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One of the hardest problems in face recognition is dealing with facial expressions. Finding an
expression-invariant representation of the face could be a remedy for this problem. We suggest
treating faces as deformable surfaces in the context of Riemannian geometry, and propose to ap-
proximate facial expressions as isometries of the facial surface. This way, we can define geometric
invariants of a given face under different expressions. One such invariant is constructed by iso-
metrically embedding the facial surface structure into a low-dimensional flat space. Based on this
approach, we built an accurate three-dimensional face recognition system that is able to distinguish
between identical twins under various facial expressions. In this chapter we show how under the
near-isometric model assumption, the difficult problem of face recognition in the presence of facial
expressions can be solved in a relatively simple way.

0.1 Introduction
It is well-known that some characteristics or behavior patterns of the human body are strictly

individual and can be observed in two different people with a very low probability – a few such
examples include the DNA code, fingerprints, structure of retinal veins and iris, individual’s written
signature or face. The term biometrics refers to a variety of methods that attempt to uniquely
identify a person according to a set of such features.

While many of today’s biometric technologies are based on the discoveries of the last century (like
the DNA, for example), some of them have been exploited from the dawn of the human civilization
[17]. One of the oldest written testimonies of a biometric technology and the first identity theft
dates back to biblical times, when Jacob fraudulently used the identity of his twin brother Esau to
benefit from their father’s blessing. The Genesis book describes a combination of hand scan and
voice recognition that Isaac used to attempt to verify his son’s identity, without knowing that the
smooth-skinned Jacob had wrapped his hands in kidskin:

“And Jacob went near unto Isaac his father; and he felt him, and said, ’The voice is Jacob’s
voice, but the hands are the hands of Esau’. And he recognized him not, because his hands
were hairy, as his brother Esau’s hands.”

The false acceptance which resulted from this very inaccurate biometric test had historical conse-
quences of unmatched proportions.

Face recognition is probably the most natural biometric method. The remarkable ability of the
human vision to recognize faces is widely used for biometric authentication from prehistoric times.
These days, almost every identification document contains a photograph of its bearer, which allows
the respective officials to verify a person’s identity by comparing his actual face with the one on the
photo.

Unlike many other biometrics, face recognition does not require physical contact with the individ-
ual (like fingerprint recognition) or taking samples of the body (like DNA-based identification) or the
individual’s behavior (like signature recognition). For these reasons, face recognition is considered a
natural, less intimidating, and widely accepted biometric identification method [4, 47], and as such,
has the potential of becoming the leading biometric technology. The great technological challenge is
to perform face recognition automatically, by means of computer algorithms that work without any



human intervention. This problem has been traditionally considered the realm of computer vision
and pattern recognition. It is also believed to be one of the most difficult machine vision problems.

0.1.1 The problems of face recognition
The main difficulty of face recognition stems from the immense variability of the human face.

The facial appearance depends heavily on the environmental factors, e.g. the lighting conditions,
background scene and head pose. It also depends on the facial hair, the use of cosmetics, jewelry
and piercing. Last but not least, plastic surgery or long-term processes like aging and weight gain
can have a significant influence on facial appearance. Yet, much of the facial appearance variability
is inherent to the face itself. Even if we hypothetically assume that external factors do not exist,
e.g. that the facial image is always acquired under the same illumination, pose, and with the same
haircut and make up, still, the variability in a facial image due to facial expressions may be even
greater than a change in the person’s identity. That is, unless the right measure is used to differ
between individuals.

Theoretically, it is possible to recognize an individual’s face reliably in different conditions, pro-
vided that the same person has been previously observed in similar conditions. However, the variety
of images required to cover all the possible appearances of the face can be very large (see Figure 1).
In practice, only a few observations of the face (and sometimes, even a single one) are available.
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Figure 1: Illustration of some factors causing the variability of the facial image.

Broadly speaking, there are two basic alternatives in approaching this problem. One is to find
features of the face that are not affected by the viewing conditions. Early face recognition algorithms
[8, 37, 29] advocated this approach by finding a set of fiducial points (eyes, nose, mouth, etc.) and
comparing their geometric relations (angles, lengths, and ratios). Unfortunately, there are only few
such features that can be reliably extracted from a 2D facial image and would be insensitive to
illumination, pose and expression variations [21].

The second alternative is to generate synthetic images of the face under new, unseen conditions.
Generating facial images with new pose and illumination requires some 3D facial surface as an
intermediate stage. It is possible to use a generic 3D head model [36], or estimate a rough shape
of the facial surface from a set of observations (e.g. using photometric stereo [27, 28]) in order



to synthesize new facial images and then apply standard face recognition methods like eigenfaces
[49, 55] to the synthetic images.

Figure 2 shows a simple visual experiment that demonstrates the generative approach. We created
synthetic faces of Osama Bin Laden (first row, right) and George Bush (second row, right) in
different poses by mapping respective textures onto the facial surface of another subject (left).
The resulting images are easily recognized as the world number one terrorist and the forty third
president of the United States, though in both cases the facial geometry belongs to a completely
different individual. Simple texture mapping in our experiment allowed to create naturally-looking
faces, yet, the individuality of the subject concealed in the 3D geometry of his face was completely
lost. This reveals the intrinsic weakness of all the 2D face recognition approaches: the face “lives”
in a three-dimensional space, and using only its 2D projection can be misleading. Practically, one
has the ability to draw any face on his own, so that he could essentially appear like any other person
and deceive any 2D face recognition method.
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Figure 2: Simple texture mapping on the same facial surface can completely change the appearance
of the 2D facial image and make the same face look like George Bush or Osama Bin Laden. This
illustrates the fact that being able to change the texture of the face, e.g. by using make up, one can
completely change his or her appearance as captured by a 2D image and disguise to another person.
The 3D geometry of the face is the same in this example, and is more difficult to disguise.

0.1.2 A new dimension to face recognition
Three-dimensional face recognition is a relatively recent trend that in some sense breaks the long-

term tradition of mimicking the human visual recognition system, as 2D methods attempt to do.
Three-dimensional facial geometry represents the internal anatomical structure of the face rather
than its external appearance influenced by environmental factors. As a result, unlike the 2D facial
image, 3D facial surface is insensitive to illumination, head pose [10], and cosmetics [41].

The main problem in 3D face recognition is how to find similarity between 3D facial surfaces.
Earliest works on 3D face recognition did not use the whole facial surface, but a few profiles ex-
tracted from the 3D data [19, 46, 7, 32]. Attempts were made to extend conventional dimensionality
reduction techniques (e.g. PCA) to range images or combination of intensity and range images
[2, 35, 41, 20, 54]. Tsalakanidou et al. applied the hidden Markov model to depth and color images
of the face [53]. Many academic (e.g. [42, 1]), as well as some commercial 3D face recognition
algorithms treat faces as rigid surfaces by employing variants of rigid surface matching algorithms.

The intrinsic flaw of these approaches is their difficulty in handling deformations of the facial



surface as the result of expressions. To date, only little research has been focused on trying to make
face recognition deal with facial expressions. The majority of the papers, starting from the earliest
publications on face recognition [8, 37, 29] and ending with the most recent results, address mainly
the external factors like illumination, head pose, etc. [28] Moreover, though many authors mention
the problem of facial expressions [31], a decent evaluation of currently available algorithms on a
database of faces containing sufficiently large expression variability has never been done before [10].

In [13, 16, 14] we introduced an expression-invariant three-dimensional face recognition algorithm,
on which the 3DFACE recognition system built at the Department of Computer Science, Technion,
is based. Our approach uses a geometric model of facial expressions, which allowed us to build a
representation of the face insensitive to expressions. This enabled us to successfully handle even
extreme facial expressions.

0.2 Isometric model of facial expressions
In order to treat faces as deformable, non-rigid surfaces, we use the Riemannian geometry frame-

work. We model faces as two-dimensional smooth connected compact Riemannian surfaces (man-
ifolds). Broadly speaking, a Riemannian surface S can be described by a coordinate mapping
S = x : U ⊂ IR2 → IR3 from a domain U on a plane to the 3D Euclidean space and the metric
tensor g, which is an intrinsic characteristic of the surface that allows us to measure local distances
on S independently of the coordinates [40].

The deformations of the facial surface as the result of expressions can be expressed as a diffeo-
morphism f : (S, g) → (S ′, g′) on the surface S. Our observations show that in most parts of the
human face the facial skin does not stretch significantly, therefore, we can model facial expressions
as isometries. An experiment validating the isometric model is described in [18]. We showed that
the isometric model faithfully describes most natural facial expression, and that such model is better
than the rigid one. Isometric transformations preserve the intrinsic geometry of the surface. That
is, the metric and consequently, the geodesic distances (the shortest paths between any two points
on S) remain invariant. To illustrate the idea of isometry, imagine a two-dimensional creature that
lives on the surface (Figure 3). An isometry is a transformation that bends the surface such that the
creature does not “feel” it. Faces in presence of facial expressions are thereby modelled as (approx-
imately) isometric surfaces, that is, surfaces that can be obtained from some initial facial surface
(“neutral expression”) by means of an isometry. From the point of view of Riemannian geometry,
such surfaces are indistinguishable as they have identical intrinsic geometry.
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Figure 3: Illustration of isometric and non-isometric transformations of a surface. Isometries do not
change the intrinsic geometry of the surface, such that an imaginable creature living on the surface
does not feel the transformation.

Isometry also tacitly implies that the topology of the facial surface is preserved. For example,
expressions are not allowed to introduce “holes” in the facial surface (Figure 3, right). This assump-
tion is valid for most regions of the face, yet, the mouth cannot be treated by the isometric model.
Opening the mouth, for example, changes the topology of the facial surface by virtually creating a
“hole.” As a consequence, the isometric model is valid for facial expressions with either always open
or always closed mouth.



This flaw of the isometric model can be dealt with by enforcing a fixed topology on the facial
surface. For example, assuming that the mouth is always closed and thereby “gluing” the lips when
the mouth is open; or, alternatively, assuming the mouth to be always open, and “disconnecting” the
lips by introducing a cut in the surface when the mouth is closed. This new model, which we refer
to as the topologically-constrained isometric model, is applicable to all facial expressions, including
those with both open and closed mouth. The problem of open mouth in 3D face recognition is
addressed in [18]. Here we assume that the mouth is always closed and thus limit our discussion to
the isometric model.

0.3 Expression-invariant representation
A cornerstone problem in three-dimensional face recognition is the ability to identify facial ex-

pressions of a subject and distinguish them from facial expressions of another subject. Under the
isometric model assumption, the problem is reduced to finding similarity between isometric surfaces.

Figure 4 illustrates the problem of isometric surface matching. The first row shows three isometries
of the human hand (assume that the fingers do not touch each other, such that the topology is
preserved), which, with a bit of imagination, look like a grenade, dog and cobra (second row). In
other words, from the point of view of their extrinsic geometry, isometric surfaces can look different,
while being just instances of the same surface. Deformations of the facial surface due to facial
expressions are though not so extreme like those of a human hand, yet sufficiently significant to
make the uncertainty region around the facial surface large enough that many other faces can fit
within (see Figure 5).
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Figure 4: Illustration of the isometric surface matching problem. First row: isometries of a hand.
Second row: different objects that resemble the hands if treated in a rigid way.

Lets assume that we have two instances of the same face differing one from another by a facial
expression, and let S and Q denote the corresponding facial surfaces. According to our isometric
model, there exists an isometric transformation f(S) = Q that maps any point x on the surface
S to a point y on the surface Q. Since f is isometric, the geodesic distances are preserved, i.e.
dS(x1,x2) = dQ(y1,y2).

Theoretically, the geodesic distances give a unique expression-invariant representation of the face.
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Figure 5: Variation of the facial surface due to facial expressions (left to right): neutral expression
of subject Eyal, average facial expression, minimum and maximum envelopes, profile view showing
the minimum and the maximum envelope.

However, since in practice the surfaces S and Q are represented by a discrete set of samples x1, ...xNx

and y1, ...yNy
, respectively, there is neither guarantee that the surface is sampled at the same

points, nor that the number of points in two surfaces is necessarily the same (Nx 6= Ny in general).
Moreover, even if the samples are the same, they can be ordered arbitrarily, and thus the matrix
D = (dij) = (d(xi,xj)) is invariant up to some permutation of the rows and columns. Therefore,
though the matrix D can be considered as an invariant, making use of it has little practicality.
Nevertheless, there have been very recent efforts to establish some theory about the properties of
such matrices [43, 44].

The alternative proposed in [25, 26] is to avoid dealing explicitly with the matrix of geodesic
distances and find an representation to the original Riemannian surface as a submanifold of some
convenient space, with an effort to preserve (at least approximately) the intrinsic geometry of the sur-
face. Such an approximation is called isometric embedding. Typically, a low-dimensional Euclidean
space is used as the embedding space; the embedding in this case is called flat.

In our discrete setting, flat embedding is a mapping

ϕ : ({x1, ...,xN} ⊂ S, d) → ({x′1, ...x′N} ⊂ IRm, d′), (1)

that maps N samples x1, ...xN of the surface S into a set of points x′1, ...x
′
N in a m-dimensional

Euclidean space, such that the resulting Euclidean distances d′ij = ‖x′i − x′j‖2 approximate the
original geodesic distances dij in an optimal way (here the matrices D and D′(X′) denote the
mutual geodesic and Euclidean distances, respectively). The resulting set of points x′1, ...x

′
N in the

Euclidean space is called the canonical form of the facial surface [25, 26]. The canonical forms are
defined up to a rotation, translation and reflection, and can be therefore treated by conventional
algorithms used for rigid surface matching. Figure 6 shows an example of a deformable surface
(human hand) undergoing isometric transformations, and the corresponding canonical forms of the
hand.

We would like to find such a mapping ϕ that deforms the geodesic distances the least. Em-
bedding error can be measured as a discrepancy s(X′;D) between the original geodesic and the
resulting Euclidean distances. We use X′ = (x′1, ...,x

′
N ) to denote an m × N matrix representing

the coordinates of the points in the embedding space.
0.3.1 Multidimensional scaling

Finding the best approximate flat embedding is possible by minimization of s(X′;D) with respect
to X′. A family of algorithms used to carry out such an approximate flat embedding is known as
multidimensional scaling (MDS) [9]. These algorithms differ in the choice of the embedding error
criterion and the numerical method used for its minimization.

One of the most straightforward possibilities is to have the metric distortion defined as a sum of
squared differences

s(X′;D) =
∑

i>j

(dij − d′ij)
2, (2)
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Figure 6: Illustration of the embedding problem and the canonical forms. First row: a Riemannian
surface (hand) undergoing isometric transformations. Solid line shows the geodesic distance between
two points on the surface, dotted line is the corresponding Euclidean distance. Second row: the hand
surfaces embedded in a three-dimensional Euclidean space. The geodesic distances Euclidean ones.

and the MDS problem is posed as a least-squares problem (LS-MDS). Such embedding error cri-
terion is called the raw stress. Since the stress is a non-convex function in X′, standard convex
optimization techniques do not guarantee convergence to the global minimum. Different techniques
can be employed to prevent convergence to small local minima. An example is the iterative con-
vex majorization algorithm (SMACOF, standing for Scaling by Majorization of a Convex Function)
[9, 22], which is less sensitive to local minima.

An alternative to LS MDS is an algebraic embedding method due to Torgerson and Gower [52, 33]
based on theoretical results of Eckman, Young, and Householder [23, 56], known as the classical
scaling. Classical scaling works with the squared geodesic distances, which can be expressed as the
Hadamard (coordinate-wise) product ∆ = D ◦D. The matrix ∆ is first double-centered

B = −1
2
J∆J (3)

(here J = I− 1
N 11T and I is an N×N identity matrix). Then, the eigendecomposition B = VΛVT is

computed, where V = (v1, ...,vN ) is the matrix of eigenvectors of B corresponding to the eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λN . Denoting by Λ+ the matrix of first m positive eigenvalues and by V+ the
matrix of the corresponding eigenvectors, the coordinate matrix in the embedding space is given by

X′ = V+Λ+. (4)

In practice, since we are usually interested in embedding into IR3 or IR2, no full eigendecomposition
of B is needed – it is enough to find only the first three or even two eigenvectors. Arnoldi [3], Lanzcos
or block-Lanzcos [30, 5] algorithms can be used to performs this task efficiently.1

1We thank Gene Golub and Michael Saunders (Stanford University) for their valuable comments on efficient
numerical implementations of such eigendecomposition algorithms.



0.3.2 Canonical forms of facial surfaces
When embedding is performed into a space of dimension m = 3, the canonical form can be plotted

as a surface. Figure 7 depicts canonical forms of a person’s face with different facial expressions.
It demonstrates that although the facial surface changes are substantial, the changes between the
corresponding canonical forms are insignificant. Embedding into IR2 is a special case – in this case,
the codimension of the canonical form in the embedding space is zero. Such an embedding can be
thought of as an intrinsic parametrization of the facial surface, which leads to a “warping” of the
facial texture. This serves as a way of performing geometry-based registration of 2D facial images
[12]. Flat embedding into IR2 was previously used for cortical surface matching [48] in brain analysis,
and adopted to texture mapping [57] in computer graphics.
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Figure 7: Examples of canonical forms of faces with strong facial expressions. For comparison,
canonical form of a different subject is shown (second row, right).

0.4 The 3DFACE system
We designed a prototype of a fully-automatic 3D face recognition system based on the expression-

invariant representation of facial surfaces. The 3DFACE system is shown in Figure 8. It can work
both in one-to-one and one-to-many recognition modes. In one-to-one (verification) mode, the user
swipes a magnetic card (5 in Figure 8) bearing his or her personal identification information. The
system compares the subject’s identity with the claimed one. In one-to-many (recognition) mode,
the subject’s identity is unknown a priori and it is searched for in a database of faces. In the current
prototype, no automatic face detection and tracking is implemented. The monitor (3 in Figure 8)
is used as a “virtual mirror” allowing the user to align himself relative to the camera.

Three-dimensional structure of the face is acquired by an active stereo time-multiplexed structured
light range camera [11]. World coordinates of each point are computed by triangulation, based on the
knowledge of the point location in the 2D coordinate system of the camera and the 1D coordinate
system of the projector. The latter is inferred from a code which is projected in a form of light
stripes onto the face of the subject using a DLP projector (1 in Figure 8). We use a 10-bit binary
Gray code, which allows to obtain about 0.5 mm depth resolution with scan duration less than 200
msec. The scanner output is a cloud of 640× 480 points.

The raw data of the scanner is first down-sampled to the resolution of 320× 240, then undergoes
initial cropping which roughly separates the facial contour from the background. In the topologically-
constrained case, the lips are also cut off, hole filling (which removes acquisition spike-like artifacts)
and selective smoothing by a Beltrami-like geometric filter [50, 38, 14].

The smoothed surface is resized again about 3 times in each axis, and then the facial contour is
extracted by using the geodesic mask. The key idea is locating invariant “source” points on the face
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Figure 8: The 3DFACE prototype system and its main components: DLP projector (1), digital
camera (2), monitor (3), magnetic card reader (4), mounting (5) .

and measuring an equidistant (in sense of the geodesic distances) contour around it. The geodesic
mask is defined as the interior of this contour; all points outside the contour are removed. In the
3DFACE system, two fiducial points are used for the geodesic mask computation: the tip of the
nose and the nose apex (the topmost point of the nose bone). These fiducial points are located
automatically using a curvature-based 3D feature detector, similar to [45] (see details in [15]). The
same feature detector is used to locate the left and the right eye.

The geodesic mask allows us to crop the facial surface in a geometrically consistent manner,
insensitively to facial expressions. After cropping, the resulting surface contains between 2500−3000
points. Computation of the geodesic distances is performed using the Fast Marching algorithm [39].

As the final stage, “canonization” of the facial surface is performed by computing the mutual
geodesic distances between all the surface points and then applying MDS. We embed facial surfaces
into IR3 using LS MDS.

The 3D acquisition lasts less than 200 msec. The overall end-to-end processing time (including
acquisition) is about 5 sec.

Since embedding is defined up to an Euclidean and reflection transformation, the canonical surface
must be aligned. We perform the alignment by first setting to zero the first-order moments (the
center of gravity) µ100, µ010, µ001 of the canonical surface to resolve the translation ambiguity (here

µpqr =
N∑

i=1

(x1
i )

p(x2
i )

q(x3
i )

r (5)

denotes the pqr-th moment); then, the mixed second-order moments µ110, µ011, µ101 are set to zero
to resolve the rotation ambiguity. Finally, using the coordinate relations of three fiducial points on
the face (two eyes and the nose tip), the reflection ambiguity is resolved.
0.4.1 Surface matching

The final stage of the face recognition algorithm is surface matching. Since the flattening com-
pensates for the non-rigid isometries of the surface, standard rigid matching (see e.g. [34]) can be



 
 
 
 
 

   

         

Figure 9: Scheme of preprocessing and canonization of the facial surface used in the 3DFACE system.

used for comparing the canonical surfaces. The standard choice in surface matching is the iterative
closest point (ICP) method and its variants [6], yet, it is disadvantageous from the point of view of
computational complexity.

We use a simple and efficient surface matching method based on high-order moments [51]. The
main idea is to represent the surface by its moments µpqr up to some degree P , and compare the
moments as vectors in an Euclidean space. Given two facial surface S and Q with the corresponding
canonical forms X′ and Y′ we can define the distance between two faces as

dcan(S,Q) =
∑

p+q+r≤P

(µX′
pqr − µY′

pqr)
2. (6)

In [13, 12] we proposed to treat canonical forms as images. After alignment, both the canon-
ical surface and the flattened albedo are interpolated on a Cartesian grid, producing two images.
These images can be compared using standard techniques, e.g. applying eigendecomposition like in
eigenfaces or eigenpictures. The obtained representation was called in [13] eigenforms. The use of
eigenforms has several advantages: First, image comparison is simpler than surface comparison, and
second, the 2D texture information can be incorporated in a natural way as an additional classifier.
Here, however, we focus on the 3D geometry, and in the following experiments use only the surface
geometry ignoring the texture.

0.5 Results
In this section, we present experimental results evaluating the 3DFACE method. First, we perform

a set of experiments, the goal of which is to test how well canonical forms can handle strong facial
expressions. The data sets used in these experiments contain facial expressions with closed mouth
only. An evaluation of our algorithm on a data set containing expressions with both open and closed



Table 1: Description of the Experiment I data. Asterisk denotes artificial subjects. Double asterisk
denotes identical twins.

Subject Color Neutral Weak Medium Strong Total
Michael∗∗ red 6 5 6 - 17
Alex∗∗ blue 3 1 3 1 8
Eyal green 4 1 7 9 21
Noam yellow 3 - - 7 10
Moran magenta 4 - 4 10 18
Ian orange 5 - 16 7 28
Ori cyan 8 - 11 10 29
Eric d. green 5 3 - 3 11
Susy d. magenta 6 - 9 8 23
David l. blue 5 2 6 5 18
Eve∗ black 6 - - - 6
Benito∗ grey 7 - - - 7
Liu∗ l. grey 8 - - - 8

mouth can be found in [18]. Then, we provide a benchmark of 2D and 3D face recognition algorithms
and compare them to our approach.
0.5.1 Sensitivity to facial expressions

In the first experiment, we studied the sensitivity of canonical forms to facial expressions. We
used a data set containing 10 human and 3 artificial subjects. Subjects Alex (blue) and Michael
(red) are identical twins. Each face in the data set appeared with a number of instances (6 − 29
instance per subject, a total of 204 instances) in a variety of facial expressions. The database is
summarized in Table 1.

All expressions were conducted with a closed mouth and were classified into 10 types (neutral
expression + 9 expressions) and into 3 strengths (weak, medium, strong). Neutral expressions are
natural postures of the face, while strong expressions are exaggerated postures rarely encountered in
everyday life (Figure 11, second row). The group of expressions including smile, sadness, anger,
surprise and disgust are basic emotions according to Eckman [24]; the group thinking, stress,
grin and chewing tries to imitate facial appearance that can occur in a natural environment; finally,
expressions inflate and deflate result in the most significant deformation of the facial geometry,
though rarely encountered (Figure 11, first row). Small head rotations (up to about 10 degrees)
were allowed. Since the data was acquired on a course of several months, variations in illumination
conditions, facial hair, etc. also present.

For reference, our approach was compared to rigid matching of facial surfaces. In both cases, the
metric dcan based on moments of degree up to P = 5 (i.e. vectors of dimensionality 52), according
to (5), was used.

The dissimilarities (distances) between different faces obtained by the metric dcan allow us to
cluster together faces that belong to the same subjects. As a quantitative measure of the separation
quality, we use the ratio of the maximum inter-cluster to minimum intra-cluster dissimilarity

ςk =
maxi,j∈Ck

ηij

mini/∈Ck,j∈Ck
ηij

, (7)

and the ratio of root mean squared (RMS) inter-cluster and intra-cluster dissimilarities

σk =

√√√√
2

|Ck|2−|Ck|
∑

i,j∈Ck, i>j η2
ij

1
|Ck|(|C|−|Ck|)

∑
i/∈Ck,j∈Ck

η2
ij

, (8)

(Ck denotes indexes of k-th subject’s faces, and ηij denotes dissimilarities between faces i and j).
This criterion measures how each cluster is tight and far from other clusters. Ideally, ςk and σk

should tend to zero.
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Figure 10: The subjects used in Experiment I (shown with neutral expressions). Second row right:
three artificial subjects.
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Figure 11: First row: seven representative facial expressions of subject Eyal in Experiment I. Second
row: three degrees of the smile expression of the same subject.

Figure 12 depicts a three-dimensional visualization of the dissimilarities between faces, obtained
by applying classical scaling to the dissimilarity matrix of faces. Each face on this plot is represented
by a point; faces of different subjects are marked with different colors. The first row depicts the
dissimilarities between faces with only neutral expressions. Faces of different subjects form tight
clusters and are easily distinguishable. The advantage of canonical forms is not so apparent in
this case. However, the picture changes drastically when we allow for facial expressions (Figure 12,
second row). The clusters corresponding to canonical surface matching are much tighter; moreover,
we observe that using rigid surface matching some clusters (red and blue, dark and light magenta,
light blue, yellow and green) overlap, which means that a face recognition algorithm based on rigid
surface matching would confuse between these subjects.
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Figure 12: Low-dimensional visualization of dissimilarities between faces in Experiment I using
original surface (left) and canonical form (right) matching. First row: neutral expressions only.
Second row: all expressions. Colors represent different subject. Symbols represent different facial
expressions. Symbol size represents the strength of the facial expression.

Figure 13 shows the separation quality criteria (ςk and σk) for rigid and canonical surface match-
ing. When only neutral expressions are used, canonical form matching outperform rigid surface
matching on most subject in terms of ςk and σk (by up to 68% in terms of ςk and by up to 64% in
terms of σk; slightly inferior performance in terms of ςk is seen on artificial subject Eve and human
subjects Eyal, Noam and David). The explanation to the fact that canonical forms are better even in
case when no large expression variability is present, is that “neutral expression” as a fixed, definite
expression, does not exist, and even when the face of the subject seems expressionless, its possible
deformations are still sufficiently significant. When allowing for facial expressions, our approach
outperforms original surface matching by up to 304% in terms of ςk and by up to 358% in terms of
σk.

0.5.2 Comparison of algorithms
The goal of the second experiment is performing a benchmark of our method and comparing it

to other face recognition algorithms. Faces from the probe database (30 different probe subjects
in a variety of facial expression, total of 220 faces) were compared to a set of 65 gallery templates
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Figure 13: Separation quality criteria (ςk and σk) using original (dark gray) and canonical (light
gray) surface matching. The smaller ςk and σk, the better is the separation quality.

(typically, two or three templates per subject was used). Only neutral expressions were used in the
gallery.

Three algorithms were tested: canonical form matching, facial surface matching and 2D image-
based eigenfaces. Eigenfaces were trained by 35 facial images that did not appear as templates; 23
eigenfaces were used for the recognition (the first two eigenfaces were excluded in order to decrease
the influence of illumination variability [28]).

Figure 14 (left) shows the cumulative match characteristic (CMC) curves of three algorithms
compared in this experiment on full database with all facial expressions. Our approach results in
rank 1 zero recognition error. Figure 14 (right) shows the receiver operation characteristic (ROC)
curves. Our algorithm significantly outperforms both the rigid facial surface matching and the
eigenfaces algorithm.

Figure 15 shows an example of rank-1 recognition on the full database (220 instances with facial
expressions). The first column depicts a probe subject with extreme facial expression; columns
two through four depict the rank-1 matches among the 65 templates using eigenfaces, facial surface
matching and canonical form matching.

First row in Figure 15 shows results typical for the described algorithms. Eigenfaces, being image-
based, finds the subject Ori 188 more similar to the reference subject Moran 129 since they have the
same facial expression (strong smile), though these are different subjects. Facial surface matching is
confused by 3D features (outstanding inflated cheeks) that appear on the face of subject Moran 129
due to the facial expression. These features are similar to the natural facial features (fat cheeks)
of subject Susy 276. Finally, canonical surface matching finds a correct match (Moran 114), since
flattening compensates for the distortion of the face of subject Moran 129 due to smile.
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Figure 14: CMC (left) and ROC (right) curves of face recognition based on surface matching
(dashed), canonical surface matching (solid) and eigenfaces (dotted). Obtained on database with all
expressions. Star denotes equal error rate.

Second row in Figure 15 shows an example of identical twins recognition – the most challenging
task for a face recognition algorithm. The eigenfaces algorithm resulted in 29.41% incorrect matches
when enrolling Michael and 25% when enrolling Alex. Facial surface matching resulted in 17.64%
and 0% wrong matches, respectively. Canonical form matching resulted in 0% recognition error for
both twins.

Probe Eigenfaces Rigid surface Canonical form

  
 

  
 

  
 

  
 Moran 129 Ori 188 Susy 276 Moran 114

  
 

  
 

  
 

  
 Michael 17 Alex 40 Alex 39 Michael 2

Figure 15: Example of recognition using different algorithms. First column shows the probe subject;
second through fourth columns depict the closest (rank 1) matches found by the canonical form
matching, facial surface matching and eigenfaces, respectively. Note that only the match using
canonical form matching is correct. Numbers represent the subject’s index in the database. Wrong
matches are emphasized.

Comparing the canonical forms averaged on about 10 instances with different expressions for
each of the twins, we found out a slight difference in the 3D geometry of the nose, which makes this
distinction possible (Figure 16). Apparently, the difference is very subtle and is not distinct if using
rigid surface matching, as the nose deforms quite significantly due to facial expressions.



 

 

 

 

 

 
Michael Alex Difference map

Figure 16: A pair of identical twins participating in the experiment (Alex and Michael), and the
difference (blue shades represent the difference absolute value) computed in the canonical form
domain and mapped onto the facial surface.

0.6 Conclusions
The geometric framework for 3D face recognition presented here provides a solution to a major

problem in face recognition: sensitivity to facial expressions. Being an internal characteristic of the
human face, facial expressions are harder to deal with compared to external factors like pose or light-
ing. This problem is especially acute when face recognition is performed in a natural environment.

Thinking of expressions as of approximated isometric transformations of a deformable facial sur-
face allows to construct an expression-invariant representation of the face. Our approach outperforms
other 3D recognition methods that treat the face as a rigid surface. The 3DFACE face recognition
system prototype implementing our algorithm demonstrates high recognition accuracy and has the
capability to distinguish between identical twins. It is now being evaluated for various industrial
applications.

0.7 Acknowledgements
We are grateful to Gene Golub and Michael Saunders (Stanford University) for valuable notes on

efficient implementation of eigendecomposition algorithms, to David Donoho (Stanford University)
for pointing us to Eckman’s publications on facial expressions, and to everyone who contributed
their faces to our database.

This research was supported by the Israel Science Foundation (ISF), Grant No. 738/04 and the
Bar Nir Bergreen Software Technology Center of Excellence (STL).



Bibliography

[1] B. Achermann and H. Bunke, Classifying range images of human faces with Hausdorff distance,
Proc. ICPR, September 2000, pp. 809–813.

[2] B. Achermann, X. Jiang, and H. Bunke, Face recognition using range images, Int’l Conf. Virtual
Systems and Multimedia, 1997, pp. 129–136.

[3] W. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quart. Appl. Math. 9 (1951), 17–29.

[4] J. Ashbourn, Biometrics: advanced identity verification, Springer-Verlag, Berlin Heidelberg
New York, 2002.

[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the solution of
algebraic eigenvalue problems: A practical guide, third ed., SIAM, Philadelphia, 2000, Online:
http://www.cs.utk.edu/~dongarra/etemplates/index.html.

[6] P. J. Besl and N. D. McKay, A method for registration of 3D shapes, IEEE Trans. PAMI 14
(1992), 239–256.

[7] C. Beumier and M. P. Acheroy, Automatic face authentication from 3D surface, Proc. British
Machine Vision Conf., 1998, pp. 449–458.

[8] W. W. Bledsoe, The model method in facial recognition, Technical Report PRI 15, Panoramic
Research Inc., Palo Alto (CA) USA, 1966.

[9] I. Borg and P. Groenen, Modern multidimensional scaling - theory and applications, Springer-
Verlag, Berlin Heidelberg New York, 1997.

[10] K. W. Bowyer, K. Chang, and P. Flynn, A survey of 3D and multi-modal 3D+2D face recogni-
tion, Dept. of computer science and electrical engineering technical report, University of Notre
Dame, January 2004.

[11] A. Bronstein, M. Bronstein, E. Gordon, and R. Kimmel, High-resolution structured light range
scanner with automatic calibration, Tech. Report CIS-2003-06, Dept. of Computer Science,
Technion, Israel, 2003.

[12] A. M. Bronstein, M. M. Bronstein, E. Gordon, and R. Kimmel, Fusion of 3D and 2D information
in face recognition, Proc. ICIP, 2004.

[13] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Expression-invariant 3D face recognition,
Proc. Audio and Video-based Biometric Person Authentication, 2003, pp. 62–69.

[14] , Three-dimensional face recognition, Tech. Report CIS-2004-04, Dept. of Computer
Science, Technion, Israel, 2004.

[15] , Three-dimensional face recognition, IJCV (2005), to appear.

[16] A. M. Bronstein, M. M. Bronstein, R. Kimmel, and A. Spira, Face recognition from facial
surface metric, Proc. ECCV, 2004.

17



[17] M. M. Bronstein and A. A. Bronstein, Biometrics was no match for hair-rising tricks, Nature
420 (2002), 739.

[18] M. M. Bronstein, A. M. Bronstein, and R. Kimmel, Expression-invariant representations for
human faces, Tech. Report CIS-2005-01, Dept. of Computer Science, Technion, Israel, 2005.

[19] J. Y. Cartoux, J. T. LaPreste, and M. Richetin, Face authentication or recognition by profile
extraction from range images, Proc. Workshop on Interpretation of 3D Scenes, November 1989,
pp. 194–199.

[20] K. Chang, K. Bowyer, and P. Flynn, Face recognition using 2D and 3D facial data, Proc.
Multimodal User Authentication Workshop, December 2003, pp. 25–32.

[21] I. Cox, J. Ghosn, and P. Yianilos, Feature-based face recognition using mixture distance, Proc.
CVPR, 1996, pp. 209–216.

[22] J. De Leeuw, Recent developments in statistics, ch. Applications of convex analysis to multidi-
mensional scaling, pp. 133–145, North-Holland, Amsterdam, 1977.

[23] C. Eckart and G. Young, Approximation of one matrix by another of lower rank, Psychometrika
1 (1936), 211–218.

[24] P. Ekman, Darwin and facial expression; a century of research in review, Academic Press, New
York, 1973.

[25] A. Elad and R. Kimmel, Bending invariant representations for surfaces, Proc. CVPR, 2001,
pp. 168–174.

[26] , On bending invariant signatures for surfaces, IEEE Trans. PAMI 25 (2003), no. 10,
1285–1295.

[27] A. S. Georghiades, P. N. Belhumeur, and D.J. Kriegman, Illumination cones for recognition
under variable lighting: faces, Proc. CVPR, 1998.

[28] A. S. Gheorghiades, P. N. Belhumeur, and D. J. Kriegman, From few to many: illumination
cone models for face recognition under variable lighting and pose, IEEE Trans. PAMI 23 (2001),
no. 6.

[29] A. Goldstein, L. Harmon, and A. Lesk, Identification of human faces, Proc. IEEE 59 (1971),
no. 5, 748–760.

[30] G. H. Golub and C. F. van Loan, Matrix computations, third ed., The John Hopkins University
Press, 1996.

[31] G. Gordon, Face recognition based on depth and curvature features, Proc. CVPR, 1992, pp. 108–
110.

[32] , Face recognition from frontal and profile views, Proc. Int’l Workshop on Face and
Gesture Recognition, 1997, pp. 74–52.

[33] J. C. Gower, Some distance properties of latent root and vector methods used in multivariate
analysis, Biometrika 53 (1966), 325–338.

[34] A. Gruen and D. Akca, Least squares 3d surface matching, Proc. ISPRS Working Group V/1
Panoramic Photogrammetry Workshop, 2004, pp. 19–22.

[35] C. Hesher, A. Srivastava, and G. Erlebacher, A novel technique for face recognition using range
images, Int’l Symp. Signal Processing and Its Applications, 2003.

[36] J. Huang, V. Blanz, and V. Heisele, Face recognition using component-based SVM classification
and morphable models, SVM (2002), 334–341.



[37] T. Kanade, Picture processing by computer complex and recognition of human faces, Technical
report, Kyoto University, Dept. of Information Science, 1973.

[38] R. Kimmel, Numerical geometry of images, Springer-Verlag, Berlin Heidelberg New York, 2003.

[39] R. Kimmel and J. A. Sethian, Computing geodesic on manifolds, Proc. US National Academy
of Science, vol. 95, 1998, pp. 8431–8435.

[40] E. Kreyszig, Differential geometry, Dover Publications Inc., New York, 1991.

[41] N. Mavridis, F. Tsalakanidou, D. Pantazis, S. Malassiotis, and M. G. Strintzis, The HISCORE
face recognition application: Affordable desktop face recognition based on a novel 3D camera,
Proc. Int’l Conf. Augmented Virtual Environments and 3D Imaging.

[42] G. Medioni and R. Waupotitsch, Face recognition and modeling in 3D, Proc. AMFG, October
2003, pp. 232–233.

[43] F. Mémoli and G. Sapiro, Comparing point clouds, IMA preprint series 1978, University of
Minnesota, Minneapolis, MN 55455, USA, April 2004.

[44] , A theoretical and computational framework for isometry invariant recognition of point
cloud data, IMA preprint series 1980, University of Minnesota, Minneapolis, MN 55455, USA,
June 2004.

[45] A. B. Moreno, A. Sanchez, J. Velez, and J. Diaz, Face recognition using 3D surface-extracted
descriptors, Irish Machine Vision and Image Processing Conference, 2003.

[46] T. Nagamine, T. Uemura, and I. Masuda, 3D facial image analysis for human identification,
Proc. ICPR, 1992, pp. 324–327.

[47] J. Ortega-Garcia, J. Bigun, D. Reynolds, and J. Gonzalez-Rodriguez, Authentication gets per-
sonal with biometrics, IEEE Signal Processing magazine 21 (2004), no. 2, 50–62.

[48] E. L. Schwartz, A. Shaw, and E. Wolfson, A numerical solution to the generalized mapmaker’s
problem: flattening nonconvex polyhedral surfaces, IEEE Trans. PAMI 11 (1989), 1005–1008.

[49] L. Sirovich and M. Kirby, Low-dimensional procedure for the characterization of human faces,
JOSA A 2 (1987), 519–524.

[50] N. Sochen, R. Kimmel, and R. Malladi, A general framework for low level vision, IEEE Trans.
Image Proc. 7 (1998), no. 3, 310–318.

[51] A. Tal, M. Elad, and S. Ar, Content based retrieval of VRML objects - an iterative and inter-
active approach, Eurographics Workshop in Multimedia, 2001.

[52] W. S. Torgerson, Multidimensional scaling I - theory and methods, Psychometrika 17 (1952),
401–419.

[53] F. Tsalakanidou, S. Malassiotis, and M. G. Strintzis, Face localization and authentication using
color and depth images, IEEE Trans. Image Processing 14 (2005), no. 2.

[54] F. Tsalakanidou, D. Tzocaras, and M. Strintzis, Use of depth and colour eigenfaces for face
recognition, Pattern Recognition Letters 24 (2003), 1427–1435.

[55] M. Turk and A. Pentland, Face recognition using eigenfaces, Proc. CVPR, 1991, pp. 586–591.

[56] G. Young and A. S. Householder, Discussion of a set of point in terms of their mutual distances,
Psychometrika 3 (1938), 19–22.

[57] G. Zigelman, R. Kimmel, and N. Kiryati, Texture mapping using surface flattening via multi-
dimensional scaling, IEEE Trans. Visualization and computer graphics 9 (2002), no. 2, 198–207.


