy |, it nevertheless
enforces quite strong coupling between the different
channels, definitely stronger than F(u), Eq. (4) (in F(u)
the coupling is only through the common edges, and in
G3 the smoothing term introduces additional coupling).

On Fig. 8 we show all the edge indicator functions
we have discussed, acting on the ‘trees’ image.

4.3.1. Analysis and Implementation of G1. The
elliptic approximation for G1 is provided in [40]. Ac-
tually, a much more general result is proven, but what
we need is the following

Theorem. Let f : R
n×m → [0, +∞) be quasiconvex

and satisfy c1|z|p ≤ f (z) ≤ c2|z|p with p > 1, c1, c2

positive constants. Let the functionals Gε(u, v) be
defined by

Gε(u, v) =
∫

�

[
(|v|2 + ηε) f (∇u)

+ ε p−1

p
|∇v|p + (v − 1)p

aεp′

]
dx,

if u, v ∈ W 1,p, 0 ≤ v ≤ 1, and Gε(u, v) = + ∞ other-
wise. Here p′ = p

p−1 , a = (2
∫ 1

0 (1 − s)p−1ds)p′
, ηε =
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o(ε p−1), ηε > 0. Then Gε(u, v) �-converge to G(u, v)
defined by

G(u, v) =
∫

�

f (∇u) dx + Hn−1(S(u))

if u ∈ GSBV(�, R
m) and v = 1 a.e. and G(u, v) =

+∞ otherwise. The �-convergence is with respect to
the convergence in measure.

We will now check that all the conditions of the
theorem are satisfied.

A function f : R
n×m → [0, +∞) is said to be qua-

siconvex if for every a ∈ R
n×m and for every ϕ ∈

W 1,∞
0 (D, R

m) and for every bounded domain D ⊂ R
n

we have

f (A) ≤
∫

D
f (A + ∇ϕ(x)) dx

/ ∫
D

dx .

This condition is very difficult to verify. We will use an-
other property, polyconvexity, which is easier to check
and which implies quasiconvexity. A function f is
called polyconvex if there exists a convex function g
such that

f (A) = g
(

A, adj2 A, . . . , adjmin{m,n} A
)
.

Here adjk A is the matrix of all k × k minors of the
matrix A. The book [30] can be used as a reference on
this topic. In our case

f = γ |∇u|2 + |ux × uy | = γ |∇u|2 + |adj2∇u|,

so f is polyconvex and thus quasiconvex.
The growth estimate holds with p = p′ = 2 since

γ |∇u|2 ≤ γ |∇u|2 + |ux × uy |
= γ |∇u|2 + |ux ||uy || sin θ |
≤ γ |∇u|2 + | sin θ |

2
|∇u|2 ≤

(
γ + 1

2

)
|∇u|2.

Thus a = 1, and we have the approximation

Gε(u, v) =
∫

�

[
(v2 + ηε)(γ |∇u|2 + |ux × uy |)

+ ε

2
|∇v|2 + (v − 1)2

2ε
+ α|u − w|2

]
dx .

We will neglect ηε = o(ε) (as in [61, 74] and other
works). As noted in [69], the function of ηε is to en-
sure regularity of minimizers and not the convergence
of the functionals. We will also change slightly the part
that approximates the edges: ε

2 |∇v|2 + (v−1)2

2ε
; we will

multiply the first term by 2 and divide the second by
the same factor, to stay closer to the original approx-
imation (5). We also have to multiply this part by β.
These changes do not affect the �-convergence proof,
and the approximation of G1 is

G1
ε(u, v) =

∫
�

[
v2(γ |∇u|2 + |ux × uy |)

+ β

(
ε|∇v|2 + (v − 1)2

4ε

)
+ α|u − w|2

]
dx.

The steepest descent equations are

ut = −Cu

[
2α(u − w)

− div

{
v2

(
2γ ux + uy × (ux × uy)

|ux × uy | ,

2γ uy − ux × (ux × uy)

|ux × uy |
)}]

vt = −Cv

[
2v(γ |∇u|2 + |ux × uy |)

+ β

(
v − 1

2ε
− 2ε�v

)]
.

Results of a numerical minimization of G1 are shown
in Fig. 9.

4.3.2. Analysis and Implementation of G3. A func-
tional similar to the Mumford-Shah functional, but with
linear growth in the gradient is examined in [1], and it is
proved in particular that �- lim Gε = G (with respect
to L1 convergence), where

Gε(u, v) =
∫

�

[
v2 f (|∇u|) + β

(
ε|∇v|2 + (1 − v)2

4ε

)]
if u, v ∈ H 1(�) and 0 ≤ v ≤ 1 a.e.,

and +∞ otherwise,

G(u, v) =
∫

�

f (|∇u|)

+ β

∫
Su

|u+ − u−|
1 + |u+ − u−| dH1 + |Dcu|(�)

if u ∈ GBV(�) and v = 1 a.e.,

and +∞ otherwise,
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Figure 9. Minimization of G1 with ε = 0.3, α = 0.05, β = 0.0025, γ = 0.01 for ‘house’ and ε = 0.1, α = 0.1, β = 0.01, γ = 0.005 from
‘trees’.

and f : [0, +∞) → [0, +∞) is convex, increasing, and
limz→∞ f (z)/z = 1. With the aim of generalizing this
result to color images we define f (z) =

√
γ + z2,

G3(u) =
∫

�

√
γ + |∇u|2 + α

∫
�

|u − w|2

+ β

∫
Su

|u+ − u−|
1 + |u+ − u−| dHn−1 + |Dcu|(�),

G3
ε(u, v) =

∫
�

[
v2

√
γ + |∇u|2 + α|u − w|2

+ β

(
ε|∇v|2 + (1 − v)2

4ε

)]
,

with domains as above.
Upon inspection of the proofs in [1], it seems that

everything remains valid for the vectorial case, except
one part, that establishes the lower inequality for the
one-dimensional case (n = 1) in a small neighborhood
of a jump point. We will now provide a “replacement”
for this part (the second part of Proposition 4.3 in [1],
beginning with Eq. (4.4)). We will need the Jensen’s
inequality in integral form for a function of several
variables (see e.g. [41]): if ϕ : R

m → R is convex, and

(u1, . . . , um) : R → R
m are integrable, then

ϕ

(
1

b − a

∫ b

a
u1, . . . ,

1

b − a

∫ b

a
um

)

≤ 1

b − a

∫ b

a
ϕ(u1, . . . , um). (6)

Proof: We consider Gε j (u j , v j , (t − η, t + η)). For
any δ > 0 we can find x1, x2 ∈ (t − η, t + η) such that

lim |u j (x1) − u j (x2)|
> ess sup
τ1,τ2∈(t−η,t+η)

|u(τ1) − u(τ2)| − δ,

lim v j (x1) = lim v j (x2) = 1.

Take x̄ j ∈ [x1, x2] such that v j (x̄ j ) = inf[x1,x2] v j < 1.
Then we obtain the following estimate:

Gε j (u j , v j , (t − η, t + η)) ≥ Gε j (u j , v j , (x1, x2))

=
∫ x2

x1

v2 f (|∇u j |) + β

(
ε|∇v j |2 + (1 − v j )2

4ε

)

≥ v j (x̄ j )
2
∫ x2

x1

f (|∇u j |)
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+ β

∫ x2

x1

(
ε|∇v j |2 + (1 − v j )2

4ε

)

≥ v j (x̄ j )
2|x2 − x1| f

( |u(x2) − u(x1)|
|x2 − x1|

)

+ β

∫ x2

x1

(1 − v j )|v′
j | dt

≥ v j (x̄ j )
2|x2 − x1| |u(x2) − u(x1)|

|x2 − x1|
+ β

∫ v j (x1)

v j (x̄ j )
(1 − s) ds + β

∫ v j (x2)

v j (x̄ j )
(1 − s) ds

≥ inf
τ∈[0,1]

{
τ 2|u(x2) − u(x1)| + β

∫ v j (x1)

τ

(1 − s) ds

+ β

∫ v j (x2)

τ

(1 − s) ds

}
.

We have used Eq. (6) for the function ϕ(z) = f (|z|) to
establish∫ x2

x1

f (|∇u j |) =
∫ x2

x1

ϕ(∇u j )

≥ |x1 − x2|ϕ
( ∫ x2

x1

du1

dx

x2 − x1
, . . . ,

∫ x2

x1

dum

dx

x2 − x1

)

= |x1 − x2|ϕ
(

u1(x2) − u1(x1)

x2 − x1
, . . . ,

um(x2) − um(x1)

x2 − x1

)

= |x1 − x2| f

(
1

|x2 − x1| |u(x2) − u(x1)|
)

.

We have also used the inequality µ2 + ν2 ≥ 2µν with
µ = √

ε|∇v j | and ν = 1−v j

2
√

ε
, and in the next line—the

fact that in our case f (z) > z.3

Letting j → ∞, we get

lim inf Gε j (u j , v j , (t − η, t + η))

≥ inf
τ∈[0,1]

{
τ 2

∣∣∣∣ ess sup
τ1,τ2∈(t−η,t+η)

|u(τ1) − u(τ2)| − δ

∣∣∣∣
+ 2β

∫ 1

τ

(1 − s) ds

}
.

From here we can proceed as in [1].

Recently, [2] provided a more general result for
linear-growth functionals, which also implies our con-
vergence result for G3. The proofs in [2] are much more
technical than in [1].

The steepest descent equations for G3
ε are

ut = −Cu

[
2α(u − w) − div

(
v2(ux , uy)√
γ + |∇u|2

)]
,

vt = −Cv

[
2v

√
γ + |∇u|2 + β

(
v − 1

2ε
− 2ε�v

)]
.

Results of a numerical minimization of G3 are shown
in Fig. 10.

4.4. General Considerations

4.4.1. Details of Numerics. All the implementations
demonstrated here are very straightforward. The steep-
est descent equations are discretized, and Euler method
(forward derivative in time) is used with timestep
small enough to ensure stability. Neumann (natural)
boundary conditions are used. Typical running time for
the implementations shown here were 1 to 5 minutes
(depending on the functional and the parameters) in
MATLAB on a Pentium-500.

The only non-trivial detail is that the terms of the
form div(C∇u) should be discretized with forward
derivatives for the gradient and backwards derivatives
for the divergence, or vice versa, to provide tight nu-
merical support.

Another aspect of the numerics is the selection of ε.
Consider the simplest one-dimensional case

Fε(u, v) =
∫

�

[
v2|∇u|2 + β

(
(v − 1)2

4ε
+ ε|∇v|2

)

+ α|u − w|2
]

dx .

On one hand, we want ε to be small to have the best pos-
sible approximation of the original functional; on the
other hand, taking ε too small will give too much weight
to the (v−1)2

4ε
term, thus preventing edge detection.

Let us consider a case when w is a “pure jump” from
0 to 1, and α is high enough to force a jump in u. In
this case, we expect the resulting u and v to be as in
Fig. 11, u being (almost) equal to w, and v being not
equal to 1 at one point (the situation will be as shown,
if all derivatives are backwards).

Let v̄ be the value of v at the jump point 0 ≤ v̄ < 1. If
we discretize the functional Fε(u, v) (using backward
derivatives) the only significantly different from zero
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Figure 10. Minimization of G3 with ε = 0.3, α = 0.05, β = 0.0025, γ = 0.01 for ‘house’ and ε = 0.0003, α = 5, β = 0.001, γ = 0.0015
for ‘trees’.

Figure 11. The simplest one-dimensional case: A jump.

terms will be

f (v̄) = v̄2

h2
+ β

[
(1 − v̄)2

4ε
+ 2ε

(
1 − v̄

h

)2]
.

The minimal value of f (v̄) is at v̄ = B
A+B , where A =

1/h2 and B = β
[

1
4ε

+ 2ε
h2

]
. If we want the jump to be

detected, that is, to have v̄ " 1, we must have B " A.
This means that βh2 " ε and εβ " 1 must hold. These
are indeed true for the results shown in Section 4.1 and
Section 4.3.1 (in our implementations we always took
h = 1).

4.4.2. On One Common Theme in Image Processing.
Many modern algorithms for image restoration have
one detail in common. It is introduced by different au-
thors, based on different assumptions or observations,
and in some cases without noticing that the same idea
has guided other researchers. It is the desire to have
a smoothing term that will be the W 1,1 norm near the
edges, and the W 1,2 norm far from them.

Many different techniques were employed to achieve
this purpose. In [81] the authors introduce an edge in-
dicator function f (|∇u|) and set

f ′(x) =
√

x2 + b2 −
√

(x − a)2 + b2 − b + √
a2 + b2

2a
.

For small b (the values a = 5, b = 0.01 were used)
f (x) is very close to a quadratic function on [0, a] and
to a linear function on [a, +∞).

It is pointed out in [11] that the f (x) is known in
statistics as the Huber’s minimax estimator, designed
to be an error measure not too sensitive to outliers.

A similar function appears in [22], in an approx-
imation to the total variation. To overcome staircas-
ing (see Section 2.1.2) the same article also suggests
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minimizing

1

2ε

∫
|∇u|<ε

|∇u|2 +
∫

|∇u|≥ε

|∇u| − ε

2
,

which is actually the same approximation (compare
Eqs. (16) and (31) in [22]), but here ε is taken to be
rather large.

The model proposed in [13] is

∫
�

|∇u|p(|∇u|),

where p(t) is a smooth monotone function, descending
from 2 to 1 as t grows.

In [68] we see again a smoothing term of the from∫
�

λ(|∇ f |), where λ(t) is quadratic for t < cρ and lin-
ear for t ≥ cρ . Here cρ is a parameter determining the
coarseness and amount of edges to be detected, and is
to be set by the user.

Finally, we studied in this work edge indicators like√
γ + |∇u|2 and

√
γ 2 + γ |∇u|2 + |ux × uy |2 (after

[72]). It is noted in [72, 73] that for |∇u| " √
γ we

have
√

γ + |∇u|2 ≈ √
γ + |∇u|2

2
√

γ
, and for |∇u| # √

γ

we have
√

γ + |∇u|2 ≈ |∇u|. Thus, we again have a
quadratic function in the smooth regions, and a linear
one near the edges, with

√
γ being the threshold. In

[73] the parameter γ is changed locally, depending on
the image.

To the best of our knowledge, there were no attempts
to unify these approaches into one mathematically solid
framework. Hopefully, it will become a topic of future
research.

Figure 12. Minimization of F2 with ε = 0.3, α = 0.1, β = 0.01, γ = 0.2.

5. Summary and Future Research

5.1. Summary

In this work we suggested, analyzed and implemented
some possible generalizations of the Mumford-Shah
functional to the color images, based on a geometric
model of images as manifolds.

It seems that if we want to have a �-convergence
of a numerical approximation to the suggested models,
the models must be simplified, at least at the present
state of the theory of the �-convergence for the free-
discontinuity problems.

Some of the numerical results are quite satisfactory.
It is easy to see how different models accentuate differ-
ent features in edge detection and restoration. It seems
that none of the suggested models is the best, but rather
that a model should be selected depending on the task
at hand.

5.2. Unanswered Questions
and Unexplored Possibilities

In spite of all theoretical difficulties we encountered,
we can write “approximations” modeled after Eq. (3)
for any reasonable edge indicator function, and mini-
mize them numerically. Since the intuition behind the
approximation is clear, we can give a fairly good (albeit
not rigorous) qualitative prediction of the result, the
way it was done in [45, 76]. We present in Fig. 12 a
result of numerical minimization of

F2
ε (u, v) =

∫
�

[
v2(γ |∇u|2 + |ux × uy |2)

+ β

(
ε|∇v|2 + (v − 1)2

4ε

)
+ α|u − w|2

]
.
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Since the results are good, it is reasonable to expect
that we can prove convergence for F2

ε . At the moment,
we can only show that F2 is lower semicontinuous.
Also, we do not know, if anything interesting can be
shown about F1 and G2.

Some other questions and possible improvements:

– We do not have convergence results for the numeri-
cal method we currently use. For some other method
of minimization it might be possible to prove con-
vergence and give an error estimate.

– The current numerical method is also rather slow and
definitely can be improved. One simple possibility
is to vary the time step in a kind of a secant method.

– We could have had “edge focusing” like in [61].
– Setting the problem in other color spaces—HSV

(see [50]), YCC, CIELAB, CB—may improve the
results.

Notes

1. This assumption makes (1) a Fredholm integral equation of the
first kind.

2. This is only one of the many possible generalizations of total
variation to the functions of several variables. It is sometimes
referred to as total variation in the Tonelli’s sense.

3. The condition f (z) > z is not necessary to establish this result, but
makes it a bit easier. We could alternatively use limz→∞ f (z)/z =
1, infer that f (z) ≥ z(1 − θ (z)), limz→∞ θ (z) = 0, and wait until
we let η → 0 (and thus x2 → x1) for θ (z) to disappear.
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