
Efficient Computation of Adaptive Threshold Surfaces for Image Binarization

Ilya Blayvas, Alfred Bruckstein and Ron Kimmel
Computer Science Department, Technion Institute of Technology

Haifa, ISRAEL, 32000
{blayvas,freddy,ron}@cs.technion.ac.il

Abstract

The problem of binarization of gray level images acquired
under nonuniform illumination is reconsidered. Yanowitz
and Bruckstein proposed to use for image binarization an
adaptive threshold surface, determined by interpolation of
the image gray levels at points where the image gradient
is high. The rationale is that high image gradient indi-
cates probable object edges, and there the image values
are between the object and the background gray levels.
The threshold surface was determined by successive over-
relaxation as the solution of the Laplace equation. This
work proposes a different method to determine an adaptive
threshold surface. In this new method, inspired by multires-
olution approximation, the threshold surface is constructed
with considerably lower computational complexity and is
smooth, yielding faster image binarizations and better vi-
sual performance.

1 Introduction

Let us consider the problem of separating the objects from
the background in a gray level image I(x, y), where objects
appear lighter (or darker) than the background. This can
be done by constructing a threshold surface T (x, y), and
constructing the binarized image B(x, y) by comparing the
value of the image I(x, y) with T (x, y) at every pixel, via

B(x, y) =

{

1 if I(x, y) > T (x, y)
0 if I(x, y) ≤ T (x, y).

(1)

It is clear that a fixed value of the threshold surface
T (x, y) = const. can not yield satisfactory binarization
results for images obtained under nonuniform illumination
and/or with a nonuniform background.

Yanowitz and Bruckstein in [1], motivated by the ap-
proach of Chow and Kaneko [2], proposed to construct a
threshold surface by interpolating the image gray levels at
the points where the image gradient is high. Indeed, high
image gradients indicate probable object edges, where the
image gray levels are between the object and the back-
ground levels. The threshold surface was required to in-

terpolate the image gray levels at all the support points and
to satisfy the Laplace equation at non-edge pixels. Such
a surface was determined by a successive over-relaxation
method (SOR) [1, 3].

Subsequent performance evaluation of several binariza-
tion methods showed that the Yanowitz-Bruckstein (YB)
method was one of the best binarization methods [4]. How-
ever, the computational complexity of successive over-
relaxation method is expensive: O(N 3) for an N × N im-
age, and the resulting binarization process is slow, espe-
cially for large images. Furthermore, the threshold surface
tends to have sharp extrema at the support points, and this
can degrade binarization performance.

We here follow the approach of YB and use image values
at support points with high gradients to construct a thresh-
old surface. However, we define a new threshold surface via
a method inspired by multi resolution representations, like
Laplacian Pyramids [5] or wavelets [6]. The new thresh-
old surface is constructed as a sum of functions, formed
by scaling and shifting of a predetermined function. This
new threshold surface can be stored in two ways: either as
an array of coefficients aljk, or as a conventional thresh-
old surface T (x, y), obtained as a sum of scaled and shifted
versions of the given function, multiplied by appropriate co-
efficients aljk.

The threshold surface coefficients aljk are determined
in O(P log(N)) time, where P is the number of support
points and N2 is the image size. These coefficients can
then be used to construct the threshold surface T (x, y) over
the entire image area N2 in O(N2 log(N)) time or to con-
struct the threshold surface over smaller region of the image
of M2 size in only O(M2 log(N)) time. Furthermore, the
adaptive threshold surface can be made smooth over all the
image domain.

This paper is organized as follows: Section 2 reviews
the YB binarization method and the properties of threshold
surfaces obtained by successive over-relaxation. Section 3
describes a new method, proposed to construct the threshold
surface. Section 4 describes the implementation of the sur-
face computation. Finally, Section 5 presents some exper-
imental results, comparing the speed and binarization per-
formance of the two methods.

2 The Yanowitz-Bruckstein Bina-
rization Method

The essential steps of the YB binarization method method
are the following:

1. Find the support points {pi} of the image I(x, y),
where the image gradient is higher then some thresh-
old value Gth,

{pi} = {(xi, yi)
∣

∣|∇I(xi, yi)| > Gth}. (2)

2. Find the threshold surface T (x, y) that equals to the
image values at the support points {pi} and satisfies
the Laplace equation at the rest of the image points:

T (pi) = I(pi)
∇2T (x, y) = 0 if (x, y) /∈ pi.

(3)

The solution of (3) is found by the SOR method.

3. Determine the binarized image B(x, y) according to
(1), i.e. by comparing I(x,y) with T(x,y).

The original method included also some pre- and post- pro-
cessing steps (see Section 2 of [1]), omitted here for the
sake of clarity.

The SOR starts with an approximate solution t(x, y), and
numerical iterations take it to the unique solution T (x, y)
of the Laplace equation. At each iteration, j, the Lapla-
cian value of tj(x, y) is computed in each point (that should
be zero for the exact solution), multiplied by some con-
stant 1 ≤ λ < 2 and subtracted from the tj(x, y), to yield
tj+1(x, y) as proposed by Southwell in [3]. Then, the val-
ues of tj+1(pi) at the support points {pi} are reset to be
equal to the image values at these points I(pi). Finally,
the values of ti+1(x, y) at the boundary points are set to be
equal to the values of their internal neighbors, thus imple-
menting the Newmann boundary conditions. The iterative
process can be described in semi-MatLab notation as fol-
lows:

t0(x, y) = I(x, y)
for j = 1 : N,
tj(x, y) = tj−1(x, y)− λ · ∇2tj−1(x, y)
tj(pi) = I(pi)
tj(1 end, :) = tj(2 end− 1, :)
tj(:, 1 end) = tj(:, 2 end− 1)

end

(4)

Each iteration requires O(N 2) operations for N2 grid
points and there should be O(N) iterations to converge to
a solution, therefore, the method complexity is O(N 3) [1].
The solution of (3) can be found in just a O(N 2) time us-
ing multigrid methods [7, 8]. However it will become clear

from the following paragraph that not only the speed of
computation but also the properties of the threshold surface
can be improved.

The general form of the solution of the (3) in the contin-
uum limit is :

φ(x, y) = ψ(x, y) −

P
∑

i=1

qi · log(
√

(x− xi)2 + (y − yi)2). (5)

Where ψ(x, y) is a smooth and bounded function [9]. This
solution has singularities at the support points. In the case of
a problem discretized on a finite grid, the solution obtained
by procedure (4) will be finite, yet it will have sharp extrema
at the support points. These sharp extrema and especially
the hanging ‘valleys’ between them can cause the unwanted
‘ghost’ objects on the binarized image. These ghost objects
where eliminated by postprocessing step in[1], however, it
is preferable to get rid of them already by a careful construc-
tion of the threshold surface. To illustrate sharp extremas
at the support points and the hanging ‘valleys’ in between,
Figure 1 shows a surface computed by SOR for 100 sup-
port points with random values in the range of 0..100. The
support points were randomly scattered over a 128 × 128
grid.

Ideally, a good threshold surface should indicate the lo-
cal illumination level, therefore the threshold surface con-
structed by the successive over-relaxation is not optimal in
this sense. The next section describes a new way to con-
struct such a threshold surface.

3 The New Threshold Surface

We propose to construct and represent the threshold surface
in the Multi Resolution framework, as a sum of functions,
obtained by scaling and shifting of the single source func-
tion. Unlike Laplacian Pyramids [5, 10], where the coeffi-
cients are calculated on the basis of an original signal that is
a priori known, in our case the complete threshold surface
is unknown in advance, but only its approximate values at
the support points: T (pi) = I(pi). This section presents a
way to construct surfaces that interpolate and approximate
image values at the support points I(pi). First, a simple
interpolation algorithm is presented. However, the interpo-
lation surface obtained is discontinuous and can not serve as
a good threshold surface. Therefore, a small modification to
the interpolation algorithm is next presented, that results in
a continuous and smooth approximation surface.

Let us consider a unit step source function, given by

G000(x, y) =

{

1 if (x, y) ∈ Ω(I)
0 if (x, y) /∈ Ω(I).

(6)

Here Ω(I) denotes the set of all the image points (x, y) and
pi denotes the i-th support point. All the other functions

we shall use are generated by downscaling of this source
function and shifting the downscaled functions to various
positions in the image plane

Gljk(x, y) = G000(x · 2
l − j, y · 2l − k), (7)

where l = 0, . . . , log2(N) is a scale factor and j, k ∈
{0, . . . , 2l − 1} are spatial shifts.

The threshold surface will be given by

T (x, y) =

log2(N)
∑

l=0

2l
−1

∑

j,k=0

aljkGljk(x, y). (8)

3.1 Interpolation Algorithm

Let us introduce an algorithm to calculate the ”decompo-
sition coefficients” aijk in order to obtain an interpolating
surface T (x, y) given as (8), that passes exactly through all
the support points T (pi) = I(pi).

The algorithm runs as follows:
1. The decomposition coefficient a000 is set equal to the aver-

age of all the support points,

a000 = 〈I(pi)〉 =
1

P000

P000
∑

i=1

I(pi). (9)

After Step 1, every support point p
(0)
i is already approximated by

the average a000, so it remains only to interpolate the difference
between the value of every support point and the average.

2. The values of the support points are updated as follows:

p
(1)
i = p

(0)
i − a000. (10)

3. The image is divided into four ”quadtree” cells, with corre-
sponding indexes {jk} relating to the spatial position of the cell:
{00, 01, 10, 11}. The average of the updated support points p

(1)
i

of each cell jk is calculated to yield the appropriate decomposition
coefficient a1jk:

a1jk =
1

P1jk

∑

p
(1)
i
∈S1jk

p
(1)
i . (11)

Here p
(1)
i ∈ S1jk denotes a support point pi that belongs to the

cell at the 1-st resolution level, located at the (j, k) spatial position.
P1jk denotes the number of support points in this cell.

4. After Step 3, the values of support points in each cell jk are
approximated by a000 + a1jk, so their values are updated to be:

p
(2)
i = pi − a000 − a1jk = p

(1)
i − a1jk. (12)

5. Steps 3 and 4 are repeated for successive resolution levels.
At every resolution level (l−1) each of the 4l−1 cells of this level
is divided into four cells to yield 4l cells at the resolution level
l. The coefficients aljk of the cells at level l at the (j, k) spatial

position are set to be equal to the average of the residual values of
the support points, belonging to this cell:

aljk =
1

Pljk

∑

i∈Sljk

p
(l)
i . (13)

Here p
(l)
i ∈ Sljk denotes a support point pi that belongs to the

cell at level l, located at the (j, k) spatial position. Pljk denotes
the number of support points in this cell. After calculation of the
coefficients aljk, the values of the support points are updated by,

p
(l+1)
i = p

(l)
i − aljk. (14)

6. The procedure ends at the highest resolution level L (L =

log2(N)), when the size of the cell equals to one pixel. At this step
there is at most one support point in every cell jk, with a residual
value p

(L)
i . The coefficient aLjk is set to aLjk = p

(L)
i .

The threshold surface, constructed in accordance with
equations (6-8) with the coefficients aljk obtained by the
algorithm as described in steps 1-6, will be an interpolation
surface of the support points p(0)

i , i.e. it will pass through
every support point. This can be proved by the following
argument:

Consider some arbitrary support point p(0)
i . The value of

the threshold surface at this point will be

T (pi) =
L

∑

l=0

aljlkl
. (15)

Where, the jlkl chooses at every level l the cell that contains
the pi.

On the other hand, the residual value p(L+1)
i of the sup-

port point pi equals to (Step 6):

pL+1
i = p

(0)
i − a000 − a1j1k1

− . . .− aLjLkL
= 0, (16)

which can be rewritten as

I(pi) ≡ p
(0)
i = a000 + a1j1k1

+ . . .+ aLjLkL
. (17)

From (15) and (17) it follows that for an arbitrary support
point pi, T (pi) = I(pi).

Figure 2 shows the interpolation surface, obtained by our
method for the same set of support points that was used for
the over-relaxation solution shown in Figure 1.

3.2 Approximating Source Function

The method presented in the previous section yields a sur-
face that interpolates the support points. However, the re-
sulting interpolation surface is discontinuous. In order to
obtain an n-times continuously differentiable approxima-
tion surface, the source function (6) must be substituted by
n-times continuously differentiable function vanishing to-
gether with n first derivatives at the boundary of its support.

20
40

60
80

100
120

20
40

60
80

100
120

0

10

20

30

40

50

60

70

80

90

Figure 1: Solution by the
Over-relaxation method

20
40

60
80

100
120

20
40

60
80

100
120

10

20

30

40

50

60

70

80

90

Figure 2: Interpolating sur-
face, obtained by the new
interpolation method.

In the practical case of finite grid it is enough to con-
sider a source function having a value and derivatives small
enough at the boundary. However, there are three additional
requirements from the source function.

• Approximation: It should have value close to 1 in the
domain of its cell.

• Normalization: The integral of the source function
over its support must be equal to the image area.

• Smoothness: It should decrease gracefully towards the
boundary of its support.

The first two requirements are necessary in order to build
the threshold surface approximating the support points and
the third one in order to have it practically smooth.

There are infinitely many possible source functions, sat-
isfying these requirements. After some experimentation
with several simple functions, we have chosen a source
function with support [−1, 2] × [−1, 2], extending the im-
age area [0, 1]×[0, 1]. Therefore, the threshold surface (8) is
constructed with scaled functions, overlapping at each res-
olution level. The new source function is given by

G000(x, y)=

{

e
−(x− 1

2
)4−(y− 1

2
)4

∫ 2

−1

∫ 2

−1
e
−(x− 1

2
)4−(y− 1

2
)4

, if{x, y} ∈ [−1, 2]2

0 if{x, y} /∈ [−1, 2]2.

(18)

The point {x, y} = { 1
2 ,

1
2} is the center of the image, span-

ning over [0, 1]× [0, 1]. Figure 3 shows the source function
(18). The support points that determine the decomposition
coefficients lie in the central cell [0, 1] × [0, 1], where the
source function (18) is practically flat. Eight periphery cells
will overlap neighboring functions thus making the thresh-
old surface smooth.

Figure 4 shows the smooth threshold surface, con-
structed with the source function (18) for the same set of
support points that was used to construct the interpolated
surfaces of Figures 2 and 1. This figure (as well as figures
1 and 2) shows also the support points by vertical spikes.
Some of the support points of Figure 4 are lying far from the
threshold surface. This is due to the fact that support points
are taken to have random values for demonstration purposes

10

20

30

40

10

20

30

40

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3: The source func-
tion, given by (18)

.

0
20

40
60

80
100

120

0
20

40
60

80
100

120

10

20

30

40

50

60

70

80

90

100

Figure 4: An approximat-
ing surface, obtained with
source function (18)

a000 a100 a101 . . .
P000 P100 P101 . . .

Table 1: Array coeffs. Contains decomposition coefficients
aljk and number of support points Pljk in the cell ljk.

and therefore the approximating surface passing between
them is far from the support points in some places. In the
real cases, the neighboring support points usually have sim-
ilar values and approximation surface pass closer to them.
The new threshold surface is smooth. It does not necessar-
ily pass exactly through the support, points, however this
is an advantage rather than disadvantage, because if several
neighboring support points have substantially different and
‘noisy’ values this indicates either that the threshold sur-
face is under-sampled by the support points or that there
is some error or noise in their values. In both cases there
is not enough information at the support points about the
threshold surface and probably the best solution is to set the
threshold surface somewhere in between, like in the pro-
posed approximation algorithm.

4 Implementation

4.1 Data Structures

The basic data structures are two arrays:
The first array is called coeffs (Table 1). It stores the de-

composition coefficients of the cells aijk in the first row and
the number of support points Pljk of the corresponding cell
in the second row. aljk denotes the decomposition coeffi-
cient of the cell ljk, which is located at the (j, k) spatial
position, at level l of the resolution. Pljk stores the number
of support points in this cell. First column of coeffs stores
the single coefficient of the lowest level a000 and the to-
tal number of support points P ≡ P000. Following are four
columns of coefficients of the first level (a100, . . . , a111) and
number of points in each of these cells (P100, . . . , P111), etc.

Every support point belongs to one and only one cell
ljlkl at every resolution level l. There are lg(N) different

p1 p2 · · · pp

· · · · · · · · · · · ·
plog2(N)1 plog2(N)2 · · · plog2(N)p

Table 2: Array pointarr. Column i contains the indices of
the cells containing pi.

resolution levels, starting from single cell of size N ×N at
level 0 to the N2 cells of size 1× 1 at level lg(N).

The second array, called pointarr (Table 2), has P
columns and 1 + lg(N) rows. Every column of pointarr

contains the current value of the support point p(l)
i in the

first row, and the indexes indil in other rows. These in-
dexes refer to the cells which contain pi at every level l:
coeffs[:, indil] = [aljk;Pljk]. Figure 5 shows an example
of a point, which belongs to cell000 at level 0 (as every
point does), cell100 at level 1 , to cell cell211 at level 2 etc..
This point contributes in the construction of the threshold
function only through the coefficients a000, a100, a211,
These coefficients are stored in the first row, columns
1, 2, 11, . . . of array coeffs (Table 1). Thereby, the column
of pointsarr, corresponding to this point will have values
1, 2, 11, . . . in its second, third, fourth . . . rows.

4.2 Algorithm description

1. Array pointarr (Table 2) is created and gradually filled. Ev-
ery column i of this table contains value of the point pi in the first
raw. For every point pi a cell ljilkil that contains it at each level l

l=0, . . . , lg(N) is determined . The positions of these cells in the
array coeffs (Table 1) are filled into rows 2, . . . , N , of the i-th col-
umn of pointarr, and simultaneously, for every encountered cell
the counter of the points belonging to this cell is increased in the
array coeffs. This requires lg(N) calculations of the cell index and
lg(N) increments of the point counters for each of the P support
points entered into the lg(N) cells.

2. The coefficients aljk in the array coeffs are calculated. a000

is set to be an average value of all the points (9). Next, the value
of every point in points is updated: the average value is subtracted
from it (10).

3. Step 2 is repeated for a higher level l.
4. The threshold surface is built based on the coeffs and the ba-

sis function (18). This requires O(N 2 lg(N)) operations. So, an
approximation surface for P support points scattered over
N2 grid points is determined as a set of coefficients us-
ing O(P lg(N)) operations and constructed explicitly, us-
ing O(N2 lg(N)) operations.

5 Experimental results

Speed comparison:

The two methods, YB with adaptive threshold surface ob-
tained by SOR and the new one with adaptive threshold sur-

Grid 32× 32 64× 64 128× 128 256× 256
SOR 0.39 2.35 18.9 160.7
FA 0.1 0.4 1.55 7.45

(0.01) (0.01) (0.06) (0.27)

Table 3: Runtimes of SOR and FA.

face obtained by multiresolution approximation were com-
pared for speed and quality of binarization. The programs
were implemented in MATLAB 5.3 and ran on an IBM-
Thinkpad-570 platform with 128MB RAM and a Pentium-
II 366 MHz processor.

Table 3 presents the speed comparison results for the two
methods. The test images are successively increasing por-
tions of one of the images. The support points in all cases
constituted the 1% of the image points with the highest gra-
dients. The run times are given in seconds. For the new
threshold surface approximation method, referred to as Fast
Approximation or FA, two runtimes are given. The first one
is the runtime for the full image binarization with the ex-
plicit threshold surface T (x, y) and it should be compared
with the runtime of the SOR method. The second is the con-
siderably shorter runtime necessary to obtain the decompo-
sition coefficients aijk that implicitly contain all the infor-
mation about the threshold surface and can then be used for
an efficient ‘region-of-interest’ processing.

Binarization Performance:

The binarization methods were tested on several of the
images from the ‘images’ toolbox of Matlab. A smooth
parabolic function was added to the image of ‘IC’ in order
to simulate a nonuniform illumination. About a half of the
tested images showed similar visual performance of the two
methods, while another half evidenced the advantage of FA.
Some of the typical results, evidencing the advantage of FA
are presented here.

Figures from 6 to 14 show 3 images and 6 corresponding
binarization results. The size of all the images is 256×256.
The Figures show an original image followed by two fig-
ures, showing images binarized with the threshold surfaces
constructed by SOR and then by FA. The binarization pro-
cessing time for images with the SOR threshold surface var-
ied between 161.1 and 162.7 sec, while for images obtained
with FA varied between 7.2 to 7.8 seconds. Obviously, the
speed advantage of the Fast Approximation will be greater
for larger images.

The image ‘IC’ is a good example of ‘ghost’ objects that
appear as white areas between the conductor lines in the
image binarized with the SOR, Figure 13. They are almost
absent in the image binarized with the new threshold surface
and shown on Figure 14.

P

P

P Cell_000

Cell_100 Cell_101

Cell_110 Cell_111

Cell_211

Figure 5: Cell Hierarchy. Figure 6: Barbara.

Figure 7: Binarization of
Barbara with SOR.

Figure 8: Binarization of
Barbara with FA.

Figure 9: Trees. Figure 10: Binarization of
Trees with SOR.

Figure 11: Binarization of
Trees with FA.

Figure 12: IC.

Figure 13: Binarization of
IC with SOR.

Figure 14: Binarization of
IC with FA.

Acknowledgements

We would like to thank Danny Barash from HP Labs Israel,
for his valuable comments.

6 Concluding Remarks

This work proposes efficient procedures for gray level im-
age binarization motivated by the method proposed in [1].
The new threshold surface is constructed in the framework
of multi-resolution analysis, with a considerably lower
computational complexity and hence in a much shorter time
even for small images. The new threshold surface can be
made smooth and by the nature of its construction should
be similar to the local illumination level. These qualities
allowed us to often obtain better visual performance of the
binarization process. In particular, the quantity and size of
‘ghost’ objects in some images was lower.

References
[1] S.D.Yanowitz and A.M.Bruckstein. A new method for image segmentation.

Computer Vision, Graphics and Image Processing, 46:82–95, 1989.

[2] C.K.CHow and T.Kaneko. Automatic boundary detection of the left-ventricle
from cineangiograms. Comput. Biomed., 5:388–410, 1972.

[3] V.R.Southwell. Relaxation methods in theoretical physics. Oxford University
Press, 1946.

[4] D.Trier and T.Taxt. Evaluation of binarizaiton methods for document images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:312–315,
1995.

[5] P.J.Burt and E.H.Adelson. The laplacian pyramid as a compact image code.
IEEE Transactions on Communications, 31(4):532–540, 1983.

[6] Stephane G.Mallat. A Wavelet Tour of Signal Processing. Academic Press,
1999, pp.221-224.

[7] W. L. Briggs. A Multigrid Tutorial. Philadelphia, PA:SIAM, 1987.

[8] R.Kimmel and I.Yavneh. An algebraic multigrid approach for image analysis.
SIAM Journal on Scientific Computing, to be submitted, 2001.

[9] R.Courant and D.Hilbert. Methods of Mathematical Physics. Interscience Pub-
lishers, 1953.

[10] J.L.Crowley and R.M.Stern. Fast computation of the difference of low-pass
transform. IEEE Transactions on PAMI, 6(2), 1984.

