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Abstract

An automatic cortical gray matter segmentation from a
three-dimensional brain images (MR or CT) is a well known
problem in medical image processing. In this paper we for-
mulate it as geometric variational problem for propagation
of two coupled bounding surfaces. An efficient numerical
scheme is used to implement the geodesic active surface
model. Experimental results of cortex segmentation on real
three-dimensional MR data are provided.

1. Introduction

The cerebral cortex is the outmost layer of the brain
bounded by the outer cortical surface (Cerebral Spinal Fluid
(CSF) – gray matter interface) and the inner cortical surface
(gray matter – white matter interface). Determining the lo-
cation of the cortical surface of the human brain is often
a first step in brain visualization and analysis. Due to the
complicated and convoluted nature of the cortex, the man-
ual slice by slice segmentation is generally a difficult, in-
efficient and inaccurate process, which makes an automatic
3D cortex segmentation an important task.

A significant number of techniques have been proposed
to deal with the problem. The whole set of approaches can
be roughly divided into two groups: region based methods
and boundary detection methods. Here we concentrate on
one promising direction that is based on deformable sur-
faces. Deformable surface is a 3D analog of the active con-
tour model that was introduced in [15, 30] as the ‘snake
model’ and is based on minimizing an energy along a curve.
Caselles et al. [3] and Malladi et al. [21] introduced a geo-
metric flow that includes an internal and external geometric
measures. Later, the geodesic active contour model derived
from a re-parameterization invariant functional was pro-
posed as a geometric alternative for the snakes [4, 5, 16, 27].

Efficient numerical methods were developed for accelerat-
ing of deformable surfaces propagation and some of them
were applied for brain segmentation, e.g. see [20].

The idea to use several interacting deformable con-
tours/surfaces for segmentation was exploited by several
research teams. Samson et al. [24] proposed a super-
vised classification model to find an image partition com-
posed of homogeneous regions, assuming the number of
classes and their intensity properties are known. The classi-
fication problem was formulated using a variational frame-
work aimed to propagate mutually exclusive regular curves
towards class region boundaries. Paragios and Deriche
[23] presented an image segmentation approach that incor-
porates boundary and region information sources under a
curve-based minimization framework (see also [6] for a re-
lated effort). The propagating interfaces are coupled by de-
manding a non-overlapping set of curves that restricts each
pixel to belong to only one region.

More recently, there has been an effort to apply con-
straints imposed by the cortex structure properties for better
segmentation. Davatzikos et al. [11, 10] used the homo-
geneity of intensity levels within the gray matter region to
introduce a force that would drive a deformable surface to-
ward the center of the gray matter layer. Teo et al. [29] used
the connectivity of the gray matter as a constraint in build-
ing the cortex representation by growing out from the white
matter boundary. MacDonald et al. [18, 19] proposed to use
an inter-surface proximity constraint in a two surface model
of the inner and outer cortex boundaries in order to guaran-
tee that surfaces do not intersect themselves or each other.
Finally, Zeng et al. [33] used the fact that the cortical layer
has a nearly constant thickness to design a coupled surfaces
model in such a way that a special propagation speed term
forces the inter-surface distance to remain within a prede-
fined range.

In this paper we adopt the coupled surfaces model and
develop it using a variational geometric framework. Our
implementation is based on advanced numerical schemes



for surface evolution that yield a geometrically consistent
and computationally efficient technique.

2. The Geometric-Variational Approach

2.1. Coupled surfaces segmentation as a minimiza-
tion problem

Let S(u; v) : IR2 ! IR3 = (x(u; v); y(u; v); z(u; v)) be
a parameterized two-dimensional surface in 3-D space. Us-
ing the active contour approach, a boundary segmentation
can be seen as a weighted area minimization problemminS Z g(x; y; z)da = minS Z g(S(u; v))jSu � Svjdudv;
whereda is an area element andg(x; y; z) : IR3 ! IR+ is
a positive boundary indicator function that depends on the
image. It gets small, close to zero values along the boundary
and higher values elsewhere.

In order to extract the cortical layer we have to find its
two bounding surfaces: The outer CSF – gray matter inter-
face, and the inner gray matter – white matter interface.

Theoretically, if one could provide perfect boundary in-
dicator functions both for the inner and outer interfaces -gin() andgout() - it would have been sufficient to use a sin-
gle surface approach, i.e. to find the inner and outer bound-
ing surfacesSin andSout by separate minimization of the
two uncoupled functionalsSin = argminS Z ginda; Sout = argminS Z goutda (1)

In practice, the limitations imposed by the imaging devices
often result in noisy and inaccurate image data, which re-
duce the reliability of boundary detectors that use only local
information, e.g. voxel intensity, gradient, etc.

That is the main reason for incorporating additional con-
straints imposed by the nature of the problem. In the case of
cortex segmentation it was suggested to use the fact that the
cortical layer has a nearly constant thickness (about 3mm)
[2]. Zeng et al. [33] designed a coupled surfaces model
where two deformable surfaces are kept within a predefined
normal range from each other by specially designing the in-
terface propagation speed in such a way that it decreases
whenever surfaces are getting too far or too close.

Let us adopt a similar coupled surfaces approach, but,
rather than heuristically building an expression for the sur-
face propagation speed [33], we shall derive it from a min-
imization problem. This time, unlike in (1), we want a si-
multaneous minimization of both interfacesSin andSout,
so that the minimum is reached whenSin captures the CSF

– gray matter boundary andSout locks on to the white mat-
ter – gray matter boundary. We start with(Sin;Sout) = arg minSin;Sout 24ZSinginda+ ZSoutgoutda35 : (2)

Motivated by [33] we link between the two surfaces, and
introduce an additional component that penalizes the devi-
ations of the inter-surface distance from the normal range,
which yields the functionalF(Sin;Sout) = ZSin h �d((x; y; z);Sout)� gin(x; y; z)da+ ZSout h �d((x; y; z);Sin)� gout(x; y; z)da= ZSinh �d(Sin(u; v);Sout)� gin(Sin(u; v))� jSinu � Sinv jdudv+ ZSouth �d(Sout(u; v);Sin)� gout(Sout(u; v))� jSoutu � Soutv jdudv;

(3)

whered((x; y; z);S) is the Euclidean distance of the point(x; y; z) from the surfaceS, i.e. d(�x;S) = min�xs2Sfk�x��xskg, andh(dist) is a penalty function that gets a constant
low value when the distances are within the ‘normal’ range
and grows fast otherwise, see Figure 1.
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Figure 1. The ‘ h’ function gets low constant
value in the normal range

It is clear that the minimum of the functional (3) is
reached when both surfaces are located at their corre-
sponding cortex boundaries and the inter-surface distance
is preferably kept within the normal range.



2.2. Level set formulation

The Osher-Sethian [22] level set method is a numeri-
cal technique for analyzing evolving interface motion that
works on a fixed coordinate system and considers an evolv-
ing front in an implicit formS = f(x; y; z)j�(x; y; z) = 0g:

The basic idea is to evolve the three-dimensional embed-
ding function� : IR3 ! IR so that its zero level set would
always track the current position of the evolving surfaceS.
Let us denote the set of 2D surfaces defined by different
level sets of� by S(u; v; �). Then, the original surface is
defined asS(u; v) = S(u; v; �)j�=0.

Using the Coarea equation [12] one can prove that close
to the interfaceZ�ZuZv h �d(Sin(u; v; �);Sout)�gin(Sin(u; v; �))� jSinu � Sinv jdudvd�+Z�ZuZv h �d(Sout(u; v; �);Sin)�gout(Sout(u; v; �))� jSoutu � Soutv jdudvd�= ZxZy Zz h �d((x; y; z);Sout)� gin(x; y; z)jr�injdxdydz+ZxZy Zz h �d((x; y; z);Sin)� gout(x; y; z))jr�outjdxdydz:

(4)

Essentially, Equation (4) enables us to implement sur-
face evolution on the fixedx; y; z coordinate system. Be-
sides its important property of automatic handling topolog-
ical changes of the evolving surface, the level set approach
gives us a very simple and stable way to compute the dis-
tance used as an argument of theh function. Since the im-
plicit representation of the evolving surface does not imply
any restrictions on the form of the embedding function, we
are free to define the� function as a distance map. Then,
the distance from a point(x; y; z) to the surfaceS, defined
by the zero level set of the embedding function�, is simply�(x; y; z). Therefore, the expression in (4) can be rewritten
asL(�in;�out) =ZxZy Zz h(�out(x; y; z))gin(x; y; z)jr�injdxdydz+ZxZy Zz h(�in(x; y; z))gout(x; y; z))jr�outjdxdydz;

(5)

subject to�in and �out are distance extensions from
their zero sets, and we are looking for

��in;�out� =argmin�in;�out L(�in;�out).
Taking the variation with respect to�in and�out and

writing it as a gradient descent flow yields the systemd�indt = div

�h(�out)gin(x; y; z) r�injr�inj�+dh(�in)d�in gout(x; y; z)jr�outjd�outdt = div

�h(�in)gout(x; y; z) r�outjr�outj�+dh(�out)d�out gin(x; y; z)jr�inj: (6)

There exists one limitation to the model developed so far.
As the system uses only local information, it can be trapped
by a meaningless local minimum, unless initialized close to
the desired boundary. In order to overcome this difficulty
we add an additional force that comes from volume maxi-
mization and is known as the balloon force [9]. We add the
following volume maximization terms to the functional�24ZSindV +ZSoutdV 35 = �24ZuZv Sin � �Sinu � Sinv � dudv+ZuZv Sout � �Soutu � Soutv � dudv35 ; (7)

wheredV is a volume element and� is a negative constant.
It is equivalent to applying a pressure force outward. In or-
der to stop the surface expansion near the desired boundary
we also multiply the propagation forces by the edge indica-
tor function (using the freedom of parameterization of the
gradient descent). In level set formulation this yieldsd�indt = gin ��div

�h(�out)gin r�injr�inj�+dh(�in)d�in goutjr�outj+ �jr�inj�d�outdt = gout � �div

�h(�in)gout r�outjr�outj�+dh(�out)d�out ginjr�inj+ �jr�outj� : (8)

2.3. Numerical scheme

An explicit Euler scheme with forward time derivative
introduces a numerical limitation on the time step needed
for stability. Moreover, the whole domain needs to be
updated each step, which is a time consuming operation.



In order to cope with these limitations we use the fast
geodesic active contours approach [13] which is based on
the Weickert-Romeny-Viergever [32] semi-implicit additive
operator splitting (AOS) scheme and uses the narrow band
approach to limit the computation to a tight region of few
grid points around the zero level set [7, 1].

We rely on the fact that the embedding function� is a
distance map. Gomes and Faugeras [14] proposed an ap-
proach, where the Hamilton-Jacobi equation used to evolve
the distance function is replaced by a PDE that preserves
the� function as a distance map (see also [28]), which was
applied for cortex segmentation using the coupled surfaces
model, see also [33]. Here we re-initialize the� function
every iteration using the fast marching method [26, 25, 31],
which is a computationally optimal numerical method for
distance computation on rectangular grids. The method has
a computational complexity bound ofO(N), whereN is the
number of points in the narrow band as shown by Tsitsiklis
[31], and requires a set of grid points with a known exact
distance to the zero level set for initialization. Those seed
points are detected with sub-pixel accuracy using an algo-
rithm motivated by the ‘Marching Cubes’ algorithm [17, 8].
For every grid cube within the narrow band where the�
function changes its sign we find the distance to the zero
level set for each one of the eight cube vertices. The cube is
split into five pyramids (Figure 2(a)) and within each pyra-
mid the� function is approximated by a four-dimensional
hyperplane.
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Figure 2. (a) Grid cube split into five pyramids
(b) Finding distance to the zero level curve -
2D case

In order to clarify this idea let us first explore the low
dimensional case where a 2D curve is implicitly given by
the zero level of a function� : IR2 ! IR (Figure 2(b)). A
grid cell is split into two triangles and there exists one and
only one plane,P , going through the points�(v1);�(v2)
and�(v3), wherev1, v2 andv3 are the triangle vertices.
The values of the� function at the vertices are then updated
to the distance between the vertex and the zero level line ofP . Each vertex adopts the minimal of all its updates.

Going back to the three-dimensional case, let�n4�1 be a

vector defining a hyperplane in 4D going through the four
points�(v1), �(v2), �(v3) and�(v4) (Figure 2(a)), so that
the hyperplane equation is given by�nT �x = �, where�x is
a 3D point written in homogeneous coordinates. The plane�n can be found by solving the system of four linear equa-
tionsf�nT �vi = �(vi); i = 1; ::; 4g. Then, the zero level set
of hyperplane�n is a plane in 3D given by�nT �x = 0. The
distances we are looking for are the distances from verticesvi to the zero level plane. One should verify that the normal
vector from thevi to the zero level plane is inside the pyra-
mid. Otherwise, the shortest distance on the intersection of
the plane with the pyramid boundary is taken instead.

The procedure above is repeated each iteration for both
inner and outer surfaces and the corresponding narrow
bands automatically modify their shapes as we re-initialize
the distance maps. As one can see from (6), when updat-
ing�in the values of�out are to be defined within the area
of �in numerical support, and vice a versa. Therefore, it
is important to ensure that the narrow band of one surface
includes the other. This can be done using asymmetric nar-
row bands as in [33], or using a single narrow band for both
surfaces.

3. Experimental Results

(a) (b) (c)

Figure 3. Boundary indicator functions: (a) A
slice from the original MR image. (b) Result
of the inner boundary detection operator. (c)
Result of the outer boundary detection oper-
ator

In order to apply our method to cortex segmentation we
have yet to determine appropriate boundary indicator func-
tions for the inner and outer interfaces:gin andgout. Here,
we adopt a simplified version of an operator used by Zeng
et al. [33], measuring the likelihood of a voxel to be on the
boundary between two tissues. It is assumed that a statis-
tical distribution of the image intensities is known for each
one of the three tissues (CSF, gray matter, and white matter).



(a) (b) (c)

Figure 4. Coupled surfaces propagation. Top: inner surface , Bottom: outer surface. (a) Initial
position, (b) Intermediate state, (c) Final result.

The probability of a voxelv to be on the boundary between
tissue A and tissue B is estimated from the ratio between
the probability measures integrated over a neighborhood ofv. Figure 3 shows the result of applying the inner and outer
boundary detectors on a single slice from the original MR
brain image.

We still need to set initial conditions (the initial position
of the surfaces) in order to start the segmentation process.
This is done by manually choosing several seed points in-
side the white matter region and building two small concen-
tric surfaces (e.g. spheres or cubes) at the normal distance
from each other. Figure 4(a) shows an initial condition with
seven ‘seeds’.

The coupled surfaces then propagate outwards, driven by
a balloon force multiplied by the boundary indicator func-
tion, while maintaining the inter-surface distance, whichis
controlled by theh function (3). Finally, the interfaces con-
verge to their exact boundary position that minimize the
weighted area and maximal volume as determined by the
functionals (4) and (7). The process terminates when the
surfaces do not change for two time steps. Figures 4(b,c)
show an intermediate state and the final result. Both inner
and outer surfaces are shown.

The three standard views (sagittal, axial and coronal)
of the segmented outer and inner cortical surfaces are pre-

sented in Figure 5 and a zoom-in of the extracted boundaries
for a single slice is shown in Figure 6.

For a 192x250x170 MR image of the whole brain, our
algorithm runs in about 2.5 minutes on a Pentium III PC.

4. Concluding remarks

In this paper we presented a new approach for cortex
segmentation. The method is based on the coupled surfaces
model that was derived as a minimization problem in a vari-
ational geometric framework. The surface evolution is per-
formed using the fast geodesic active contour approach -
an efficient numerical scheme combining semi-implicit ad-
ditive operator splitting propagation scheme, level set rep-
resentation, narrow band approach and the fast marching
method. An efficient technique is proposed for the zero
level set reconstruction in 3D. Cortex segmentation results
from a real MR brain images were presented.

5. Acknowledgements

We thank Prof. Gabriele Lohmann from Max Planck In-
stitute of Cognitive Neuroscience who kindly provided us
with the brain MR images. This research was partially sup-
ported by the German-Israeli Foundation (GIF).



(a) (b) (c)

Figure 5. Different views of the reconstructed cortical sur faces. Top: Inner surface. Bottom: Outer
surface. (a) Sagittal view, (b) Axial view, (c) Coronal view .

Figure 6. Extracted boundaries in a single
slice section and a zoom into a small region.
White contour - outer surface, black contour
- inner surface
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